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High Energy Density Dielectrics T ..
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High Temperature Operation 1) .
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Time Domain Performance ..
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Time Domain Performance )
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Time Domain Performance

250

Capacitance (nF)

200 |
150 |

100 |

Charge\

-50 0

Measured

104

— 100Hz

1 kHz

10 kHz

103

Extrapolated

----- 100 kHz
— — — 1MHz

102

00 150

Temperature (°C)

10.1

1o
200

— 0.5

Q UE]

Sandia
"1 National
Laboratories

= Discharge data
correspond to
frequencies from
2.0-2.8 MHz

= Direct time domain
results correlate well
with extrapolated
frequency-domain
curves

= First known
confirmation of
relaxor response in
time domain
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High dc Resistivity = Reliable LSS
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Higher resistivity and
larger activation energy
for conduction both
translate into longer
lifetimes and higher
reliability, particularly at
elevated temperatures.




Prototype MLCCs: 200nF @ 1700V (@
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= Maintain RC time constants >200 sec even at >60kV/cm, >150°C (likely higher)

= Smaller samples tested under harsher conditions maintain RC >100 sec >350°C

= Mechanism(s)??
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MLCC dielectric exhibits high-Z core @.
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MLCC dielectric exhibits high-Z core M.
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Calcination ) i
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Sintering: Donor doped 1) .

Donor Doped: Cation Vacancies Dominate
* Bi diffuses in from g.b., out from core
 Diffusion assisted by cation vacancies

Resultant Microstructure

* Relatively homogenous

* Bi-gradient with diffuse boundary due to
ample Bi diffusion

* Electrically homogeneous microstructure
(single relaxation)

20% Bi
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Sintering: Acceptor doped ).

Acceptor Doped: Oxygen Vacancies Dominate

* Bi diffuses in from g.b., out from core

* Diffusion inhibited by lack of cation vacancies

* Bi-rich phase at triple points

* Bi-rich cores decompose into equilibrium
phases:  Bi,Ti;O,, +ZnO + Ba-Ti-O

Resultant Microstructure

* High-Z phase at triple points

* Well defined core boundary

* Low-Z precipitates in core region

* Electrically heterogeneous microstructure
(two relaxations)
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Summary

= Fabricated high energy density
dielectrics with temperature- and
voltage-stable performance

= Defect chemistry has strong
influence on microstructure as
well as electrical response
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Degradation in Ceramic Dielectrics @&

= Long-term degradation generally due to
migration of charged ionic defects

= HALT and MTTF prediction require
guantitative description of mechanisms

For excellent discussion, see Randall et al., J. Appl.
Phys. 113, 014101 (2013) doi: 10.1063/1.4772599




Defects: Optical & Electrical Info @

7

EPR S

-ZBa ]

(F(R)*hv)"
O = N W b O

©
C | | | |
15 20 25 30 35 40 45 50-09)’ ' ' ' '
Photon Energy (eV) -2Ba
Igl O 1 1 1 1
o
D, 51 1 -
= E =1.43eV )
g -0} E =117 eV ol e, 1 /
3 .Sy -
S A5lE, =t6tev Thg o A g =2.006
-8 \'\\. ! ! ! |
g [ Grain gg{i‘n sary S, .7 3100 3200 3300 3400 3500 3600
Z 25 . .
5 70,0008 0.0010 0.0012 0.0014 0.0016 0.0018 Magnetic Field (Gauss)
1/T [K] Raengthon, et al., Appl. Phys. Lett. (2012)

= Defect studies suggest Vg,”” —V°° pairs are strong carrier traps
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Compositional Variation ) .
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Bi and Zn Co-segregation
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Microscale Heterogeneity
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