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MoLvaLon:	
  state	
  of	
  the	
  art	
  simulaLons	
  generate	
  
large-­‐scale,	
  complex	
  data	
  

•  Increases	
  in	
  data	
  size	
  +	
  complexity	
  	
  
•  SpaLal	
  resoluLon	
  
•  Number	
  of	
  variables	
  

•  Number	
  of	
  scales	
  represented	
  
•  Our	
  contribuLon:	
  a	
  feature-­‐based	
  analysis	
  

and	
  visualizaLon	
  framework	
  for	
  large-­‐
scale	
  data	
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Direct	
  Numerical	
  SimulaLons	
  (DNS)	
  are	
  used	
  to	
  study	
  
fundamental	
  turbulence-­‐chemistry	
  interacLons 

•  DNS	
  data	
  is	
  large	
  and	
  complex	
  
•  How	
  do	
  you	
  define	
  features?	
  

•  Thresholds	
  may	
  vary	
  locally	
  
•  Thresholds	
  may	
  not	
  be	
  known	
  a	
  priori	
  

•  How	
  many	
  features	
  are	
  there?	
  
•  What	
  is	
  the	
  behavior	
  of	
  other	
  

variables	
  inside	
  the	
  features?	
  

Recent	
  DNS	
  configuraLons	
  performed	
  using	
  S3D,	
  a	
  DNS	
  code	
  wri(en	
  by	
  Dr.	
  Jacqueline	
  Chen	
  
&	
  her	
  research	
  group	
  at	
  the	
  CombusLon	
  Research	
  Facility,	
  Sandia	
  NaLonal	
  Laboratories	
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Case study: characterizing the relationship between the 
mean temperature and thickness in regions of high χ 

•  Scalar	
  dissipaLon	
  rate,	
  χ:	
  rate	
  of	
  
molecular	
  mixing	
  

•  Goals:	
  	
  
•  Study	
  relaLonship	
  between	
  

mechanical	
  strains	
  &	
  chemical	
  
processes	
  

•  Compute	
  feature-­‐based	
  
staLsLcal	
  summaries	
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Case study: characterizing the relationship between the 
mean temperature and thickness in regions of high χ 

Challenges:	
  
•  	
  χ	
  structures	
  are	
  defined	
  by	
  locally	
  

varying	
  isovalues	
  
•  Sub-­‐selecLon	
  based	
  on	
  other	
  criteria	
  

is	
  important	
  
•  Visual	
  feedback	
  of	
  the	
  effect	
  of	
  

parameter	
  choices	
  is	
  desired	
  
•  Large	
  data	
  complicates	
  ma(ers	
  

J.	
  Benne(	
  



Related	
  Work	
  

•  CondiLonal	
  staLsLcs	
  
•  Data	
  warehouse	
  technologies:	
  e.g.	
  FastBit	
  [Wu,	
  et	
  al.]	
  

+  Extracts	
  and	
  aggregates	
  pre-­‐computed	
  informaLon	
  
+  Uses	
  compressed	
  bit	
  map	
  indices	
  to	
  provide	
  efficient	
  sub-­‐selecLons	
  
-  Regions	
  cannot	
  always	
  be	
  defined	
  by	
  range	
  queries	
  
-  Feature	
  parameter	
  thresholds	
  not	
  always	
  known	
  a	
  priori	
  

•  Feature	
  hierarchies	
  
•  Merge	
  Trees	
  [Carr	
  et	
  al.,	
  Pascucci	
  et	
  al.],	
  	
  
•  Morse-­‐Smale	
  Complex	
  [Laney	
  et	
  al.,	
  Bremer	
  et	
  al.,	
  Gyulassy	
  et	
  al.]	
  	
  
•  Clustering	
  methods	
  [HarLgan]	
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We	
  have	
  developed	
  an	
  integrated	
  feature-­‐based	
  analysis	
  
&	
  visualizaLon	
  framework	
  to	
  study	
  large	
  scienLfic	
  data	
  

•  Pre-­‐compute	
  meta-­‐data	
  
•  Efficient	
  encoding	
  for	
  mulL-­‐resoluLon	
  

hierarchies	
  &	
  staLsLcs	
  
•  DrasLc	
  data	
  reducLon	
  
•  Preserves	
  moments	
  

•  InteracLve	
  exploraLon	
  
•  On	
  the	
  fly	
  aggregaLon	
  of	
  feature-­‐

based	
  spaLal	
  &	
  temporal	
  staLsLcs	
  
•  CreaLon	
  of	
  spaLal	
  &	
  temporal	
  

staLsLcal	
  summaries	
  
•  Linked	
  view	
  display	
  of	
  staLsLcs	
  &	
  

features	
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Augmented	
  feature	
  families	
  form	
  a	
  compact	
  
data	
  representaLon	
  

•  Element:	
  spaLal	
  region	
  of	
  the	
  input	
  domain	
  
•  Life	
  span	
  informaLon	
  	
  
•  Parent/child	
  informaLon	
  
•  OpLonal	
  associated	
  staLsLcs	
  

•  Feature:	
  collecLon	
  of	
  elements	
  
•  Feature	
  Family:	
  	
  one-­‐parameter	
  family	
  of	
  features	
  

•  AcLve	
  features	
  are	
  idenLfied	
  by	
  specifying	
  a	
  
parameter	
  value	
  

•  Clan:	
  collecLon	
  of	
  feature	
  families	
  
•  e.g.	
  across	
  Lme	
  steps	
  

elements	
  

feature	
  	
  
family	
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Augmented	
  feature	
  families	
  form	
  a	
  compact	
  
data	
  representaLon	
  

•  Element:	
  spaLal	
  region	
  of	
  the	
  input	
  domain	
  
•  Life	
  span	
  informaLon	
  	
  
•  Parent/child	
  informaLon	
  
•  OpLonal	
  associated	
  staLsLcs	
  

•  Feature:	
  collecLon	
  of	
  elements	
  
•  Feature	
  Family:	
  	
  one-­‐parameter	
  family	
  of	
  features	
  

•  AcLve	
  features	
  are	
  idenLfied	
  by	
  specifying	
  a	
  
parameter	
  value	
  

•  Clan:	
  collecLon	
  of	
  feature	
  families	
  
•  e.g.	
  across	
  Lme	
  steps	
  

acLve	
  features	
  

feature	
  	
  
family	
  

p	
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The	
  merge	
  tree	
  segments	
  a	
  domain	
  according	
  to	
  a	
  
funcLon’s	
  level-­‐set	
  behavior	
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The	
  resoluLon	
  of	
  the	
  parameter	
  space	
  is	
  
increased	
  by	
  spliing	
  long	
  braches	
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A	
  relevance-­‐based	
  persistence	
  measure	
  is	
  used	
  to	
  
explore	
  the	
  augmented	
  feature	
  family	
  

J.	
  Benne(	
  



We	
  aggregate	
  feature-­‐based	
  staLsLcs	
  of	
  interest	
  &	
  
encode	
  meta-­‐data	
  in	
  a	
  modular,	
  extendable	
  file	
  format	
  

•  DescripLve	
  staLsLcs	
  
•  Min/max	
  
•  1st-­‐4th	
  order	
  moments	
  
•  Sums	
  

•  Various	
  length	
  scales	
  
•  Computed	
  via	
  a	
  spectral	
  

technique	
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Our	
  exploratory	
  pipeline	
  lets	
  the	
  user	
  quickly	
  
explore	
  a	
  variety	
  of	
  staLsLcal	
  summaries	
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Cross-­‐linked	
  staLsLcs	
  &	
  feature	
  viewers	
  provide	
  
insight	
  into	
  the	
  effects	
  of	
  parameter	
  selecLons	
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Visualizing	
  a	
  dynamic	
  feature	
  hierarchy	
  poses	
  
challenges	
  

•  Feature:	
  collecLon	
  of	
  elements	
  
•  Elements	
  store	
  ids	
  into	
  regular	
  grid	
  
•  Binary	
  segmented	
  data	
  

•  Challenges	
  
•  IdenLfying	
  color	
  of	
  dynamically	
  

changing	
  feature	
  elements	
  
•  InterpolaLon	
  to	
  smooth	
  and	
  light	
  

features	
  in	
  GPU	
  
•  Features	
  are	
  dynamic	
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A	
  0-­‐1	
  mapping	
  approach	
  
[Hadwiger	
  et.	
  al]	
  is	
  used	
  to	
  
address	
  hardware	
  linear	
  
interpolaLon	
  issues.	
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Case	
  study	
  results:	
  efficient	
  exploraLon	
  of	
  large-­‐scale	
  
simulaLon	
  data	
  on	
  commodity	
  hardware	
  

•  SimulaLon	
  has	
  0.5	
  billion	
  grid	
  points	
  &	
  230	
  Lme	
  steps	
  
•  Data	
  reducLon	
  O(1	
  TB)	
  à	
  O(14GB)	
  
•  Building	
  data:	
  

•  In	
  parallel	
  on	
  Lens:	
  32	
  node	
  Linux	
  cluster	
  at	
  Oak	
  Ridge	
  NaLonal	
  Lab	
  
•  Building	
  merge	
  tree	
  &	
  compuLng	
  staLsLcs:	
  O(5	
  min)/Lme	
  step	
  
•  Length	
  scales:	
  O(90	
  minutes)/Lme	
  step	
  

•  Exploring	
  data:	
  	
  
•  Commodity	
  hardware	
  
•  Species	
  distribuLon	
  plots/Lme	
  series:	
  O(1	
  second)	
  
•  Parameter	
  studies:	
  O(35	
  seconds)	
  
•  Feature	
  browser	
  12-­‐25	
  frames/second	
  

DistribuLon	
  of	
  χ	
  thickness	
  at	
  relevance	
  0.85	
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Using	
  our	
  framework	
  scienLsts	
  can	
  quickly	
  
diagnose	
  issues	
  with	
  their	
  analysis	
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Conclusion	
  	
  

•  Compact	
  meta-­‐data	
  	
  
•  DrasLc	
  data	
  reducLons	
  
•  Maintains	
  staLsLcs	
  of	
  interest	
  
•  Feature	
  thresholds	
  need	
  not	
  

be	
  known	
  a	
  priori	
  

•  InteracLve	
  linked	
  view	
  data	
  
exploraLon	
  
•  Picking	
  &	
  highlighLng	
  
•  Runs	
  on	
  commodity	
  hardware	
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Future	
  Work	
  

•  Parallelize	
  to	
  support	
  
extreme-­‐scale	
  data	
  

•  Support	
  addiLonal	
  
reducLon	
  operators	
  

•  Support	
  for	
  alternate	
  
hierarchies	
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QuesLons?	
  

Contact:	
  	
  	
  
Janine	
  Benne(	
  

Sandia	
  NaLonal	
  Laboratories	
  
jcbenne@sandia.gov	
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