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*Fabrication of Top-Down GaN Nanowires
*Photoluminescence Top-Down Nanowires

*A Single Frequency Nanowire Laser

*Modeling and Confirmation of Single Mode Behavior
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Why Lasers in Solid State nghtlng’?

 InGaN LEDs exhibit a decrease 0.5

in efficiency at high drive oal _
currents referred to as the 4| [\<
“efficiency droop” 03} :

— This droop in efficiency limits W,
the operating current density of S ™| —
InGaN LEDs and ultimately o1k Low Threshold Laser
increases the cost per lumen. | — High Threshold Laser
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A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. R. J. Brueck, and
J.Y. Tsao, Opt. Express 19, A982-A990 (2011)
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Why Nanowires for Lasing?

* Reduced strain
— Greater range of alloy compositions

- Laser cavities
—strong optical confinement
—end faceting

* Low density of threading dislocations
* Integration into two-dimensional arrays

*Vertical cavities
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Fabrication: A Top-Down Two-Step Etch Process

Wet Etch

ICP etch (AZ-400K developer)

(0001) GaN on sapphire

Monolayer of micro-spheres Plasma etch causes sidewall damage

Q. Li, J. J. Figiel, G. T. Wang, Appl. Phys. Lett., 94, C.Y. Wang et al., Opt. Expr. 16, 10549-10556,2008.

231105 (2009).
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Cavity Geometry of the Top-Down Nanowire

Since the C-plane is not etched,
the wires are uniform in length
and the length i1s fixed to the
thickness of the epitaxial layer.

2/23/2011 | WD mag HV | tilt | HFW 4 pm
9:10:.04 AM|7.6 mm|13 000 x 20.00 kV//45 °/11.7 ym Quanta FEG

Wires fabricated using our top-
down methodology exhibit a
range of diameters from 80nm-
300nm.
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3/29/2011 | WD mag HV | tilt | HFW 3um

3:23:01 PM|6.6 mm|34 982 x 5.00 kV|42 °‘8.69 um Quanta FEG



mailto:jbwrigh@sandia.gov

Comparison of Photoluminescence Before and
After Etching

After Plasma-Etch 4.25 After Wet-Etch
’..‘LT _ —— After Wet Etch !
© 3.40 —— After Plasma Etch
Z As Grown
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Wet-etch removes damage caused by plasma-etch, as seen by the
decrease in the yellow emission.
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Spectral Characterization of Single Nanowires

Average Power: 5.2mW
Pulse Width: 0.4ns

Rep Rate: 9.08 kHz Laser: 266nm
Pulse Energy: 0.64u)
Peak Power: 1.6kW

Below Threshold

Variable Neutral Density Filter

Long Pass Filter

50:50 Beam Splitter Above Threshold

Camera

Sandia & SSLS
@ 'l“a%{g:g?tllries F,I'ﬁ EERC

Substrate



mailto:jbwrigh@sandia.gov

Modeling of the Nanowire Waveguide

* The modal fields and

effective index of the GaN Optical Properties of GaN Thin Films

. . T - T - . - . - 2.85
nanowire are found using 0
Lumerical MODE Solutions = 1570
_ ko 3
* 130nm wires are modeled £ ool 2
lying on a sapphire 3 1255 @
substrate c g
S o1} 1240 5
o ' &’
r----------------1 E i
I . | X - '
I 130nm GaN Wire I ool 1225
| [ 3(I)0 | 4‘;30 | 6(I)0 | 7‘;30 | 900
I I Wavelength (nm)

T. Yang, S. Goto, M. Kawata, K. Uchida, A. Niwa, and J. Gotoh,
“Optical Properties of GaN Thin Films on Sapphire Substrates
Characterized by Variable-Angle Spectroscopic Ellipsometry,”
Jpn. J. Appl. Phys. 37 (1998) L1105
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Modal Distributions for Circular Waveguides
15t Transverse Mode

Mode 1: n = 2.06 '=0.82
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a 130nm nanowire.

Sandia & SSLS
@ 'l“a%{:lorgﬁtllries E,’f EERC


mailto:jbwrigh@sandia.gov

Estimating the Longitudinal Mode Spacing
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Locations of the Transverse and Longitudinal
Modes for a 130nm Nanowire

*The ’°°,at"°" °_f the 130nm Diameter Nanowire
competing cavity 1.00 ———————————— 5
modes are calculated
relative to measured ~_ °%°f
peak laser emission. 3 o |
S 0.
L i
S 085k
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MF ~ = 0.80 |
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Wiesmann, D., et al. (1996). "Gain spectra Wavelength (nm)
and stimulated emission in epitaxial (In,Al)
GaN thin films." Applied Physics Letters
69(22): 3384-3386.
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Locations of the Transverse and Longitudinal
Modes for a 250nm Nanowire

sIncreasing the wire
diameter to 250nm
adds six additional
transverse modes
and many
longitudinal modes.

| Mode | Neff | Ngroup | I |
1 2.5386 7.7301 98.5245
2 2.5362 7.7588  98.6809
3 2.2902 8.1414  93.0141
4 2.1856 8.6073  95.5782
5 21776 8.7993  96.4402
6 21306 8.8372  95.6571
7 1.8521 7.4178  78.7448
8 1.8337 7.7519  82.8336
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Lasing From a Large Diameter Single Nanowire

104 F T T T T T T T T T T T
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Broad linewidth indicates multiple transverse mode lasing.

| m m=s = ®/ Threshold 570kW/cm?| g

Peak Intensity (counts/sec)

0 | 300 | 600 | 900 | 1200 | 1500
Pump Peak Power Density (kW/cm?)

Sandia & SSLS
@ 'l“a%{:lorgﬁtllries Eﬁ EERE



mailto:jbwrigh@sandia.gov

Lasing from a Small Diameter Nanowire
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Predicting Single Mode Behavior

* In order to understand the single mode behavior we
look at the mode locations and gain spectra in order to
predict a single mode

* Longitudinal modes are separated by AA g,

« Short cavities will have a larger mode separation

* Wires with small diameters will support fewer
transverse modes

* Modes with smaller confinement and less gain overlap
will likely not compete
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Multi-Mode Laser Theory Indicates Single-Mode Lasing

Modeling shows that by reducing the 12um Long
dimensionality of the wire we can 10 e
. i 6dB Excitation = 18/5 :
reduce the number of competing q.[ Exciaion = 1615
modes. = | :
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Summary

 Demonstrated high quality top-down fabricated GaN
nanowires using a two-step etch process

* Observed lasing from individual top-down fabricated
nanowires with thresholds comparable to bottom-up
nanowires

 In a small diameter nanowire we observed single-mode
operation due to the unique cavity dimensions and
high quality material

* Modeling of the nanowire gives insight into single-
mode behavior
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Thank you for your attention.

m A | Center for High ﬁ THE UNIVERSITY of \‘% SSLS
‘ Technology Materials <8 NEW MEXICO / EF@@
7

Sandia
National _
Laboratories s


mailto:jbwrigh@sandia.gov

Backup Slides

@ ﬁa?dial !@)
ational
Laboratories \JLZ

'\ Center for High Sl THE UNIVERSITY of \?1 SSLS
‘ Technology Materials <8 NEW MEXICO 5 EF@@


mailto:jbwrigh@sandia.gov

Estimating the Laser Threshold Gain

Estimating the reflectivities using the effective index of
the waveguide we find the threshold gain to be on the

order of 5.5 x 103 cm-".

1 (1

Estimating the reflectivities using the reflected power
from an FDTD model we find the threshold gain to be on

the order of 5.1 x 103 cm!.
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End-On Facet Spectral Characterization

Laser: 266nm

Variable Neutral Density Filter

Long Pass Filter
50x
Sapphire Substrate i Spectrometer

50:50 Beam Splitter

Fiber
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Side collection into a multimode fiber is more efficient than
collecting the back scatter through an objective.
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