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Introduction

 Methodology
— Direct numerical simulation (DNS): CPU hours ~ 0(10°) (Sandia)
— Large-eddy simulation/PDF modeling

* Flow, turbulence: Large-eddy simulation (LES)

* Turbulence-chemistry interactions: Probability density function methods (PDF)

* Goal: Computationally-efficient predictive models for turbulent

reacting flows

— Improve the capabilities of LES/PDF by making detailed comparisons with
DNS of the same flames and developing advanced SGS models

— Performance of the LES/PDF will be assessed via a posteriori comparisons
with DNS in turbulent jet flames

— Computational speedup to DNS: factor of 103-10*



Simulation overview

* Direct numerical simulation (Hawkes et al., 2007)

— Non-premixed CO/H, temporally evolving
planar jet flame

— Re =2510, 4478, 9079 and Da = 0.011
— Skeletal mechanism with 11 species

— Fuel (syngas): 50% CO, 10% H,, 40% N,
— Co-flow: 25% O,, 75% N,

— 500 million grid points (uniform mesh)

y cross-streamwise

* Large-eddy simulation/PDF modeling
— Hybrid finite-volume/Monte-Carlo method

— Same boundary conditions and chemical
mechanism as DNS

— 1 million grid points (uniform mesh)

Schematic of the DNS
configurations

— 20 particles per cell



Transport equations of PDFs in LES/PDF

* One-point, one-time density-weighted joint PDF of compositions f({;x,t)

B, o 9, 1 ‘
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* Modeling of the conditional diffusion term using the IEM model
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* Particle method in LES/PDF
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Implementation of LES/PDF

e LES: high-order-accurate LES code NGA (Desjardins et al., 2008)
— Second-order accuracy in space and time
— LES filter width A = 8A, pys
— Dynamic subgrid-scale model

— Convective outflow boundary condition

* PDF: highly scalable code HPDF (Wang and Pope, 2011)
— Second order accuracy in space and time
— Two-way coupling of LES/PDF

— IEM mixing model with molecular transport (Viswanathan et al., 2011)

O. Desjardins et al, J. Comput. Phys., 227, 7125-7159, 2008
H. Wang and S. B. Pope, Proc. of Combust. Inst., 33, 1319-1330, 2011
S. Viswanathan et al., J. Comput. Phys., 230, 6916-6957, 2011
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* Solve an additional mean specific volume equation to smooth
numerical noise in the density field from PDF (Popov et al. 2011)

v
P ot

+pu-Vu=V-(pI+Tr)Vo)+ S,

S,: source term due to the volume expansion (heat release)

* Transport properties are modeled by empirical formula

in/p = If{j{_TI-IT{})l'B? and ' = f-gxfg{Tng)l'T? ;



Turbulence-Chemistry Interactions

* Mixingis initially rapid enough relative to reaction at a low Da number
e Strong turbulence-chemistry interactions resulting in local extinction
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Turbulence-Chemistry Interactions

* Mixingis initially rapid enough relative to reaction at a low Da number
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Turbulence-Chemistry Interactions

e Strong turbulence-chemistry interactions resulting in local extinction
followed by re-ignition
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Comparisons between DNS and LES/PDF:
Contours of mixture fraction

4 10

6
x’H

Re = 9079, DNS: 864 x 1008 x 576 = 501.6M, LES/PDF: 108 x 126 x 72 = 0.98M 10



Comparisons between DNS and LES/PDF
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Comparisons between DNS and LES/PDF

o:meanin DNS ——: mean in LES/PDF
0O: rms in DNS ---: resolved rms in LES/PDF ---: total rms in LES/PDF
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Comparisons between DNS and LES/PDF:
Conditional mean temperature

* Good prediction of local extinction and re-ignition in LES/PDF
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Conditional diffusions of mixture fraction

e (w Z, t) = _Qm(wa - @f:l) + 5

Underprediction of conditional diffusion
Cause the slower relaxation of the PDF and the slight underprediction

of the mean mixture fraction

O: DNS —: LES/PDF

0: DNS ---: LES/PDF
1 —0.06

PDFs of mixture fraction
Normalized conditional diffusion
—0.15 6 T ———————

f(¥e)
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Normalized conditional diffusion and PDFs of mixture fraction at y/H =0




Modeling of multi-scalar mixing in LES/PDF

Modeling of scalar mixing is crucial in the PDF method

Most mixing models use only scalar-space variables and do not
take into account the spatial scalar structure

Previous studies of the multi-scalar mixing in nonreacting flows

Lack of a priori and a posteriori tests of the PDF modeling of
multi-scalar mixing in turbulent reacting flows

Mixing term in the PDF transport equation can be exactly
obtained from DNS

Comparisons between DNS and LES/PDF



Multi-scalar mixing in isotropic nonreacting turbulence

e One-point, one-time joint PDF f = f(¢:x.t)
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Multi-scalar mixing in nonreacting coaxial turbulent jet
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* Mixing of the two scalars can occur only through the third,
forcing a detour of the manifold in scalar space

J. Cai et al,, J. Fluid Mech. (2011)
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Example of the mixing of two 1D scalars

Physical space Fourier space
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e 1D scalar function ¢ = a large-scale function + small-scale fluctuations

. = sin(x) or cos(x) +
random Fourier modes at high wavenumbers
* &, =sin(kx), d’d,/dx? = -k?sin(kx) = -k*d,
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Mixing of two 1D scalars in the domain [0,2n]
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Multi-scalar mixing in composition space at different stages

Contours of the mixture fraction on the x-y plane

* Joint PDFs of the mixture fraction and Y., (a progress variable) on the x-z plane
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 Manifold in composition space near the shear layer or at the early stage (transition from

laminar flow to turbulent flow)

* Close to the IEM model in the fully developed turbulent region
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Multi-scalar mixing in composition space (t = 20t;, y/H=0)

« Approximation of the attracting manifold M(«) = |4 — b()[js = 0
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Multi-scalar mixing in composition space (t = 40t;, y/H=0)

« Approximation of the attracting manifold M(«) = |4 — b()[js = 0
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Conclusions

An accurate and scalable LES/PDF tool (NGA/HPDF code) for
massive computational studies has been implemented

Comparisons of DNS and LES/PDF for the non-premixed jet flame
— Number of grid points in LES/PDF is less than 1/500 of the DNS

— Good agreement of major quantities in low and high Re cases

— Good prediction of local extinction and re-ignition

Multi-scalar mixing in DNS and LES/PDF

— DNS exhibits the attracting manifold at the early stage
— LES/PDF shows qualitative agreement for the manifold and joint PDFs
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Sensitivity of the filter width
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