





# Spatial and Temporal Data Fusion for Biosurveillance

Karen Cheng, David Crary
Applied Research Associates, Inc.
Jaideep Ray, Cosmin Safta, Mahamudul Hasan
Sandia National Laboratories

Contact: Ms. Karen Cheng, kcheng@ara.com, 703-816-8886 x 138

SAND 2012-5809C



# Steps for Detecting, Characterizing, and Identifying an Outbreak from Syndromic Surveillance Data

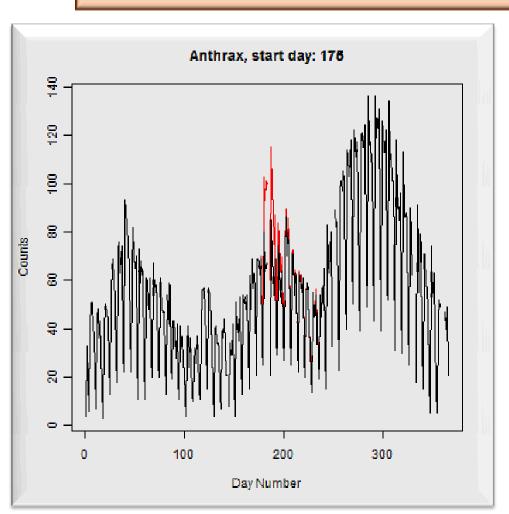
- The components of the procedure are:
  - Background Modeling/Outbreak Detection from time-series data
    - Data contains the outbreak and background/endemic morbidity
  - <u>Extraction</u> of the outbreak from the background
    - Endemic component needs to be separated from the epidemic component
  - Characterization of the outbreak
    - estimation of index cases, time/rate of infection
  - <u>Identification</u> of the outbreak
    - What was the disease that caused it, given a few competing guesses





# **Previous Analysis with Purely Temporal Information**

#### **Simulated Anthrax Attack on Day 175**



- Background: ILI ICD-9 codes from Miami data
- Red Line: Calculated anthrax outbreak from Wilkening A2 model, plus visit delay; 500 index cases

We get an alarm on day 180.



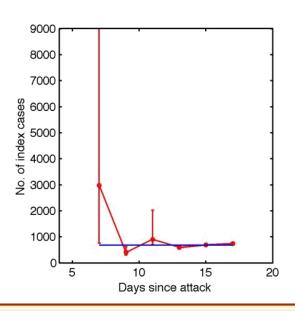
# We Used Bayesian Techniques to Characterize the Outbreak

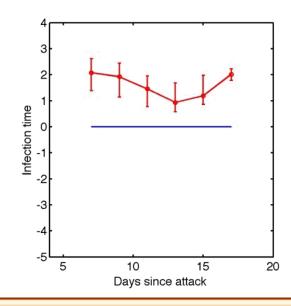
- We formulate the estimation as a Bayesian inverse problem
  - Predicated on the extracted epidemic data
- Allows one to use bounds / prior beliefs regarding the value of the parameters
  - We assumed that index cases ranged between 100-10,000
- Solved using an adaptive Markov Chain Monte Carlo sampler
  - All parameters estimated as probability density functions (PDF)
  - Used autocorrelation analysis to determine "convergence" of the Markov chain





#### How Small An Outbreak Can We Characterize?





Number of index cases and time of attack for an anthrax outbreak with 680 index cases. True values indicated in blue

- Tested on simulated anthrax epidemic of various sizes
- Could estimate  $N_{index}$  and  $\tau$  for the attack >= 680 infected cases





# Identification of Outbreak Using Syndromic Surveillance Data

- What if the identity of the disease was unknown?
  - How would you reconstruct the outbreak?
- Approach:
  - Shortlist candidate diseases, based on symptoms
  - Characterize outbreak with each disease model
  - Using the distribution of epidemic model parameters, forecast the epidemic

| Days of data | Plague | Anthrax | Flu | Smallpox                 |
|--------------|--------|---------|-----|--------------------------|
| 5            | 0/5    | 0/5     | 0/5 | 5/5 (CRPS,<br>MAE, Isxy) |
| 7            | 0/5    | 0/5     | 0/5 | 5/5                      |
| 9            | 0/5    | 0/5     | 0/5 | 5/5                      |
| 11           | 0/5    | 0/5     | 0/5 | 5/5                      |
| 13           | 0/5    | 0/5     | 0/5 | 5/5                      |

Scores of each disease model, when fitted to early-epoch Camp Custer data. Smallpox is correctly selected with 5 days of data. Metrics supporting a disease model are mentioned in parenthesis.

Competing anthrax, flu, smallpox and plague models on smallpox data

- Smallpox correctly identified in 5 days
- Corroborated over next 8 days
- Compare with observed data (posterior predictive tests) and calculate goodness-of-fit
- Identified ensemble metrics that calculate goodness-of-fit:
  - Best fit model identified by "voting" the metrics
  - Metrics: CRPS, MAE, IS90, IS80, IS50
- Correctly identified the causative agent:
  - With 4 competing diseases with similar incubations and flu-like symptoms (anthrax, plague, smallpox and flu)





# **Initial Spatio-temporal Analysis - Introduction**

- Syndromic surveillance data is spatio-temporal
  - We generally have the ZIP-codes of infected people
- To date, we've aggregated syndromic surveillance data up to city levels and performed purely temporal characterization
- Can spatial data help us do better?
- Contemporary Methods
  - Take the available data and cluster it; will provide a good region to concentrate resource allocation
  - As more data becomes available, and clusters widen / increase in number, widen your area of interest (evidence-based approach)
  - Limitation: lacks understanding of the source incident, timeliness for planning
- Conjecture: Can we infer the future region of infection (where others will turn up sick) with sparse data?





# **Approach**

- The key to estimating clusters of infected people is to characterize the attack
  - Location, size and time, inferred probabilistically
  - And then use a dispersion model + epidemic model to identify where the incubating and susceptible people are (we already know the symptomatic ones)
- How? The model
  - Use a dispersion model to "spread" an aerosol & infect people with different doses
    - Inputs: location of release, amount of release
    - Gaussian puff model D. B. Turner, Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling.
  - Use an epidemic model (say, for anthrax) to predict the evolution of the disease, given infected people with varying doses
    - Pick anthrax, and use Wilkening's A1 model for incubation period
    - Inputs: time of infection, # of infected people and their dosages.





# **Approach (cont.)**

#### Inverse problem

- Data: # of symptomatic people, per day, per zip-code (whose location is known)
- To infer: (x, y, z) location of release point, Q, the # of spores released, t the number of days before 1<sup>st</sup> symptoms, when the people were infected
- Assume: Gaussian noise in observations

#### Solution:

Use MCMC to create posterior distributions for (x, y, z, log<sub>10</sub>(Q), t)

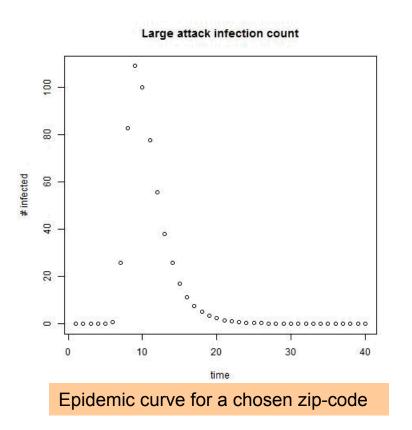
#### Tests

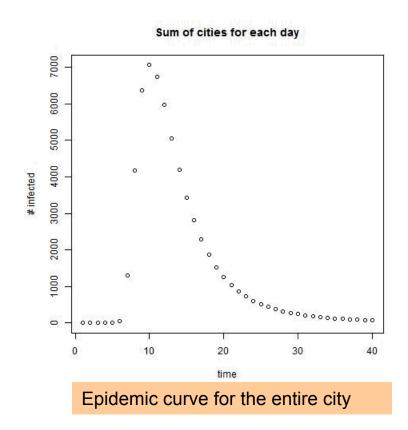
- Test with synthetic data, generated using Wilkening A1 model
  - With sufficient data, we should infer the true release point
- Can small attacks be inferred? How well?
- Test with synthetic data, generated using Wilkening's A2 model
  - Even with infinite data we will not infer back the true parameters
  - But will we come close? How close?





# Case I – Big Attack with No Model Mismatch





- 50 km X 50 km city, divided into 1 km x 1km grid-cells
- Left epidemic curve in a grid-cell
- Right epidemic curve summed over all grid-cells





# Inferred Location, Quantity and Time of Release

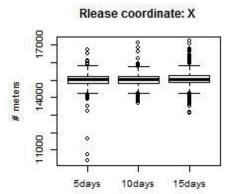
- For large attack, even 5 days of data is good enough
- True values:

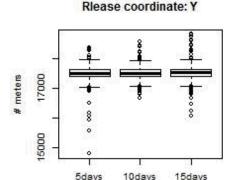
X: 15,000 m

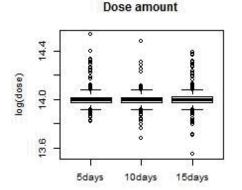
Y: 17,500 m

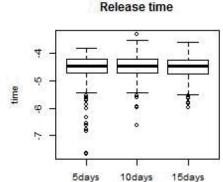
•  $Log_{10}(Dose) = 14$ 

• Time = -5 days







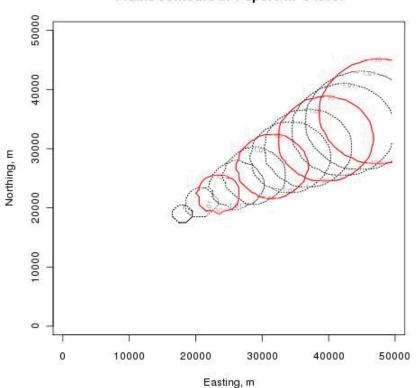


Inferred values of release location (X, Y), release size ( $log_{10}(Q)$ ) and release time. True values [15,000; 17,500; 14, -5]

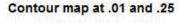


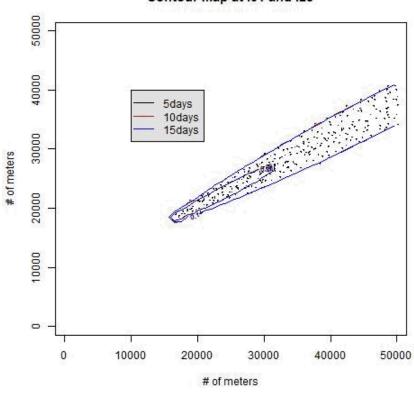
#### Clusters - Observed and Predicted

#### Plume contours at 1 spore/m^3 level



Inferred contours of spore concentration. Red contours are at 30 min intervals.





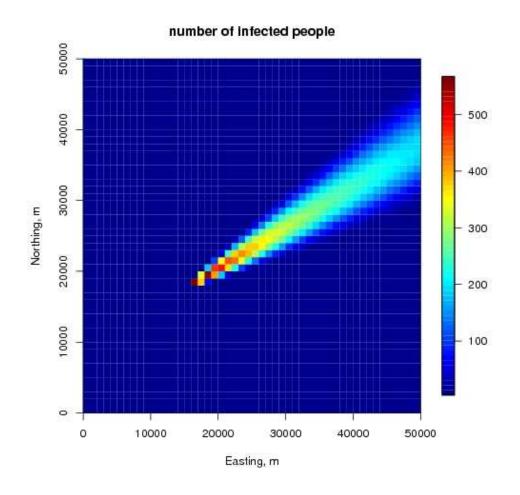
Contours show regions where 1% (outer) and 25% (inner) of the population are infected as a result of the release. Dots are individuals reporting.





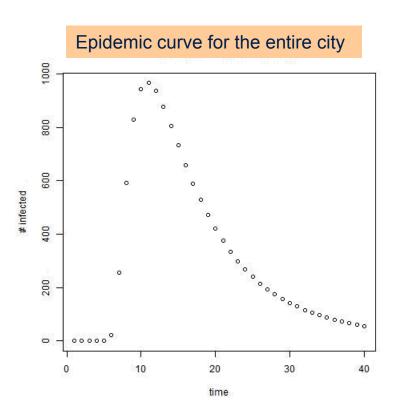
# **Estimated Distribution of Infected People**

- Another, colorful view
- Infected people concentrated along centerline of plume

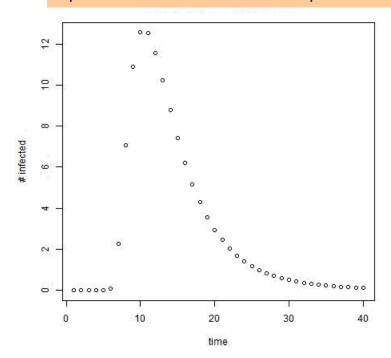




#### Case II – Small Attack with no Model Mismatch



#### Epidemic curve for a chosen zip-code



- 50 km X 50 km city, divided into 1 km x 1km grid-cells
- Left epidemic curve in a grid-cell
- Right epidemic curve summed over all grid-cells





#### Inference of Release Parameters

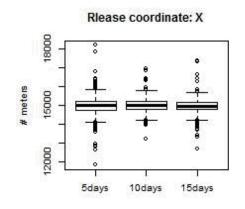
- Again easy to infer
- True values:

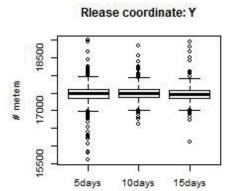
- X:15,000 m

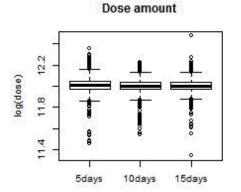
- Y: 17,500 m

 $- Log_{10}(Dose) = 14$ 

- Time = -5 days









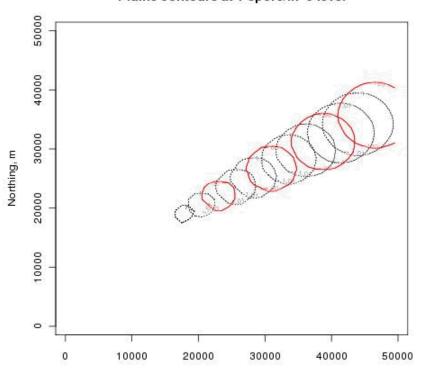
Inferred values of release location (X, Y), release size  $(\log_{10}(Q))$  and release time. True values [15,000; 17,500; 12, -5]





### **Contours – Observed and Predicted**

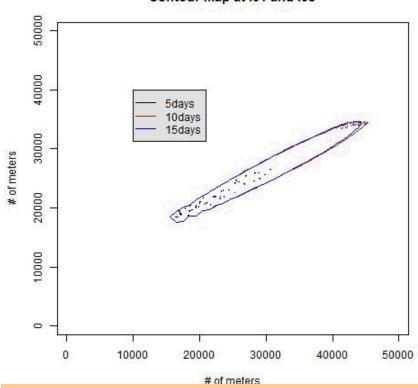
#### Plume contours at 1 spore/m^3 level



Inferred contours of spore concentration. Red contours are at 30 min intervals.

Facting m

#### Contour map at .01 and .08

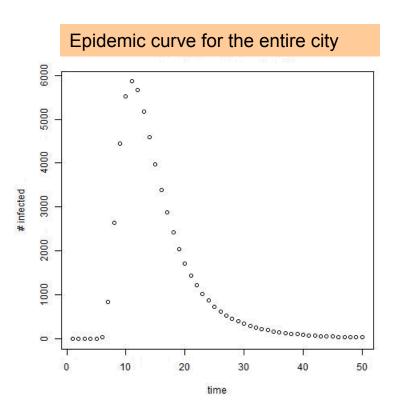


Contours show regions where 1% (outer) and 25% (inner) of the population are infected as a result of the release. Dots are individuals reporting.

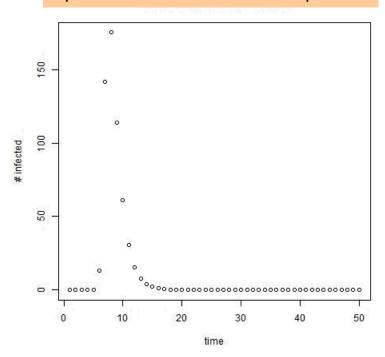




#### Case III – Inference under Model Mismatch



#### Epidemic curve for a chosen zip-code



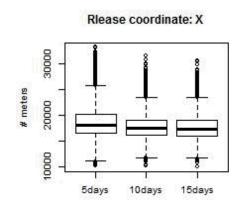
- 50 km X 50 km city, divided into 1 km x 1km grid-cells
- Left epidemic curve in a grid-cell
- Right epidemic curve summed over all grid-cells

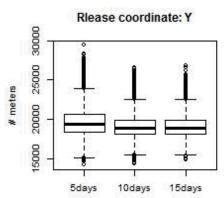


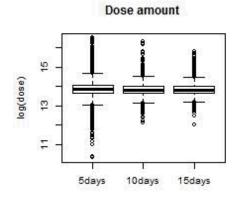


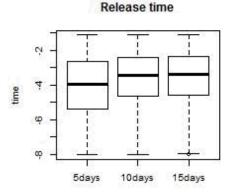
#### Inference of Release Parameters

- Locations inferred wrongly – but by about 2 grid-cells (2 km)
- Underestimated release quantity
- Bigger uncertainties in time
- No improvement with addition of data (beyond 5 days)







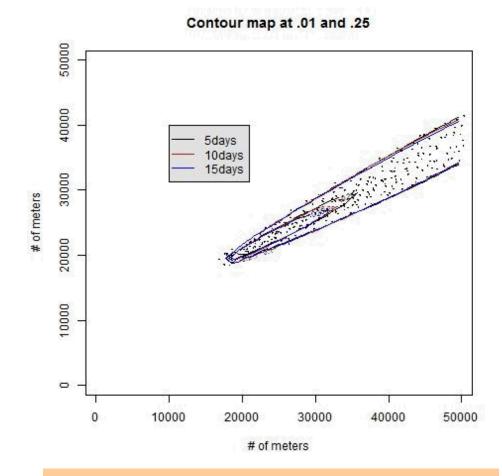


Inferred values of release location (X, Y), release size ( $log_{10}(Q)$ ) and release time. True values [15,000; 17,500; 14, -5]



#### **Contours – Observed and Predicted**

Clustering still OK even with model mismatch



Contours show regions where 1% (outer) and 25% (inner) of the population are infected as a result of the release. Dots are individuals reporting.





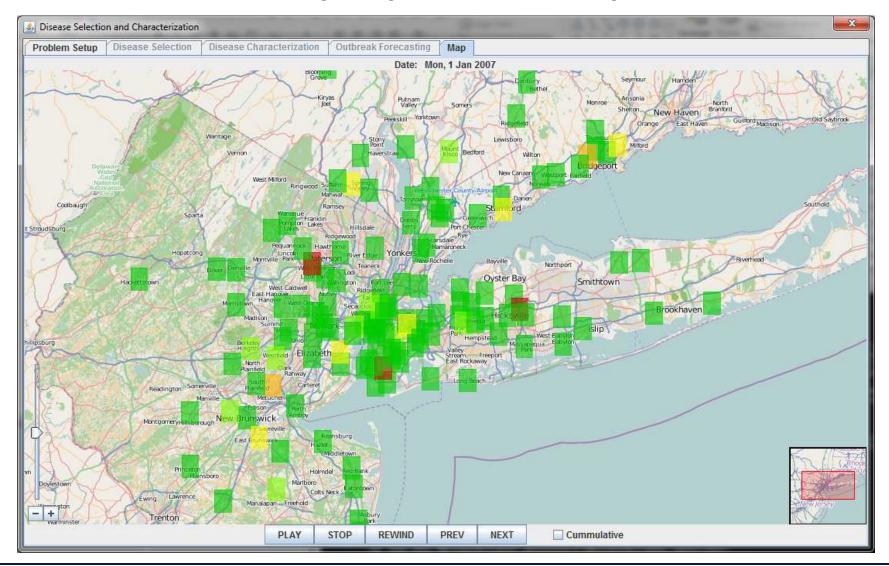
# **Temporal-spatio Visualization Prototype**

- Pure visualization alone is very useful for understanding outbreaks
- Prototype "Heat Map" of reports by zip code
  - Color based on number of events
  - Current day or cumulative counts
  - Animates changes in "playback" mode through time
- Future Enhancements in progress
  - Add source term estimation
  - Add prediction capabilities for contagious diseases
    - Will use the underlying model within our Kalman Filter Anomaly Detector to future predict case counts
    - Use random field models to disperse cases





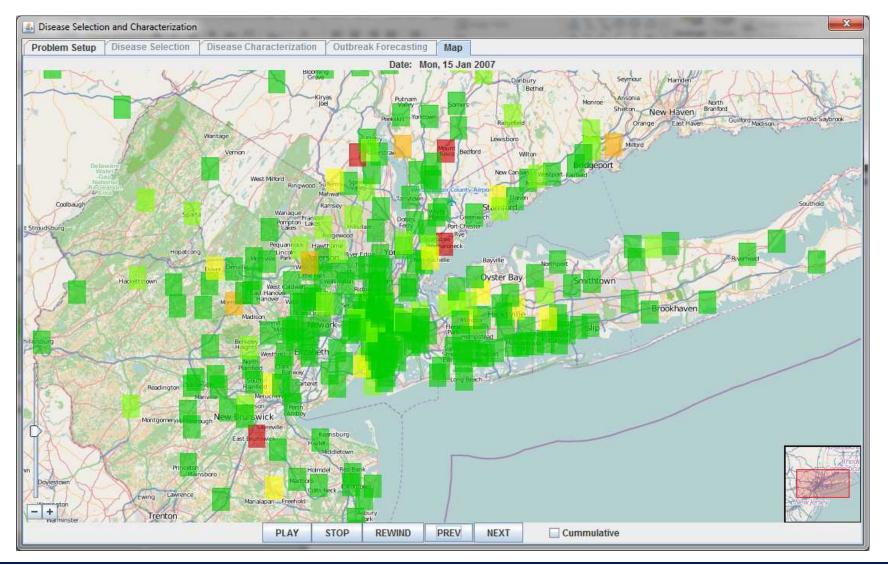
# **Daily Report Heat Map**







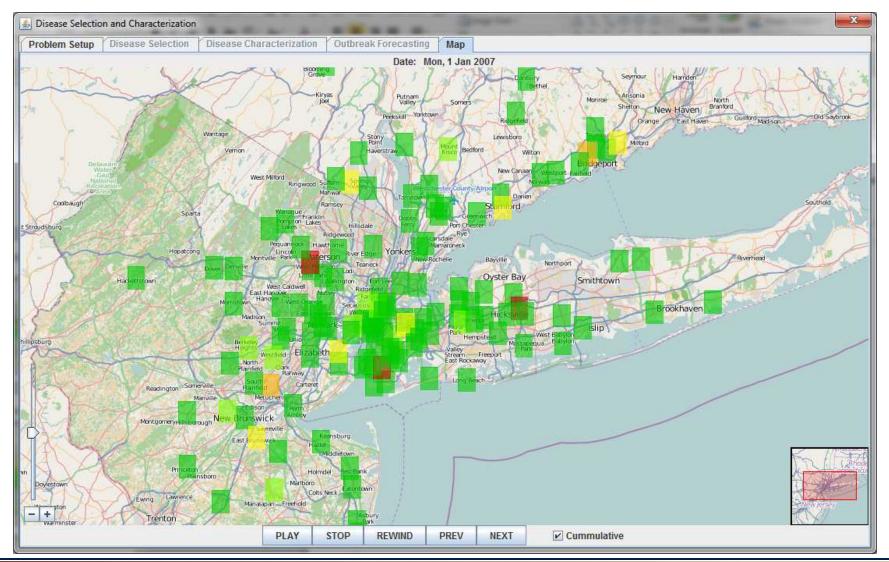
# **Daily Report Heat Map**







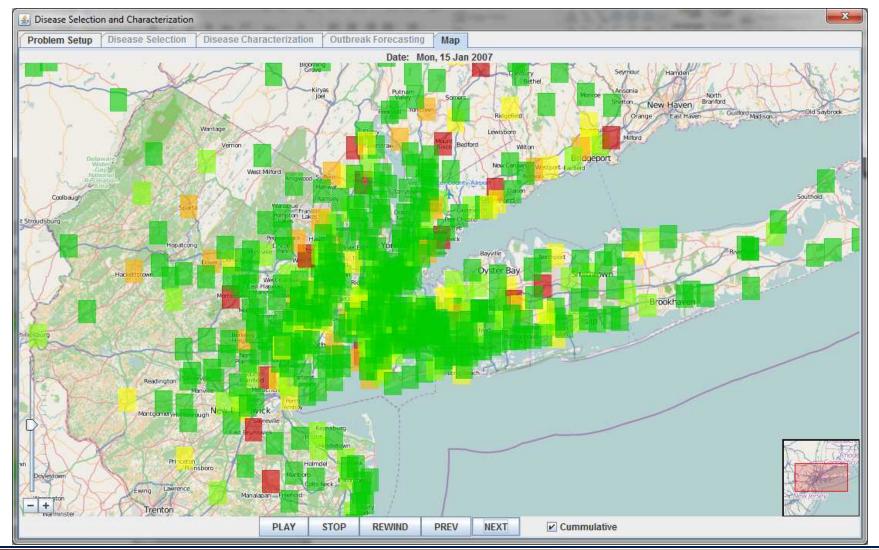
# **Cumulative Report Heat Map**







# **Cumulative Report Heat Map**





# **Acknowledgements**

This work is funded by the Defense Threat Reduction Agency (DTRA) under contract HDTRA1-09-C-0034

Ms. Nancy Nurthen at DTRA is the Program Manager.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000."

