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2 Motivation

(a) Bi, Te, has the best known thermoelectric properties; (b) SEM analyses indicate interfacial
second phase formation in electroplated Au/Bi,Te; devices in oxygen environment.

Annealed at 240° for 6 months in Ar . A.nnea_led at 21!]0,_}"6_.‘('100 days in 10 Torr

precipitates

An Ideal Model must:

1. Accurately predicts aging as a function of time and oxygen tolerance;

2. Covers many species (Au, Bi, Te, O, ...) with phase diagrams validation;

3. Addresses temperature and interfacial effects;

4. Allows engineering scales by using parallel kinetic Monte Carlo capability SPPARKS.
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(a) Au-Te Gibbs free energy of mixing
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Key: Phase Diagram Incorporation

(b) Au-Te binary phase diagram
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Gibbs free energy for solid solution*: AG, =kT-> x,-In(x,)+> > ¢, -x,-x, +...

i=0 i=l j>i

3. Near compound composition (<g), AG is a linear combination of AG_ and

AG.

s *: 0. Redlich Kister, Ind. Eng. Chem., 40, 345 (1948)].



Thermodynamics Data

Experimental AG is available for all Experimental AG for solid solutions
. . 2
elements and compound of interest!. can be fitted from phase diagrams”.
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Phase Diagram Validations

€ pure, =020, , 5, =0.10,¢,, , =0.10,¢, ,, =0.10,¢,, =0.10,&, , =0.20
c,.5=04353" ¢, =0.333,c,,=05c., =-0.1,c,,=-0.5,c,,=—1.0

All superimposed binary Gibbs free energy of mixing curves, shown in blue, are at 25°C
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(a) Bi-O binary phase diagram (b) O-Te binary phase diagram
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Phase Diagram Validations - continue

All superimposed binary Gibbs free energy of mixing curves, shown in blue, are at 25°C

(@) Au-Te binary phase diagram (b) Bi-Te binary phase diagram (¢) Au-Bi binary phase diagram

(d) Au-Bi-Te ternary phase diagram

ternary Gibbs free energy of mixing
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Free Energy G

Thermodynamics + Kinetics Model
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Thermodynamics

1. Our thermodynamics model (e.g., left

figure) defines free energies (G) of
different phases as functions of
composition;

. This model is validated against

experimental Au-Bi, Au-Te, Bi-Te, Bi-O,
Te-O binary and Au-Bi-Te ternary
phases diagrams;

. It allows calculation of Gibbs free

energy change AG for any phase

transition. . .
Kinetics

. Our Kkinetics model (left figure) defines

an energy barrier Q for phase
transition;

. Combining thermodynamics and

kinetics models then defines
forward/backward energy barriers (Q-
AG/2)/(Q+AG/2);

. Arrhenius equation can then be used to

simulate phase evolution.
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Kinetic Monte Carlo (KMC) Phase Transformation Simulation
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1. Divide material into a lattice (simple cubic lattice assumption);
2. Assign atoms to each lattice sites;

3. Calculate compositions at lattice sites;

4. Define events (e.g., switch atoms between neighboring sites);

5. Calculate Gibbs free energy change due to each event;

6. Executes events according to the rates from Arrhenius equation;

7. March the clock accordingly (e.g., average time per event for the
system).



Towards Engineering Scales: Parallel Simulations

1. The Stochastic Parallel PARticle Kinetic
Simulator (SPPARKS), developed at Sandia
in recent years, is an ideal parallel kKMC code
for simulating phase transformation aging of
the Au/Bi,Te, system at the engineering
scales;

2. The key to enable parallel KMC is to avoid
different processors to operate on the same
material regions at the same time. This is
achieved by dividing the material domain of
each processor into sectors, and all
processors loop over these sectors
sequentially;

3. SPPARKS allows users to develop
applications specific to the problem of
interest rapidly.

Our model has been implemented in SPPARKS.
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Validation: Dissolution of Bi in Te

(a) initial configuration (b) average composition along a central column in x
Te I I I I | i
S T=620K ir =
y Bi 5 0.8 \ t= 125 days y
T § 06 = \ 7 =
= : 4
"cé 0.4 = ///R_‘_‘_—'/ =
2 ool t=12.5 days |
0.0 -
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
_ x (107! pm)
—> X
0.002 um

The simulation successfully predicts the formation of a
stoichiometric Bi1,Te; compound, validating the model.



Aglng of Au/Bi,Te; without Oxygen

(a) computational geometry (¢) composition profiles
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No second phase formation in both simulations and experiments.

Experiment: electroplated Au on Bi,Te;, annealed at 240°C for 6 months in Ar, SEM backscattered electron image.
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(a) computational geometry
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Aging of Au/Bi,Te; with Oxygen

(e) EDS analysis of experimental image
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Extensive AuTe, formation in both simulations and experiments.
Experiment: electroplated Au on Bi,Te;, annealed at 240°C for 100 days in 10 Torr, SEM backscattered electron

image.
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Grain Growth Model

Captures grain boundary energies to ensure accurate grain growth simulations.

Grain growth 1s again based on
Q & AG calculation.

grain 1

m=1

grain 1
Mm=1)

grain 2

grain 2
Mm=2)

Mm=2)

N from 1 to 2

=)

AG —>»

e
interface energy

X —»

AG —>

Physics ensures transformation towards

1 ) lower energy, larger grain states.
n —

Ref. :X. W. Zhou, et al. , Acta Mater., 47, 1063 (1999).



14 Kinetic Monte Carlo (kMC) Grain Growth Simulation

grain 1 Eﬁ grain 2
m=1 2 n=2)
o
8
3
=
X —>
Fey .exp(_ Q+O.5AGJ
kT
1. Divide material into grids;
2. Assign grain numbers (colors) to each grid;
3. Define possible events (e.g., flip the grain number);
4. Calculate Gibbs free energy changes due to each
event,
5. Executes events according to the rates from Arrhenius
equation;

6. March the clock accordingly (e.g., average time per
event for the system).




15

Conclusions

. Our SPPARKS model enable microstructure evolution to be

accurately predicted at engineering scales. We found that for
Au/Bi,Te;, oxygen environment can cause second phase
formation at the interface;

. Our model is based directly on experimental thermodynamics

data, and has been validated from phase diagrams;

. It can be easily extended to include more species (Au, Bi, Te, O,

Sb, S, ...);

. Temperature and interfacial effects can be incorporated;
. Can easily include other kinetic processes (SPS, extrusion, etc.);

. Grain growth model is currently being added.



