The Role of the Global Phase in Optimal Quantum Control to Implement
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Abstract

Controlling guantum systems is an important step towards the
implementation of quantum information protocols. We
consider "geometric control," whereby time-dependent
waveforms modulate a set of Hamiltonians that are generators
of the Lie algebra su(d) for a d-dimensional Hilbert space. In
such a scenario, there is a "quantum speed limit," i.e., the
minimum time that it is needed to produce a specified control
task for a given set of time dependent Hamiltonians. This speed
limit is typically studied for two tasks: state-to-state mappings
and the implementation of a full unitary map on the Hilbert
space. We study the range of intermediate cases -- partial
isometries that map an under-complete set of orthonormal
states to another under-complete set of orthonormal states.
For full unitary control, it was recently shown that the global
phase of the target unitary, restricted to root of unity phases,
affects the quantum speed limit. We observe that, in the partial
isometry case as well as state-to-state mappings, the idea of
global phase is not restricted to root of unity phases but can
take any value. This means that each control task has a range of
speed limits that must be understood in order to implement
the control.

Notation Convention

d: dimension of Hilbert space

n: dimension of the partial isometry

V: Target of unitary control

U(T): unitary created by control protocol

A : n-dimensional projector for partial isometry

A: Objective function to minimize for control search

T: Total time of applying the control field

T.: Miniumum time control field can achieve objective function
@;: Control phases

State-to-state
Mapping an initial state to a target state

Vi) = |)

Coherent Evolution/Observable
Creating a unitary map on a system

11 1—->U
_ | 1 1
A = 5~ §Re{<¢z\¢t>} A, = S - Z_dReTr (UTV)

Partial Isometry Control

Mapping a set of n orthonormal states to another set
of n orthonormal states

{lvi}) = {|¥e)}
1 1 < w11
An:§_%;Re{<¢iWi>}—§—%

Creating a modified evolution operator with projector

to n-dimensional subspace A,, = Z,_l i) (il

1 —>VA,
Re{(UA,,VA,)}

Unitary control search for d = 4 hyperfine-spin system Numerical Procedures

\ 1. Control Search: Minimize A using
- | p1 = /2 |
19 QL3 — 37 f2

GRAPE (gradient ascent pulse
engineering) for time T to obtain
an optimal control field

%902 O: - 2. Pareto Front Tracking: Apply
00k | ) control search at T to find A then
“\ decrease N by one and reapply
}\ control search at new total time
|
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N = T/At (control steps)

Hyperfine-coupled Spin System

<€« d =4 (Hydrogen)

F=0 ¥
F=4
d =16 (Cesium) —>
F=3
Hamiltonian
Hyor(t) = Ho + Hrp(t) + Huw (1)
H, — AMTW (p<+> _ p<—>> + App (Fé” _ F§—>)
Hpr(t) = = [Cos(qb (1)) (F<+> F<—>) + sin(¢, (1)) (Fy(+) —Fy<—>ﬂ
- % cos(6y (1)) (FSD = FS7)) + sin(y(1) () = )|
Hyw (t) = Qu‘;/(t) cos(@uw (t))o + sin(duw )oy|

Control Field

Divide total time (7) into N steps and piecewise define control
phases forj=x, y, and uW

(o0, 0<t< At

¢(1> At <t < 2At
j(t) = 9. .

\¢§-N), T—At<t<T

Then the evolution is described by a time independent
Schrodinger equation for each time step leading to a total

unitary of the system
U(T) = Uy - - UsUy



Role of Global Phase

Unitary Control: d root-of-unity phases lead to a family of
d equivalent unitaries, up to global phase, for a given target

Vo € SU(d) — V, = e"?*V}y € SU(d)

Where @, is constrained by det(V) = 1 so that

pp =2mp/d, p=20,1,2,....d—1

While each V, applies the same evolution, up to a global phase,
the Hamiltonian to generate each evolution are not necessarily
equivalent. Therefore, some may be harder (or easier) to
produce leading to different critical times as seen in Fig. 1. We
have found, through, numerical studies, that this effect can be
reduced with different parameter regimes as shown in Fig. 2.
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Fig. 2: Control serach results from a unitary control objective with

decreasing the strength of the uW field. As the strength decreases the
control times also decrease contrary to what may be expected.
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d = 4 Numerical Studies
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Fig. 3: Partial Isometry control of the d = 4 dimensional hyperfine system with
Q.=0Q,=1kHz, Q , =25 kHz, and At =10 ps. Black triangles correspond to the
root-of-unity phases for full unitary control (n =4.) The lines correspond to
partial isometries for n = 3 (blue), n =2 (red), and n = 1 (green) with 100 phases
between 0 and 2m. (a) is for a partial isometry where V has a block diagonal
structure and (b) is for a partial isometry for a normal unitary.
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Fig. 4: Partial Isometry control of the d = 4 dimensional hyperfine system with
Q=0Q,=0Q,,=10kHz and At =10 ps. Black triangles correspond to the root-of-
unity phases for full unitary control (n =4.) The lines correspond to partial
isometries for n = 3 (blue), n =2 (red), and n = 1 (green) with 100 phases
between 0 and 2m. (a) is for an isometry where V has a block diagonal structure
and (b) is for an isometry for a normal unitary.

Often times control objectives can be accomplished with partial isometries instead of full unitaries. In this case we have
demonstrated numerically that these tasks can be accomplished in a shorter time which is advantageous in experimental
applications. This reduction comes at a cost, however, since partial isometries of dimension n < d have a family of infinitely
many equivalent maps which only vary in global phases. As was seen in unitary control the different phases correspond to
different critical times since the Hamiltonian to generate each map may be easier (or harder) to create as seen in Fig. 3. In an
experiment it is important to stay above the critical times for each phase, since global phase is irrelevant to observables. One
way to deal with this issue is to probe the parameter regime to find an area where the control is saturated and the the critical
time varies less with global phase as shown in Fig. 4 and also applied to the larger system in Figs. 5 and 6.

d = 16 Numerical Studies
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Fig. 5: Five partial isometry reconstructions for a d=16 dimensional system for a target 0
with a block diagonal structure for each n =1,...,16. When n=1,...,15 there are 21

phases between 0 and 2t and when n = 16 there are the 16 root-of-unity phases. The
colors alternate for each dimension of the partial isometry. Instead of clean Pareto

fronts as seen in Fig. 2 there is a tight range of critical times similar to Fig. 4.
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Fig. 6: Critical times for partial isometries with block

diagonal structure (red) and normal structure (blue.) The
uncertainty bars represent one standard deviation for
the critical times for the range of phases.

Partial Isomtry Control

The target unitary V is still required to be in SU(d) but our
optimization only searches for the first n columns of V and
leaves the others free.
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Constrained in
minimization

Unconstrained in

minimization
Therefore, we can specify any global phase on the first n
columns since the next d-n columns will work to compensate so

that 1 ¢ su(a)

For example, if Vis block diagonal

V=W,®Xi_n, WeUm)and X € U(d — n)
Then in order V to be in SU(d)

det(V) = det(W) x det(X) =1
Which means we can select any global phase for W since the
unconstrained part of the optimization, X, can compensate so

that the product of the determinants is still one.

Open Questions

What is the relationship between global phase and critical
time for a partial isometry?

 Whatis the difference between phase control, used in these
numerical studies, and amplitude control, studied in most
other literature?

* How does the parameter regime affect the critical times?
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