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Steps for Detecting, Characterizing, and Identifying an 
Outbreak from Syndromic Surveillance Data

 The components of the procedure are:

• Background Modeling/Outbreak Detection from time-series data

 Data contains the outbreak and background/endemic morbidity

• Extraction of the outbreak from the background

 Endemic component needs to be separated from the epidemic component

• Characterization of the outbreak

 estimation of index cases, time/rate of infection

• Identification of the outbreak

 What was the disease that caused it, given a few competing guesses
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Previous Analysis with Purely Temporal Information

 Background:  ILI ICD-9 codes 
from Miami data

 Red Line: Calculated anthrax 
outbreak from Wilkening A2 
model, plus visit delay; 500 
index cases

We get an alarm on day 
180.

Simulated Anthrax Attack on Day 175
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We Used Bayesian Techniques to Characterize the 
Outbreak

 We formulate the estimation as a Bayesian inverse problem

• Predicated on the extracted epidemic data

 Allows one to use bounds / prior beliefs regarding the value of the 
parameters

• We assumed that index cases ranged between 100-10,000

 Solved using an adaptive Markov Chain Monte Carlo sampler

• All parameters estimated as probability density functions (PDF)

• Used autocorrelation analysis to determine “convergence” of the Markov 
chain
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How Small An Outbreak Can We Characterize?

 Tested on simulated anthrax epidemic of various sizes

 Could estimate Nindex and  for the attack >= 680 infected cases

Number of index cases and time of attack for an anthrax outbreak 

with 680 index cases.  True values indicated in blue
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Identification of Outbreak 
Using Syndromic 
Surveillance Data

 What if the identity of the disease 
was unknown?
• How would you reconstruct the 

outbreak?

 Approach:
• Shortlist candidate diseases, based 

on symptoms
• Characterize outbreak with each 

disease model
• Using the distribution of epidemic 

model parameters, forecast the 
epidemic
 Compare with observed data (posterior predictive tests) and calculate goodness-of-fit

 Identified ensemble metrics that calculate goodness-of-fit:
• Best fit model identified by “voting” the metrics
• Metrics: CRPS, MAE, IS90, IS80, IS50

 Correctly identified the causative agent:
• With 4 competing diseases with similar incubations and flu-like symptoms (anthrax, plague, 

smallpox and flu)

Competing anthrax, flu, smallpox and plague 
models on smallpox data
• Smallpox correctly identified in 5 days
• Corroborated over next 8 days 

Scores of each disease model, when fitted to early-epoch Camp 
Custer data. Smallpox is correctly selected with 5 days of data. 
Metrics supporting a disease model are mentioned in parenthesis.

Days of 
data

Plague Anthrax Flu Smallpox

5 0/5 0/5 0/5 5/5 (CRPS, 
MAE, Isxy)

7 0/5 0/5 0/5 5/5

9 0/5 0/5 0/5 5/5

11 0/5 0/5 0/5 5/5

13 0/5 0/5 0/5 5/5
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Initial Spatio-temporal Analysis - Introduction

 Syndromic surveillance data is spatio-temporal
• We generally have the ZIP-codes of infected people

 To date, we’ve aggregated syndromic surveillance data up to city 
levels and performed purely temporal characterization

 Can spatial data help us do better?

 Contemporary Methods
• Take the available data and cluster it; will provide a good region to 

concentrate resource allocation

• As more data becomes available, and clusters widen / increase in 
number, widen your area of interest (evidence-based approach)

• Limitation:  lacks understanding of the source incident, timeliness for 
planning

 Conjecture : Can we infer the  future region of infection (where 
others will turn up sick) with sparse data?
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Approach

 The key to estimating clusters of infected people is to characterize the 
attack

• Location, size and time, inferred probabilistically

• And then use a dispersion model + epidemic model to identify where the 
incubating and susceptible people are (we already know the symptomatic 
ones)

 How? The model

• Use a dispersion model to “spread” an aerosol & infect people with 
different doses
 Inputs: location of release, amount of release

 Gaussian puff model – D. B. Turner, Workbook of Atmospheric Dispersion 
Estimates: An Introduction to Dispersion Modeling.

• Use an epidemic model (say, for anthrax) to predict the evolution of the 
disease, given infected people with varying doses
 Pick anthrax, and use Wilkening’s A1 model for incubation period

 Inputs: time of infection, # of infected people and their dosages.
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Approach (cont.)

 Inverse problem

• Data: # of symptomatic people, per day, per zip-code (whose location is 
known)

• To infer: (x, y, z) location of release point, Q, the # of spores released, t the 
number of days before 1st symptoms, when the people were infected

• Assume: Gaussian noise in observations

 Solution:

• Use MCMC to create posterior distributions for (x, y, z, log10(Q), t)

 Tests
• Test with synthetic data, generated using Wilkening A1 model

 With sufficient data, we should infer the true release point

• Can small attacks be inferred? How well?

• Test with synthetic data, generated using Wilkening’s A2 model

 Even with infinite data we will not infer back the true parameters

 But will we come close? How close?
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Case I – Big Attack with No Model Mismatch

 50 km X 50 km city, divided into 1 km x 1km grid-cells

 Left – epidemic curve in a grid-cell

 Right – epidemic curve summed over all grid-cells

Epidemic curve for the entire cityEpidemic curve for a chosen zip-code
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Inferred Location, Quantity and Time of Release

 For large attack, even 5 
days of data is good 
enough

 True values:

• X : 15,000 m

• Y : 17,500 m

• Log10(Dose) = 14

• Time = -5 days

Inferred values of release location (X, Y), release 
size (log10(Q)) and release time. True values 
[15,000; 17,500; 14, -5]
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Clusters – Observed and Predicted

Contours show regions where 1% (outer) and 25% 
(inner) of the population are infected as a result of 
the release. Dots are individuals reporting.

Inferred contours of spore 
concentration. Red contours are at 
30 min intervals. 
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Estimated Distribution of Infected People

 Another, colorful 
view

 Infected people 
concentrated along 
centerline of plume
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Case II – Small Attack with no Model Mismatch

 50 km X 50 km city, divided into 1 km x 1km grid-cells

 Left – epidemic curve in a grid-cell

 Right – epidemic curve summed over all grid-cells

Epidemic curve for the entire city Epidemic curve for a chosen zip-code
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Inference of Release Parameters

• Again easy to infer

• True values:
– X : 15,000 m

– Y : 17,500 m

– Log10(Dose) = 14

– Time = -5 days

Inferred values of release location (X, Y), release 
size (log10(Q)) and release time. True values 
[15,000; 17,500; 12, -5]
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Contours – Observed and Predicted

Contours show regions where 1% (outer) and 25% 
(inner) of the population are infected as a result of 
the release. Dots are individuals reporting.

Inferred contours of spore 
concentration. Red contours are at 
30 min intervals. 
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Case III – Inference under Model Mismatch

• 50 km X 50 km city, divided into 1 km x 1km grid-cells

• Left – epidemic curve in a grid-cell

• Right – epidemic curve summed over all grid-cells

Epidemic curve for a chosen zip-codeEpidemic curve for the entire city
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Inference of Release Parameters

• Locations inferred 
wrongly – but by about 
2 grid-cells (2 km)

• Underestimated release 
quantity

• Bigger uncertainties in 
time

• No improvement with 
addition of data (beyond 
5 days)

Inferred values of release location (X, Y), release 
size (log10(Q)) and release time. True values 
[15,000; 17,500; 14, -5]
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Contours – Observed and Predicted

Clustering still OK even 
with model mismatch

Contours show regions where 1% (outer) and 25% 
(inner) of the population are infected as a result of 
the release. Dots are individuals reporting.
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Temporal-spatio Visualization Prototype

 Pure visualization alone is very useful for understanding outbreaks

 Prototype “Heat Map” of reports by zip code

• Color based on number of events

• Current day or cumulative counts

• Animates changes  in “playback” mode through time

 Future Enhancements in progress

• Add source term estimation

• Add prediction capabilities for contagious diseases

 Will use the underlying model within our Kalman Filter Anomaly Detector to 
future predict case counts

 Use random field models to disperse cases
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Daily Report Heat Map
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Daily Report Heat Map
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Cumulative Report Heat Map
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Cumulative Report Heat Map
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