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Abstract

Inverse problem methodologies for material property identification often rely on full-field experimen-
tal measurements from optical methods. These vital measurements have experimental errors that
can lead to large uncertainties in the identified properties, particularly in inverse approaches that
utilize nonlinear iterative optimization algorithms where experimental error can lead to spurious
local minima. In this paper, the effects of uncertainties associated with Digital Image Correlation
(DIC) displacement measurements are investigated for a finite deformation Virtual Fields Method
(VEM) approach for plasticity model parameter identification. The complete VFM inverse prob-
lem methodology is simulated using computationally derived displacements with superimposed DIC
measurement uncertainties, which were quantified for representative DIC experimental setups, as
inputs to the identification algorithm. The simulated VFM process that incorporates measurement
errors allows for characterizing the impact of DIC uncertainties based on realistic experimental
parameters without requiring cost-prohibitive iterative experimental investigations of the full VFM
process. This study can help with specimen-geometry and DIC-setup designs so that the real exper-
iments provide optimal measurements for lower uncertainties in finite deformation VFM material
property identification.

The Virtual Fields Method for Finite Deformation

The Virtual Fields Method (VFM) is an approach to constitutive model parameter identification
that utilizes full-field deformation measurements and the Principle of Virtual Work [1]. VFM has
been applied to large-deformation plasticity [2] using a nonlinear minimization process with the
Principle of Virtual Power for finite deformations. The Principle of Virtual Power in terms of the
Lagrangian description, assuming quasi-static loading and no body forces, is:
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where IT is the first Piola-Kirchoff stress tensor, 6F = Vv (x,,t) is the virtual velocity gradient
tensor, dV, is the boundary of the reference volume V,, n, is the surface normal in the undeformed
configuration, and Jv is a kinematically admissible velocity vector field. The purpose of VFM is to
identify a constitutive parameter set £ from measured full-field displacements and applied loads for
heterogeneous stress states during the course of a test. By choosing kinematically admissible virtual
velocity fields and appropriately managing the nonlinear VFM problem for the case of a nonlinear
constitutive model, the user can identify £ by minimizing the following cost function ®(¢):
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where N, s is the number of virtual fields, and Ny, is the number of measurement steps. Eq. (2)
is the balance of the internal virtual power in the volume and the external virtual power on the



boundary. By using a plasticity model in the cost function ®(§) with measured displacements and
appropriate virtual velocities, the minimization process of ®(£) returns values for the unknown
parameters set &.

A quasi-Newton optimization algorithm in the Design Optimization Toolkit (DOTKk) [3] was em-
ployed to minimize the objective function. In quasi-Newton methods, the Hessian is updated by
analyzing successive gradient vectors instead of computing the Hessian matrix. A limited memory
Broyden, Fletcher, Goldfarb and Shanno (L-BFGS) method was used to approximate the inverse
Hessian operator [4]. The search direction is determined by the product of the inverse Hessian
operator and the gradient of the objective function. This computation requires a sequence of inner
products and vector summations involving the gradient of the objective function and the pairs of
changes in the design variables and objective function gradient, {Azy, Agr}. To approximate the
application of the gradient of the objective function to the inverse of the Hessian, the L-BFGS two-
loop recursion algorithm was utilized. The gradient of the objective function was approximated via
a backward difference approach [5].

Simulated DIC Data

The simulated DIC data used in the VFM identification process is generated through a superposition
of experimentally derived uncertainty of position and displacement measurements onto a FEM
solution. The DIC errors come from stereo-DIC lab setups of a representative field-of-view (FOV),
here approximately 100-mm along one side for a 2448 x 2048 pixel CCD cameras with 75-mm lenses.
The uncertainty of the calibration, position, and displacements are calculated from a combination
of experimental images, Correlated Solutions” VIC3D software, and Monte Carlo runs of the DIC
analysis process as described in [6]. A large calibration set of images are used to quantify the
calibration uncertainties, and the matching error between the two cameras is the error reported
by VIC3D software in the calibration. The position error are the standard deviation of the X,
Y, and Z locations at each subset of the image. Typically, the positional errors are smaller in
the center of the FOV (around 0.0005-mm in X and Y and 0.002-mm in Z) and larger at the
edges. The displacement errors are determined using a Monte Carlo approach of images between
two positions of the speckle pattern, which was translated approximately 0.5-mm in X, Y, and Z.
The displacement errors are the standard deviations of these Monte Carlo runs.

A uniform grid of potential DIC data points are overlaid on a FEM solution at a data density typical
of DIC setups (here a step size of 12 pixels for a subset size of 25 pixels.) DIC points are located at
the center of the subsets, and the entirety of acceptable subsets must lie inside the speckle pattern
on the specimen. To simulate this, each potential DIC subset is tested to determine if it is all on the
surface of the FEM mesh, and all unacceptable subsets are eliminated. Fig. 1 shows the front surface
of a FEM mesh of an example notched tension specimen and a closeup of the acceptable DIC data
points. The FEM displacement solution is sampled at the acceptable simulated DIC subset center
points using standard linear shape functions of the FEM elements. Simulated error in u, v, and w
at each DIC data point is taken as a random sample from a Gaussian distribution with standard
deviation equal to the experimentally measured uncertainties o, o,, and o, at the corresponding
pixel location on the CCD camera. These error values are added to the displacements at each
point. The DIC data points are projected back on the FEM mesh nodal locations for the VFM
identification process. The scattered DIC points around each node inform each nodal displacement



using a basis of piecewise linear functions as used in FEM [7]. This process for simulating the use
of DIC data, including data density and experimentally derived error values, will allow for detailed
characterization of how using DIC data affects the identification process with the virtual fields
method. Additionally, this process allows the user to simulate the experimental parameters such as
DIC data density and specimen geometry prior to performing the actual experiments, so the user
can optimize these parameters for optimal constitutive parameter identification with VFM.
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Figure 1: (a) FEM / VFM mesh of a notched tensile specimen, and (b) closeup of the DIC data
points relative to the FEM / VFM mesh.
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