
1. INTRODUCTION

Commercial U.S. nuclear power plants produce more 
than 20% of the electrical power for the nation and in the 
process generate more than 2000-2300 metric tons of
used fuel per year [1]. For multiple decades, nuclear 
waste has been accumulating from the nation’s 
commercial nuclear power plants. The need for the 
permanent geologic disposal of these wastes to allow for 
the long-term sustainability of the nuclear fuel cycle has 
long been recognized as being part of an integrated fuel 
management strategy.  In fact, formal studies in the U.S. 
that addressed the question of which disposal medium in 
geologic structures would be best for the permanent 
storage (disposal) of nuclear wastes began in the mid-
1950s. At the time, the U.S. Atomic Energy Commission 
(now the U.S. Department of Energy [DOE]) asked the 
National Academy of Sciences to establish a committee 
of earth scientists to study the problem [2]. That 
committee concluded that natural underground rock salt 
formations are among the most favorable disposal 
environments. The favorability of rock salt comes from 
the following reasons:

 Rock salt is almost impermeable – a deposit’s very 
existence implies the absence of circulating 
groundwater and of dissolution;

 It slowly deforms under stress (creeps) to prevent 
or heal openings that could otherwise release 
radioactivity into the environment;

 It readily dissipates the heat from nuclear wastes;
 It occurs widely throughout the U.S.; and
 Rock salt is easy to mine; yet it’s strong enough to 

allow the creation of large rooms for 
accommodating disposal.

Because of relatively recent decisions by the current 
administration and its renewed assessment of the nuclear 
life-cycle, the various deep geologic disposal medium 
options are once again open for consideration [3]. This 
paper focuses on addressing the favorable properties and 
behavior of rock salt, from the computational modeling 
perspective, as it relates to its potential use as a disposal 
medium for a deep geologic repository.

2. MODELS AND TOOLS FOR USE IN THE 
DEVELOPMENT OF A REPOSITORY

Development of a repository to assure adequate 
containment and isolation of the radioactive wastes 
requires a design basis and experience that have both 
been validated through demonstrations in-situ. There are 
several key factors in the development of a repository, 
including (1) a sound design of the system; (2) validated 
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computational models and tools to permit crafting 
system designs with confidence; and (3) acceptable 
techniques for evaluating (assessing) the design’s 
performance by methods known to be valid [4]. The 
focus of this work will be from the perspective of the 
validated tools and models for use in the design and 
assessment of a potential rock salt repository. We will 
address the thermo-mechanical (TM) aspects of the 
problem, specifically, and also touch upon some open 
questions that still remain to be answered, which may 
potentially include thermo-hydro-mechanical (THM) 
couplings to adequately address them.

The various components that make up a computational 
modeling capability to address the thermo-mechanical 
behavior of rock salt over a wide range of time and space 
will first be presented.  The solver technology that is 
required to address the large deformation, highly 
nonlinear, nature of the repository will be addressed, in 
general.  Included will be the features of a valid 
constitutive model needed to capture the important 
phenomena of rock salt creep deformation over 
repository performance ranges.  Also in this discussion 
will be the typical issues of importance in computational 
models, i.e., discretization, stability, accuracy, etc.

Confidence in computational models is attained by 
grounding the models on sound physical principles, first, 
and then using acceptable mathematical and numerical 
methods to represent the behavior.  They are then 
validated through a systematic process that includes 
exercising the model to solve a basic problem (one with 
a known solution, if possible); comparing model 
response against behavior of natural known phenomena; 
conducting laboratory, bench-scale, and field tests to 
evaluate the performance of the model’s predictions; and 
conducting in-situ tests to compare predictive results of 
the model with actual underground data.  Hence, several 
example rock salt calculations will be presented to 
demonstrate the applicability and validity of the 
modeling capability described here to repository-scale 
problems.  These will vary from simple problems 
designed to test elementary creep response behavior to 
the more complex that deal with addressing specific 
aspects of repository room behavior.  Finally a summary 
and a set of conclusions will be offered for the reader’s 
consideration relative to the state of computational 
modeling of rock salt and its applicability to the problem 
of radioactive waste disposal in rock salt for fuel cycle 
sustainability.

3. COMPUTATIONAL CAPABILITY FOR 
MODELING GEOLOGIC ROCK SALT

In this section, the components that make up a 
geomechanical computational modeling capability for 
geologic rock salt are presented; namely, the governing 

thermo-mechanical equations, the constitutive model, 
and discretization/solution technique used to solve the 
equations. Much of what follows in this section is 
gleaned from Sandia National Laboratories’ extensive 
historical experience in its various roles with the Waste 
Isolation Pilot Plant (WIPP) project and the author’s 
approximately 30-year involvement, in a computational 
mechanics support role, on this and other projects at 
Sandi in which predicting rock salt thermo-mechanical 
behavior was important.

3.1. Governing Mechanical Equations
For mechanical (geo-mechanical) systems, there are 
three basic sets of equations that govern the response of 
the system deforming under a given load.  The first set is 
the set of equations of motion:

,ij j j jb a                                (1)

or, for the case when the processes are very slow such 

that inertia ( ja ), may be neglected, these equations 

become the equilibrium equations:

, 0ij j if                         (2)

where ij are the components of the stress tensor and 

i if b are the body forces, with ρ being the density.  

The second set is the set of strain-displacement relations:

 , , , ,

1

2
ij i j j i k j k ie u u u u                   (3)

where ije is the strain tensor and iu is the 

displacement vector.

The third set of equations, the so-called constitutive 
equations, relates the equilibrium equations to the strain-
displacement relations through the material (constituent) 
response of that material undergoing the deformations.  
This third set of equations can take on many forms 
depending on the material that is being modeled, ranging 
all the way from a simple elastic material that could be 
used to model, say a granitic material, to materials such 
as clay and rock salt, with significantly more complex 
behaviors that require more sophisticated and involved 
material descriptions. For the present work, we consider 
a constitutive model for rock salt.  This is one of the 
materials of interest for nuclear fuel cycle sustainability 
and is a creeping material with a creep rate that is highly 
temperature-dependent.  Its overall strain rate can be 
characterized by the equation:

1
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where  is the Poisson’s ratio, E is Young’s Modulus, 

T is temperature ( K ),  is the coefficient of linear 



thermal expansion, and ij is the Kronecker Delta.  Of 

course, the temperature in this equation is solved for, as 
well, incorporating the appropriate heat transfer 
processes occurring in the configuration of interest 
underground but the details of this will not be addressed 
here and it will be assumed that the temperature history 
is known.  The creep model is thus embodied within the 
third term on the right-hand-side of Eq. (4) and the 
following subsection describes the MD creep model, a 
model that has been extensively used in the U.S. to 
model rock salt behavior [5].

3.2. Multi-mechanism Deformation Creep Model
The Multimechanism Deformation (MD) creep model 
was originally developed by Munson and Dawson [6,7, 
8] and later extended by Munson et al. [9].  The MD 
model mathematically represents the primary and 
secondary creep behavior of salt due to dislocations 
under relatively low temperatures (compared to the 
melting temperature) and low to moderate stresses which 
are typical of mining and storage cavern operations.  
Three micromechanical mechanisms, determined from 
deformation mechanism maps [10], are represented in 
the model: 1) a dislocation climb mechanism active at 
high temperatures and low stresses, 2) an empirically 
observed but undefined mechanism active at low 
temperatures and low stresses, and 3) a dislocation slip 
mechanism active at high stresses.  These creep 
mechanisms are assumed to act such that the total steady 
state creep rate can be written as the sum of the 
individual mechanism strain rates.

3
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The influence of temperature on the creep strain rate is 
included through an Arrhenius term. The steady state 
creep strain rates for the first and second mechanisms are 
identical in form and are implemented using a power law 
model while the third mechanism (dislocation slip) is 
represented using an Eyring type model.
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where:

eq = equivalent stress

iA and iB = structure factors

iQ = activation energies

T = absolute temperature

G = shear modulus

R = universal gas constant

in = stress exponents

q = stress constant

0 = stress limit of the dislocation slip mechanism

|H| = Heaviside function with the argument 0( ) 

From the definition of the Heaviside function, the third 
mechanism is only active when the equivalent stress 

exceeds the specified value of the stress limit 0 .  The 

equivalent stress appearing in these equations is taken to 
be the Tresca stress [9]. The Tresca stress can be written 
in terms of the maximum and minimum principal 

stresses 1 3 and   , respectively with ( 1 2 3    ).   

Alternatively, the Tresca stress may be written as a 
function of the Lode angle  and the second invariant 

2J of the deviatoric stress tensor s (whose components 

are ijs ).

1 3 22coseq J                     (9)

The Lode angle is dependent on both the second and 

third invariant, 3J , of the deviatoric stress tensor ijs .
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The kinetic equation used in the MD model is given by 
Eq. (13) where F is a function which accounts for 

transient creep effects and s is the steady state 

dislocation creep strain rate defined by Eq. (5).

eq sF                                            (13)

The function F has three branches: a work hardening 
branch (F > 1), an equilibrium branch (F = 1), and a 
recovery branch (F < 1).
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The choice of the particular branch depends on the 

transient strain limit f
t and the internal variable  .  

The transient strain limit is defined by Eq. (15) where 

0K , c, and m are material parameters, T is the absolute 

temperature, and G is the shear modulus.
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The internal variable  , appearing in the calculation of 

the function F, is obtained by integration of the 
evolution equation

 1 sF                                     (16)

 and  , appearing in Eq. (14), are the work hardening 
and recovery parameters and are given by Eqs. (17) and 

(18) respectively.   In these equations  ,  , r , and 

r are material parameters. Typically the recovery 

parameter  is taken to be constant (i.e. r  ).
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For three dimensional states of stress the components of 
the creep strain rate tensor are generalized [11] as
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Using the Tresca stress, Eq. (9), as the equivalent stress 
in this form means the creep strains are purely deviatoric 

(  since 0c c c
ij ij kke    ) and that all volume change is 

elastic  as defined though the bulk modulus K (i.e. 
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Including the bulk and shear moduli, which are both 
assumed constant, there are a total of 20 parameters used 
to define the MD model.  Typical material parameters 
for WIPP clean salt (Halite) for use with the MD model 

are given in Table 2. Some of the parameters have
different values for Argillaceous Salt (Halite) also found 
at WIPP and are shown in parenthesis in the table.

If only the steady state creep response is of interest then 
the transient and recovery branches may be effectively 

turned off by setting 0  , 0  , 0  , 0  .  

The MD model can be further simplified to that of a 
power law creep model by setting the appropriate 
structure factors and activation energies to zero. The
scalar secondary creep strain rate for a power law creep 
model is given by:

Table 1.  Typical material properties for WIPP salt used with
the MD model

Parameters Units Salt

Elastic 
Properties

Shear modulus G MPa 12,400

Young’s 
modulus

E MPa 31,000

Poisson’s ratio  – 0.25

Salt Creep 
Properties 

Structure 
Factors

A1

s-1

8.386×1022

(1.407×1023)

B1

6.086×106

(8.998×106)

A2

9.672×1012

(1.314×1013)

B2

3.034×10-2

(4.289×10-2)

Activation 
energies

Q1 cal/mole 25,000

Q2 cal/mole 10,000

Universal gas 
constant

R
cal/mol-

oK
1.987

Absolute 
temperature

T oK 300

Stress 
exponents

n1
–

5.5

n2 5.0

Stress limit of 
the dis-location 
slip mechanism

σ0 MPa 20.57

Stress constant q – 5,335

Transient strain 
limit constants

M – 3.0

K0 –
6.275×105

(2.470×106)

c oK-1 9.198×10-3

Constants for 
work-hardening 
parameter

α –
-17.37

(-14.96)

β – -7.738

Recovery 
parameter

δ – 0.58



/

n

eqQ RT
s Ae

G


   
  

 
                        (21)

where eq is the Von Mises equivalent stress.

3.3. Discretization and Solution of Equations
The governing equations described in the previous 
subsections are, of course, then discretized and solved 
numerically. Typically this is done within a 
displacement based finite element method (FEM) 
computer code. Over the decades, at Sandia, several 
generations of successively more-sophisticated large-
displacement non-linear finite element codes have been 
developed to solve the highly nonlinear systems of 
equations typical used for rock salt as described herein. 
The current generation of codes is known as Sierra 
Mechanics [12].

The discretized version of the field equations governing 
deformation of the salt body can be written as:

 
N ve

B dV F
 

 
 
                      (22)

Where the term on the left-hand side of the equation is 
the internal force vector and {F} is the external force 
vector. B is the strain-displacement transformation 
matrix; N is the number of elements in the discretization; 
 is an ordered vector of stress components in each 
element at a Gauss point, and e is the volume of each 
element. As previously noted, the constitutive model 
(strain-displacement relationship) is incorporated via the 
integrand product in the left-hand side of the equation. 
An explicit FEM technology has historically been used 
at Sandia for the solution of Eq. (22) that is different 
from traditional FEM technology. First, a global 
stiffness matrix is never formed. Instead at the element 
level, the divergence of the stress is found, and the 
contributions to each node in the overall structure are 
summed (i.e., the vector described by the left side of the 
equation). A residual force vector comprised of the 
internal minus the external forces,

   
N ve

R B dV F
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  
 
 ,            (23)

is computed, and the solution procedure is then one of 
reducing the residual to zero using an iterative technique. 
Because the quantities being manipulated are vectors, 
there is no need to store a global stiffness matrix and 
factor it. Consequently the storage requirements are 
small when compare to the traditional FEM approach 
and larger problems can be solved more efficiently. The 
iterative techniques that have been historically used are 
the pre-conditioned Conjugate Gradient (CG) technique, 

e.g., [13] and, in the older codes, an adaptive Dynamic 
Relaxation (DR) technique, e.g., [14].

Historically the creep models included in the material 
libraries of the quasi-static finite element codes at Sandia 
have used forward Euler integration with an adaptive 
global time-stepping scheme. This adaptive scheme is 
key in permitting the capability to be able to model rock 
salt behavior out to the requisite times (thousands of 
years) needed for repository applications. Sub-stepping 
is often needed when the global time step, chosen based 
on accuracy conditions, is larger than the time step 
required for stability. Frequently it is necessary to start a 
simulation with a small time step in order to accurately 
represent the primary creep behavior (e.g., 10-6 s). An 
added benefit of using a small step size is that it often 
reduces the number of iterations the nonlinear conjugate 
gradient solver needs to satisfy equilibrium of the 
system.

4. BUILDING CONFIDENCE IN THE 
COMPUTATIONAL CAPABILITY

A series of example problems demonstrating the 
modeling of successively more complex rock salt 
behavior is presented in this section. These examples, 
which are of course not all-inclusive of problems that 
have been solved for this purpose, simply serve to 
demonstrate how confidence in the computational 
capability is systematically and eventually achieved.

4.1. Comparison to Analytic Solutions
The first example is one that tests the computational 
capability by analyzing a creep relaxation problem.  A 
stress-free, isotropic, and homogeneous block of rock 
salt, prevented from vertical movement at the bottom,
undergoes a vertical displacement  at the top at time 
zero, with the sides free to deform. The simulation 
determines the creep stress relaxation in the block over 
time when  is kept constant. Because an analytic 
solution is available when one assumes Norton power 
law secondary creep, for this problem no primary creep 
is included. 

Recall that the total strain rate can be decomposed into 
elastic and creep portions. Because the displacement in 
the vertical direction is applied initially and then kept 
constant thereafter, the elastic component of the vertical 
strain rate is simply equal to the negative of the vertical 
creep rate,

el c    or n Q RT
c D e

E


    


          (24)

where D can be obtained by examination of Eq. (21). 
This equation is an ordinary differential equation 
for which a closed-form solution can be found by 



the method of separation of variables. The solution 
is given by:

              
 1 11 0 1

nn Q RTt EDe n t 
      (25)

where  t is the vertical stress as a function of time 

and  0 is the elastic vertical stress value induced 

initially by the application of the displacement  . This 
verification problem has been used since the earliest
generation of codes, even before the development of the 
MD creep model. Hence, specific values consistent with 
an earlier reference creep model [15] are used in this 

example and are: 0.001  , 924.75 10E   , 0  , 
365.79 10D   , 4.9n  , and   20.13Q RT  , 

where units are in SI. Figure 1 shows a plot of the von 

Mises stress with time,  t , computed with the Sierra 

Solid Mechanics (Adagio) code compared to the analytic 
solution. The figure shows the simulation tracking the 
analytic solution very closely and thus verifies that the 
implementation of, at least, the power law creep portion 
of the creep model is functioning as intended.

Fig. 1. Solution of Creep Stress Relaxation Problem.

While it is worthwhile to compare the capability to an 
analytic solution on problems where there are known 
solutions, there are very few such problems. So 
confidence has to be achieved by additional means, such 
as comparison with measurements. In comparing with 
measurements, it is useful to start at the laboratory-scale, 
then proceed to the bench-scale, and finally to the full-
scale.

4.2. Comparisons to Lab and Bench Scale Tests
Typically laboratory tests on rock salt specimens are 
used for dual purposes. First for the determination of one 
unique salt-type specific set of model parameter values
for use with the constitutive model in question and then 

subsequently to re-calculate the entire suite of laboratory 
tests with this unique set of parameters that was 
determined. This provides a preliminary assessment of 
whether the model can effectively predict the behavior 
seen in laboratory tests or not, over the range of stresses, 
temperatures, and loading rates covered by the testing. 
This is essential during the development of the model 
and has been done for the current capability (e.g., triaxial 
compression creep tests [16]).

At the next scale, the bench-scale is where additional 
complexity enters. In the laboratory, the environment 
that the rock salt sees during testing can be carefully 
controlled, but at the bench-scale, such careful control is 
typically no longer possible.

This next example looks at the isothermal response of a 
0.315 m diameter borehole at a depth of 1042 m below 
the surface in the Asse Mine, Germany. The borehole 
was dry-drilled in December 1979 from a chamber at the 
750 m level down to a depth of 1050 m below ground 
[17]. Three days after the deepest point of drilling was 
reached, on Dec. 21st, the Netherlands Energy 
Foundation ECN started Isothermal Free Convergence 
(IFC) measurements in the unconstrained and unheated 
borehole at a depth of 292 m (the rock salt temperature is 
42 °C at this depth); the measurements were continued 
for 830 days until March 30, 1982 [17].

Figure 2 shows the idealized configuration and the mesh 
used in this Sierra Mechanics calculation. In this 
calculation the MD parameters used [18] are those for 
Asse Speisesalz. Figure 3 shows the simulation result 
compared to the data and indicates that with appropriate 
adjustment of single parameter in the MD creep model
[18], the isothermal convergence of the borehole can be 
appropriately captured.

Fig. 2. IFC 5° Isothermal Wedge Slice Model Used for 
Borehole Simulation.



In the previous examples, the computational capability 
has been exercised on isothermal rock salt. However, in 
a repository setting, the capability needs to be able to 
model non-isothermal conditions as well. This next 
example is one that looks at the same borehole as the 
previous example, but for a test conducted later in time,
which included heating of the borehole, the Heated Free-
Convergence Probe (HFCP) experiment. This problem is 
part of an international benchmark project so additional 
details of this work can be found in [18] and comparison 
with results of others elsewhere [19].

Fig. 3. IFC 5° Isothermal Wedge Slice Model Results vs. 
Measurements.

In July 1983, 1309 days after the end of drilling of the 
borehole, three heaters with a total height of 3 m were 
switched on in the Asse borehole. The vertical center of 
the three heaters was at a depth of -231 m (981 m below 
ground). After 19 days, with free convergence of the 
borehole occurring during that period, the heaters were 
turned off because the probe was about to come in 
contact with the borehole wall. ECN continued the free 
convergence measurements in a subsequent cool-down 
phase for an additional three days. Thus, the experiment 
ended 22 days after the start of heating.

Figure 4 shows the idealized configuration and the mesh 
used in this Sierra Mechanics calculation. Because the 
HFCP experiment was located 62 m higher in the 
borehole than the IFC experiment, the boundary 
conditions for this calculation had to be modified. A 
smaller hydrostatic primary stress of 23 MPa from the 
overburden was assumed. A smaller initial salt 
temperature of 313.95 K (40.8° C) with a temperature 
gradient of 0.02 K/m in depth was applied. A wedge-
shaped calculational model with an outer radius of 20 m, 
a height of 20 m with the center at borehole depth 231 
m, and a borehole radius of 15.75 cm was used. The 
simulation was performed with the same unique set of 
parameter values determined from the Asse Speisesalz 

lab test results and the further fine-tuning by means of 
the in-situ measured IFC data [18]. The isothermal free 
borehole convergence in the initial 1309 days between 
the drilling of this bore-hole depth and the start of 
heating were included in the calculations to get the 
correct initial conditions for the subsequent coupled 
thermo-mechanical simulation of the heated borehole.
The reported temperature history, from the experiment, 
due to the three heaters was simplified. It was applied 
directly to the borehole wall in the 3 m high heated 
section as a temperature boundary condition. 

Fig. 4. HFCP 15° Non-Isothermal Wedge Model Used for 
Borehole Simulation.

Figure 5 shows the simulation result compared to the 
data at the end of heating. While the simulation slightly
over-predicts the measured convergence, which may be 
in part due to inherent assumptions that went into the 
model, the figure demonstrates that the free convergence 
of the borehole resulting from non-isothermal loading 
conditions can be well-captured with the computational 
capability.

4.3. Comparisons to Full-Scale Tests
Although smaller-scale tests are useful for systematically 
building confidence in the tools, ultimate confidence in 
the capability of a computational model to predict 
repository behavior must be demonstrated by reasonable 
comparison to in-situ full-scale experimental data. The 
final example presented here deals with the simulation of
a field test to evaluate the performance of the model’s 
predictive capability. The full-scale experiment of 
interest here is one that was fielded in the early 1980’s at 
the WIPP. Though isothermal, this room brings 
additional complexity into the simulation through the 
bedding clay seams and multiple materials present in the 
stratigraphy that need to be included in the simulation.



Fig. 5. HFPC 15° Non-Isothermal Wedge Model Results vs. 
Measurements.

The isothermal WIPP Mining Development Test (Room 
D) consists of a test room set into the bedded 
stratigraphy of the natural salt formation. The room was 
constructed to be thermally and structurally isolated 
from the other test rooms by a large pillar, 
approximately 79 m thick. The room has a total length of 
93.3 m. The test section of the room consists of the 
central 74.4 m of the room and has cross section 
dimensions of 5.5 m wide by 5.5 m high. The Room D 
coordinate center is at a depth of 646.0 m below the 
ground surface. Details of the mining of the room and of 
the measurements that were taken were carefully 
documented [20]. The roof of Room D follows a parting 
defined by a small clay seam. This seam (Clay I), along 
with the rest of the clay seams, and the remainder of the 
stratigraphy around the room are shown in Figure 6.

According to Munson and co-workers [9], the clay 
seams noted in the stratigraphy are not in actuality 
distinct seams, unless associated with an anhydrite layer,
but are rather local horizontal concentrations of 
disseminated clay stringers. Therefore, computationally, 
seam properties can be ascribed to the concentration of 
clay. In the calculational model here, the clay seam shear 
response is specified by a coefficient of friction, μ=0.2. 
Of the thirteen clay seams labeled A through M, only the 
nine nearest the room labeled D through L are taken as 
active and included in the calculation.

The calculational model represents a slice through the 
center of the room length and consists of a space defined 
by the vertical symmetry plane through the middle of the 
room and by a vertical far-field boundary placed far into 
the salt. So the model is effectively a plane strain model 
– appropriate for comparison with measurements taken 
at room mid-length for the relatively long room. The 
upper and lower model extremes are defined as shown.

Fig. 6. Local stratigraphy around and model of Room D.

The boundaries, both vertical and horizontal, are 
sufficiently removed from the room that they cause an 
insignificant perturbation in stress or displacement at the 
room proper. Both of the vertical boundaries are 
constrained against horizontal (X-direction) movement, 
allowing only vertical displacements. The horizontal 
boundaries are traction boundaries. A uniform pressure 
of 13.57 MPa is applied at the upper horizontal 
boundary, accounting for the weight of the overburden. 
The thickness weighted average of the densities of the 
materials in the layers of the calculational model [15] 
yielded an average density in the model of 2300 kg/m3. 
This density results in a uniform pressure of 15.97 MPa 
on the bottom horizontal boundary, and accounts for the 
presence of a room that is instantaneously mined. A 



lithostatic initial stress state that varies linearly with
depth is assumed based on the average material density 
and a gravitational acceleration of 9.79 m/s2. The room 
surfaces are traction-free and the upper right corner of 
the model is fixed against horizontal and vertical (X-Y) 
movement. Properties use for Clean and Argillaceous 
salt in the model are those shown in Table 1.

It should be noted that both this room and its heated 
counterpart, WIPP Room B, have been the subject of 
some recent attention from a benchmarking perspective, 
and the interested reader can find many more details 
regarding the rooms and some preliminary simulations 
in these references [21,22,23]. In addition, the US-
German international benchmarking project briefly 
described in [19] was recently extended to allow the 
inclusion of these two rooms as additional benchmark 
exercises to be undertaken by the partners.

While this simulation generates many results of interest, 
only one component of room closure is presented here,
for brevity. Figure 7 shows the computed vertical 
closure from the latest Sierra Mechanics calculations for 
Room D compared to measured vertical closure from the 
room. Vertical closure is the relative displacement of the 
roof to the floor at the room at the centerline of the 
room. Again, it can be seen that the computed results 
compare quite well with the measurements and 
demonstrates the applicability and validity of the 
modeling capability described here to repository-scale 
problems. The results shown here are consistent with the
results of Munson and co-workers [5], which used 
earlier generations of the technology originally 
developed for WIPP. That technology has since been 
improved (with ~30 years of hardware and software 
improvements) and is embodied in the current state-of-
the-art Sierra Mechanics computational capability.

Fig. 7. WIPP Room D Model Vertical Closure Results vs. 
Measurements.

5. SUMMARY AND CONCLUSIONS

Because of relatively recent decisions by the current 
administration and its renewed assessment of the nuclear 
life-cycle, the various deep geologic disposal medium 
options are open for consideration once again. This 
paper has focused on addressing the favorable creep 
properties and behavior of geologic rock salt, from the 
computational modeling perspective, as it relates to its 
potential use as a medium for a deep geologic repository.
The various components that make up a computational 
modeling capability to address the thermo-mechanical 
behavior of rock salt over a wide range of time and space 
have been presented. Several example salt calculations 
were also presented to demonstrate the applicability and 
validity of the modeling capability described to address 
repository-scale problems.  These varied from simple 
problems designed to test elementary creep response 
behavior to the more complex that dealt with addressing 
specific aspects of repository room behavior. The 
evidence shown points to a mature computational 
capability that can generate results relevant to the design 
and assessment of a potential rock salt HLW repository. 
In fact the capability embodied within Sierra Mechanics 
has already been exercised and demonstrated, to a 
limited extent, via a scoping study of a generic HLW 
repository [24]. The computational capability described 
here can be used to help enable fuel cycle sustainability 
by appropriately vetting the use of geologic rock salt for 
use as a deep geologic disposal medium.
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