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Abstract	
  
Controlling	
  quantum	
  systems	
  is	
  an	
  important	
  step	
  towards	
  the	
  
implementaBon	
  of	
  quantum	
  informaBon	
  protocols.	
  We	
  
consider	
  "geometric	
  control,"	
  whereby	
  Bme-­‐dependent	
  
waveforms	
  modulate	
  a	
  set	
  of	
  Hamiltonians	
  that	
  are	
  generators	
  
of	
  the	
  Lie	
  algebra	
  su(d)	
  for	
  a	
  d-­‐dimensional	
  Hilbert	
  space.	
  In	
  
such	
  a	
  scenario,	
  there	
  is	
  a	
  "quantum	
  speed	
  limit,"	
  i.e.,	
  the	
  
minimum	
  Bme	
  that	
  it	
  is	
  needed	
  to	
  produce	
  a	
  specified	
  control	
  
task	
  for	
  a	
  given	
  set	
  of	
  Bme	
  dependent	
  Hamiltonians.	
  This	
  speed	
  
limit	
  is	
  typically	
  studied	
  for	
  two	
  tasks:	
  state-­‐to-­‐state	
  mappings	
  
and	
  the	
  implementaBon	
  of	
  a	
  full	
  unitary	
  map	
  on	
  the	
  Hilbert	
  
space.	
  We	
  study	
  the	
  range	
  of	
  intermediate	
  cases	
  -­‐-­‐	
  parBal	
  
isometries	
  that	
  map	
  an	
  under-­‐complete	
  set	
  of	
  orthonormal	
  
states	
  to	
  another	
  under-­‐complete	
  set	
  of	
  orthonormal	
  states.	
  
For	
  full	
  unitary	
  control,	
  it	
  was	
  recently	
  shown	
  that	
  the	
  global	
  
phase	
  of	
  the	
  target	
  unitary,	
  restricted	
  to	
  root	
  of	
  unity	
  phases,	
  
affects	
  the	
  quantum	
  speed	
  limit.	
  We	
  observe	
  that,	
  in	
  the	
  parBal	
  
isometry	
  case	
  as	
  well	
  as	
  state-­‐to-­‐state	
  mappings,	
  the	
  idea	
  of	
  
global	
  phase	
  is	
  not	
  restricted	
  to	
  root	
  of	
  unity	
  phases	
  but	
  can	
  
take	
  any	
  value.	
  This	
  means	
  that	
  each	
  control	
  task	
  has	
  a	
  range	
  of	
  
speed	
  limits	
  that	
  must	
  be	
  understood	
  in	
  order	
  to	
  implement	
  
the	
  control.	
  

State-­‐to-­‐state	
  
Mapping	
  an	
  iniBal	
  state	
  to	
  a	
  target	
  state	
  

Coherent	
  Evolu3on/Observable	
  
CreaBng	
  a	
  unitary	
  map	
  on	
  a	
  system	
  

Nota3on	
  Conven3on	
  
d:	
  	
  dimension	
  of	
  Hilbert	
  space	
  
n:	
  	
  dimension	
  of	
  the	
  parBal	
  isometry	
  
V:	
  	
  Target	
  of	
  unitary	
  control	
  
U(T):	
  	
  unitary	
  created	
  by	
  control	
  protocol	
  
An:	
  n-­‐dimensional	
  projector	
  for	
  parBal	
  isometry	
  
Δ:	
  	
  ObjecBve	
  funcBon	
  to	
  minimize	
  for	
  control	
  search	
  
T:	
  	
  Total	
  Bme	
  of	
  applying	
  the	
  control	
  field	
  
Tc:	
  	
  Miniumum	
  Bme	
  control	
  field	
  can	
  achieve	
  objecBve	
  funcBon	
  
φi:	
  	
  Control	
  phases	
  

Numerical	
  Procedures	
  
1.  Control	
  Search:	
  	
  Minimize	
  Δ	
  using	
  

GRAPE	
  (gradient	
  ascent	
  pulse	
  
engineering)	
  for	
  Bme	
  T	
  to	
  obtain	
  
an	
  opBmal	
  control	
  field	
  

2.  Pareto	
  Front	
  Tracking:	
  	
  Apply	
  
control	
  search	
  at	
  T	
  to	
  find	
  Δ	
  then	
  
decrease	
  N	
  by	
  	
  one	
  and	
  reapply	
  
control	
  search	
  at	
  new	
  total	
  Bme	
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Mapping	
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CreaBng	
  a	
  modified	
  evoluBon	
  operator	
  with	
  projector	
  
to	
  n-­‐dimensional	
  subspace	
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Hamiltonian	
  

	
  
Control	
  Field	
  
Divide	
  total	
  Bme	
  (T)	
  into	
  N	
  steps	
  and	
  piecewise	
  define	
  control	
  
phases	
  for	
  j	
  =	
  x,	
  y,	
  and	
  μW	
  
	
  
	
  
	
  
	
  
	
  
	
  
Then	
  the	
  evoluBon	
  is	
  described	
  by	
  a	
  Bme	
  independent	
  
Schrodinger	
  equaBon	
  for	
  each	
  Bme	
  step	
  leading	
  to	
  a	
  total	
  
unitary	
  of	
  the	
  system	
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  steps)	
  

Unitary	
  control	
  search	
  for	
  d	
  =	
  4	
  hyperfine-­‐spin	
  system	
  

Tc
Tc Tc Tc

Fig.	
  1:	
  	
  Unitary	
  control	
  search	
  for	
  a	
  d	
  =	
  4	
  
dimensional	
  system	
  with	
  the	
  four	
  root-­‐of-­‐unity	
  
phases	
  shown	
  with	
  Ωx=	
  Ωy	
  =	
  1	
  kHz,	
  ΩμW	
  =	
  25	
  
kHz,	
  and	
  Δt	
  =	
  10	
  μs.	
  

d	
  =	
  4	
  (Hydrogen)	
  

d	
  =	
  16	
  (Cesium)	
  

'0 = 0

'1 = ⇡/2

'2 = ⇡

'3 = 3⇡/2
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ParBal	
  Isomtry	
  Control	
  
The	
  target	
  unitary	
  V	
  is	
  sBll	
  required	
  to	
  be	
  in	
  SU(d)	
  but	
  our	
  
opBmizaBon	
  only	
  searches	
  for	
  the	
  first	
  n	
  columns	
  of	
  V	
  and	
  
leaves	
  the	
  others	
  free.	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Therefore,	
  	
  we	
  can	
  specify	
  any	
  global	
  phase	
  on	
  the	
  first	
  n	
  
columns	
  since	
  the	
  next	
  d-­‐n	
  columns	
  will	
  work	
  to	
  compensate	
  so	
  
that	
  	
  
	
  
For	
  example,	
  if	
  V	
  is	
  block	
  diagonal	
  
	
  
	
  
Then	
  	
  in	
  order	
  V	
  to	
  be	
  in	
  SU(d)	
  
	
  
	
  
Which	
  means	
  we	
  can	
  select	
  any	
  global	
  phase	
  for	
  W	
  since	
  the	
  
unconstrained	
  part	
  of	
  the	
  opBmizaBon,	
  X,	
  can	
  compensate	
  so	
  
that	
  the	
  product	
  of	
  the	
  determinants	
  is	
  sBll	
  one.	
  

Role	
  of	
  Global	
  Phase	
  
Unitary	
  Control:	
  	
  d	
  root-­‐of-­‐unity	
  phases	
  lead	
  to	
  a	
  family	
  of	
  
d	
  equivalent	
  unitaries,	
  up	
  to	
  global	
  phase,	
  for	
  a	
  given	
  target	
  
	
  
	
  
	
  
Where	
  ϕp	
  is	
  constrained	
  by	
  det(V)	
  =	
  1	
  so	
  that	
  
	
  
	
  
	
  
While	
  each	
  Vp	
  applies	
  the	
  same	
  evoluBon,	
  up	
  to	
  a	
  global	
  phase,	
  
the	
  Hamiltonian	
  to	
  generate	
  each	
  evoluBon	
  are	
  not	
  necessarily	
  
equivalent.	
  	
  Therefore,	
  some	
  may	
  be	
  harder	
  (or	
  easier)	
  to	
  
produce	
  leading	
  to	
  different	
  criBcal	
  Bmes	
  as	
  seen	
  in	
  Fig.	
  1.	
  	
  We	
  
have	
  found,	
  through,	
  numerical	
  studies,	
  that	
  this	
  effect	
  can	
  be	
  
reduced	
  with	
  different	
  parameter	
  regimes	
  as	
  shown	
  in	
  Fig.	
  2.	
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Analysis	
  
Ohen	
  Bmes	
  control	
  objecBves	
  can	
  be	
  accomplished	
  with	
  parBal	
  isometries	
  instead	
  of	
  full	
  unitaries.	
  	
  In	
  this	
  case	
  we	
  have	
  
demonstrated	
  numerically	
  that	
  these	
  tasks	
  can	
  be	
  accomplished	
  in	
  a	
  shorter	
  Bme	
  which	
  is	
  advantageous	
  in	
  experimental	
  
applicaBons.	
  	
  This	
  reducBon	
  comes	
  at	
  a	
  cost,	
  however,	
  since	
  parBal	
  isometries	
  of	
  dimension	
  n	
  <	
  d	
  have	
  a	
  family	
  of	
  infinitely	
  
many	
  equivalent	
  maps	
  which	
  only	
  vary	
  in	
  global	
  phases.	
  As	
  was	
  seen	
  in	
  unitary	
  control	
  the	
  different	
  phases	
  correspond	
  to	
  
different	
  criBcal	
  Bmes	
  since	
  the	
  Hamiltonian	
  to	
  generate	
  each	
  map	
  may	
  be	
  easier	
  (or	
  harder)	
  to	
  create	
  as	
  seen	
  in	
  Fig.	
  3.	
  In	
  an	
  
experiment	
  it	
  is	
  important	
  to	
  stay	
  above	
  the	
  criBcal	
  Bmes	
  for	
  each	
  phase,	
  since	
  global	
  phase	
  is	
  irrelevant	
  to	
  observables.	
  	
  One	
  
way	
  to	
  deal	
  with	
  this	
  issue	
  is	
  to	
  probe	
  the	
  parameter	
  regime	
  to	
  find	
  an	
  area	
  where	
  the	
  control	
  is	
  saturated	
  and	
  the	
  the	
  criBcal	
  
Bme	
  varies	
  less	
  with	
  global	
  phase	
  as	
  shown	
  in	
  Fig.	
  4	
  and	
  also	
  applied	
  to	
  the	
  larger	
  system	
  in	
  Figs.	
  5	
  and	
  6.	
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Open	
  Ques3ons	
  
•  What	
  is	
  the	
  relaBonship	
  between	
  global	
  phase	
  and	
  criBcal	
  

Bme	
  for	
  a	
  parBal	
  isometry?	
  
•  What	
  is	
  the	
  difference	
  between	
  phase	
  control,	
  used	
  in	
  these	
  

numerical	
  studies,	
  and	
  amplitude	
  control,	
  studied	
  in	
  most	
  
other	
  literature?	
  

•  How	
  does	
  the	
  parameter	
  regime	
  affect	
  the	
  criBcal	
  Bmes?	
  

Fig.	
  3:	
  	
  ParBal	
  Isometry	
  control	
  of	
  the	
  d	
  =	
  4	
  dimensional	
  hyperfine	
  system	
  with	
  
Ωx=	
  Ωy	
  =	
  1	
  kHz,	
  ΩμW	
  =	
  25	
  kHz,	
  and	
  Δt	
  =	
  10	
  μs.	
  	
  Black	
  triangles	
  correspond	
  to	
  the	
  
root-­‐of-­‐unity	
  phases	
  for	
  full	
  unitary	
  control	
  (n	
  =	
  4.)	
  	
  The	
  lines	
  correspond	
  to	
  
parBal	
  isometries	
  for	
  n	
  =	
  3	
  (blue),	
  n	
  =	
  2	
  (red),	
  and	
  n	
  =	
  1	
  (green)	
  with	
  100	
  phases	
  
between	
  0	
  and	
  2π.	
  	
  (a)	
  is	
  for	
  a	
  parBal	
  isometry	
  where	
  V	
  has	
  a	
  block	
  diagonal	
  
structure	
  and	
  (b)	
  is	
  for	
  a	
  parBal	
  isometry	
  for	
  a	
  normal	
  unitary.	
  

Fig.	
  4:	
  	
  ParBal	
  Isometry	
  control	
  of	
  the	
  d	
  =	
  4	
  dimensional	
  hyperfine	
  system	
  with	
  
Ωx=	
  Ωy	
  =	
  ΩμW	
  =10	
  kHz	
  and	
  Δt	
  =	
  10	
  μs.	
  	
  	
  Black	
  triangles	
  correspond	
  to	
  the	
  root-­‐of-­‐
unity	
  phases	
  for	
  full	
  unitary	
  control	
  (n	
  =	
  4.)	
  	
  The	
  lines	
  correspond	
  to	
  parBal	
  
isometries	
  for	
  n	
  =	
  3	
  (blue),	
  n	
  =	
  2	
  (red),	
  and	
  n	
  =	
  1	
  (green)	
  with	
  100	
  phases	
  
between	
  0	
  and	
  2π.	
  	
  (a)	
  is	
  for	
  an	
  isometry	
  where	
  V	
  has	
  a	
  block	
  diagonal	
  structure	
  
and	
  (b)	
  is	
  for	
  an	
  isometry	
  for	
  a	
  normal	
  unitary.	
  

d	
  =	
  4	
  Numerical	
  Studies	
  	
  

d	
  =	
  16	
  Numerical	
  Studies	
  

Fig.	
  5:	
  	
  Five	
  parBal	
  isometry	
  reconstrucBons	
  for	
  a	
  d=16	
  dimensional	
  system	
  for	
  a	
  target	
  
with	
  a	
  block	
  diagonal	
  structure	
  for	
  each	
  n	
  =	
  1,…,16.	
  	
  When	
  n=1,…,15	
  there	
  are	
  21	
  
phases	
  between	
  0	
  and	
  2π	
  and	
  when	
  n	
  =	
  16	
  there	
  are	
  the	
  16	
  root-­‐of-­‐unity	
  phases.	
  	
  The	
  
colors	
  alternate	
  for	
  each	
  dimension	
  of	
  the	
  parBal	
  isometry.	
  	
  Instead	
  of	
  clean	
  Pareto	
  
fronts	
  as	
  seen	
  in	
  Fig.	
  2	
  there	
  is	
  a	
  Bght	
  range	
  of	
  criBcal	
  Bmes	
  similar	
  to	
  Fig.	
  4.	
  

Fig.	
  6:	
  	
  CriBcal	
  Bmes	
  for	
  parBal	
  isometries	
  with	
  block	
  
diagonal	
  structure	
  (red)	
  and	
  normal	
  structure	
  (blue.)	
  	
  The	
  
uncertainty	
  bars	
  represent	
  one	
  standard	
  deviaBon	
  for	
  
the	
  criBcal	
  Bmes	
  for	
  the	
  range	
  of	
  phases.	
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Fig.	
  2:	
  	
  Control	
  serach	
  results	
  from	
  a	
  unitary	
  control	
  objecBve	
  with	
  
decreasing	
  the	
  strength	
  of	
  the	
  μW	
  field.	
  	
  As	
  the	
  strength	
  decreases	
  the	
  
control	
  Bmes	
  also	
  decrease	
  contrary	
  to	
  what	
  may	
  be	
  expected.	
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