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Active Neutron Interrogation systems 
require improved neutron generators

for security activities.

Fieldable detection system require 
yields of ≥109 n/s.

Active Neutron InterrogationActive Neutron Interrogation

Neutrons interact with an 
object and fission product 
decay is detected.

National Academy of Sciences Study 

Fieldable neutron generators need:

• Higher neutron output

• Lower power requirements

• Longer lifetime

• Increased durability

• Lower cost

• Decreased size & weight
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Existing compact neutron generator technology 
is limited by ion source performance.

Electrostatic Field Desorption is being 

investigated as a deuterium ion source.

Advantages:

• High D ion output in short pulses

• Very efficient

• Long lifetime

• Room temperature operation

• Compatible with sealed tube technology
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Need:: A neutron generator for active neutron interrogation, allowing field work on a 
broad scale for nuclear nonproliferation programs.

Solution:: A new ion source based upon electrostatic field desorption (EFD) based on 
microfabricated emitter tips with an atomic beam, low-power consumption, and 
low areal power density.

Benefit: A high-efficiency, high-yield neutron generator for sustained operations to serve 
nonproliferation and counter-proliferation interrogation operations.

Motivation – Approach 
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Deuterium gas molecules 
hit the metal surface.

Deuterium adsorbs 
onto the surface.

An applied electric field 
desorbs deuterons.
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Electrostatic Field Desorption
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Benefits of EFD 
Neutron Generators
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Standard MEMS manufacturing
• Low cost, mass produced devices

Higher neutron yield
• Atomic ions have ~ 3-4x yield increase over molecular ion beams

• Reasonable expectation of T(d,n) yields of 109 n/s/cm2 at 100 kV 

Scalability and low power density
• Large variation in yield from < 107 to 1012 neutrons/s

• Inherently distributed ion beam on target greatly increases lifetime (>10,000 hrs)

Reduced ion source power requirements
• P = Iaverage V = 1 mA ● 1000 V = 1 W versus 5 to 10 W with standard NGs

• No external components such as RF source or cooling system

Short duration neutron pulses
• ( < 20 ns) with no dark current

Rugged, redundant system
• Arrays are integrated into neutron tubes that allow tiled design and provides a flexible 

geometry and robustness through redundancy



Tip-to-Gate Electric Field Ratio
is the Key to Success
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Electron Emission

(reverse polarity)

Starts at 1 – 4 V/nm

Field Ionization

Starts at 10 V/nm

Ion Desorption

Starts at 15 – 20 V/nm

Metal Desorption

Starts at 35 – 55 V/nm

Tip-to-Gate Ratio of the Electric Field: 

must be > 10, preferably 50 or more 

is necessary to suppress 

gate field emission onto tip

< 1 V/nm > 10 V/nm
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Physics of 
Field Ionization and Field Desorption
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Field desorption can be modeled as a thermionic cycle

THE ENERGY TO REMOVE AN ATOM FROM A SURFACE AS A SINGLY CHARGED 
ION (IN ZERO FIELD) IS:

Qo = ES + I - 

ES = SUBLIMATION ENERGY
I = ATOM IONIZATION POTENTIAL
 = SURFACE WORK FUNCTION

REQUIRES ELECTRIC FIELDS OF
ORDER OF A FEW V/Å



Source Fabrication
Sandia National Labs
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Si



Source Fabrication
SRI
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Time of Flight (TOF) Measurements of 
Generation Ions
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• The onset of deuterium desorption.

• Surface contaminants also desorbed from array tips.
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Time of Flight (TOF) Measurements of 
Generation Ions
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• Surface contaminants also desorbed from 
array tips resulting in “cleaning”

• Field evaporation of Mo tip, ~ 35 V/nm
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Neutron production from 
ions generated by field ionization

~109 neutrons per second are predicted for a 1 cm2 device
with tip packing densities of 107 tips/cm2.

FIELD IONIZATIONFIELD IONIZATION
• Ions produced by ionizing

gas in front of the tip
• Lower fields (>10 V/nm)
• Lower yield than
desorption

• Requires cryogenic
cooling



Key Failure Mechanism
Gate Field Emission

• Field Emission from gate bombards emitter tip causing 
melting and failure
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SUMMARY 

• Field ionization and Field desorption of deuterium has been 
demonstrated with microfabricated W clad Si (SNL) and Mo 
evaporated (SRI) emitter arrays

• Fields sufficiently high, >35 V/nm, to field evaporate the 
emitter tip have been achieved

• Neutron generation has been achieved with ions produced 
from 1-mm microfabricated emitter arrays 

• Both gate dielectric overcoat and gate rounding are necessary 
to achieve field desorption and to suppress gate field emission
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BACK UP SLIDES
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Appendix
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Possible Neutron Generation per Pulse per cm2

Tip Density 1.0 x 106 tips/cm2 of substrate

Tip radius 0.1 m

Tip surface area 0.06 m2, assuming a hemispherical tip

Tip surface area/cm2 of substrate 0.06 m2 * 1.0x106 tips/cm2 / 100002

D atoms/cm2 of tip area 1.0 x 1015 D/cm2

D ions/cm2 of substrate 6 x 1011 D+/cm2

C/cm2 of substrate 0.1 C/cm2 of substrate

Current/tip 1.0 x 10-13 C/tip

Neutrons/pulse/cm2 of substrate = 5 x 106 neutrons/pulse/cm2 of substrate 
= 5 x 109 neutrons/second at 1 kHz

Pulse rate ≤ 1 kHz



Steady Increase in the Electric Field
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Field (V/nm)
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