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ABSTRACT

Network topologies can have significant effect on inter-processor

communication costs of algorithms. Parallel algorithms that
ignore network topology can suffer from contention along
network links. However, for particular combinations of com-
putations and network topologies, costly network contention
may be inevitable, even for optimally designed algorithms.
We obtain a novel contention lower bound that is a function
of the network and the computation graph parameters. To
this end, we compare the communication bandwidth needs
of subsets of processors and the available network capac-
ity (as opposed to per-processor analysis in most previous
studies). Applying this analysis we improve communication
cost lower bounds for several combinations of fundamental
computations on common network topologies.
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F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems— Computations
on maltrices
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1. INTRODUCTION

Good connectivity of the inter-processor network is a nec-
essary for fast execution of parallel algorithm. Insufficient
graph-expansion of the network provably slows down specific
parallel algorithms that are communication intensive. While
parallel algorithms that ignore network topology can suf-
fer from contention along network links, for particular com-
binations of computations and network topologies, costly
network contention may be inevitable, even for optimally
designed algorithms. In this paper we obtain novel lower
bounds on this contention costs.

We use a variant of the distributed-memory communica-
tion model (cf, [10, 11, 6]), where the bandwidth-cost of an
algorithm is proportional to the number of words communi-
cated by one processor along the critical path (we omit the
latency cost / message count discussion from this note). As
in the distributed-memory communication model we have P
processors and local memories of size M for each processor.
However, here, we do not assume all-to-all connectivity, but
rather some network graph with P vertices Gnet. In this
note we assume all edges (network links) have same band-
width. We leave out memory injection-rate issues from this
model. For the sake of simplicity, we assume in this note:
that the workload is perfectly balanced (so all processors
perform the same number of flops); that no re-computation
is performed (i.e., between processors); that input data is
initially evenly distributed across all processors (and each
item appears once); and that similarly for the output data
at the end.

Most previous communication cost lower bounds for par-
allel algorithms utilize per-processor analysis. That is, the
lower bounds establish that some processor must communi-
cate a given amount of data. These include classical ma-
trix multiply, direct and iterative linear algebra algorithms,
FFT, Strassen and Strassen-like fast algorithms, graph re-
lated algorithms, N-body, sorting, and others (cf. [1, 16, 14,
21,17, 6, 3,9, 13, 2, 18, 24, 12, 23)).

By considering the network graphs, we introduce tighter
communication lower bounds for certain computations and
networks than previously known. We bound the communi-
cation needs between a subset of processors and the rest of
the processors for a given parallel algorithm (computation
graph and work assignment to the processors), and divide
it by the number of words that the network allows to com-
municate simultaneously between the subset and the rest
of the graph. We call this the contention cost. Applying
the main theorem we improve (i.e., increase) communication
cost lower bounds for several combinations of fundamental
computations on common network topologies. These con-
tention bounds are known to be attainable only for several
combinations, thus motivating further algorithmic research.
They may suggest directions for hardware/network design
tailored for heavily used computation kernels and may as-
sist when scheduling users’ applications to a supercomputer.

2. CONTENTION LOWER BOUNDS

Small set expansion hs(G) of a d-regular graph G = (V, F)
is the minimum normalized number of edges leaving a set of
vertices of size at most s. Formally,

hé(G) = minsgv(c),‘s‘gs ‘Eéféf)l, where |E(S7S’)| is the

number of edges connecting S to the rest of the graph.

DEFINITION 2.1. Let Alg be a parallel algorithm run on a

distributed model with P processors, and a network graph
GnNet. The contention cost Weont is the mazimum over
edges e of E(Gnet) of the number of words communicated
on e.

THEOREM 2.2. Let Alg be a parallel algorithm run on a
distributed model with P processors, each with local memory
of size M, network graph Gnet. Assume that workload is
perfectly balanced , that data is evenly distributed, both the
input (of size N), and the output. Let W (P, M, Alg, N) be
the communication costs (by per-processor analysis). Then
the contention costs is

W(P/t, M -t, Alg, N
ont(Py M, GNet, Alg, N) >
Weont( GnNet, Alg, N) ?61[3% £ he(Grer)

ProoOF. Consider a partitioning of the P processors into
P/t subsets of size t (w.l.o.g., P is divisible by ¢), where at
least one of the subsets s; is connected to the rest of the
network graph with exactly ¢ h:(G net) edges (the existence
of such set s; is guaranteed by the definition of hs(Gnet).
s¢ has a total of M -t local memory. By perfect workload
distribution, the processors in s; perform ¢/P fraction of
the flops workload, and by the perfectly balanced data dis-
tribution assumption s; has local access to t/P fraction of
the input/output. Hence we can emulate this computation
by a parallel machine with P/t processors, each with M - ¢
local memory, and apply the corresponding per-processor
analysis deducing that the processors in s; require at least
W(P/t,M -t, Alg, N) words to be sent/received to the pro-
cessors outside s; throughout the running of the algorithm.
Exactly t-ht(Gnet) edges connect s; to the rest of the graph.
Hence at lease one edge communicates %

Since t is a free parameter, we can pick it to maximize
Wecont, and the theorem follows. [

words.

Observe that for W we can plug in both types of per-processor
lower bounds: memory independent (cf. [3]) and memory
dependent ones (cf. [17, 5, 7, 4]).

Applications.

In this note we demonstrate our bounds on a few combina-
tions only, namely direct linear algebra algorithms, Strassen,
and Strassen-like matrix multiplication on d-dimensional tori
networks. Table 1 and Figure 1 summarize the contention
bounds obtained by plugging in memory dependent and mem-
ory independent lower bounds from [17, 7, 3] into Theorem
2.2, and by the properties of d-dimensional tori: they have a
degree 2d and small set expansion guarantee of hs(Gnet) =
] (s(d_l)/d/s). The contention bounds for naive N-body
problem on tori do not improve previously known memory
dependent and independent bounds (Q(n?/PM), Q(n/+/P),
cf. [13] and their references).

The memory-dependent bounds for classical and Strassen’s
matrix multiplication are contention dominated when d <

ddep = ﬁ The memory-dependent bound dominates for
n2 n2 ) d(wo—2)/2 .
<P < (ﬁ) . When this happens, we have

a perfect strong scaling range. That is, for a fixed problem
size, increasing the number of processors by a constant factor
reduces the communication costs (and running time) by the
same constant factor (see [3] for further discussion). Note
that this range is smaller than the perfect strong scaling
range when per-processor bounds dominate. For Strassen’s



Per-processor Contention

Direct Memory ( n3 ) Q ( n3 )
Linear Dep. PM3/2—1 Pp3/2-1/dp3/2—1
Algebra | Memory a (=’ Q n2

Indep. P2/3 pld=1)/d
Strassen | Memory ( nwo ) Q ( nwo )
and Dep. PM™0/2-1 Pw0/2=1/dpjwo/2-1
Strassen | Memory Q ( n2 ) Q ( n2 )
-like Indep. P2/wo p(d—1)/d

Table 1: Per-processor bounds ([17, 3, 7] ) vs. the
new contention bounds on d dimensional torus for
direct linear algebra cubic time algorithms (includ-
ing classical matrix multiplication) and fast matrix
multiplication (wo = log, 7 for Strassen’s algorithm).

matrix multiplication this is a pretty significant effect. For
a good enough network, the perfect strong scaling range is
Po<P< P(;'JO/Q ~ P}°; for a 3d torus, the perfect strong
scaling range is Py < P < P03<“)072)/2 ~ Pg?L.

When d < dgep = ﬁ, both contention bounds apply,
but the memory-independent one always dominates:

nwo n2 n?

(using P > n?/M). Table 2 summarizes the required dimen-
sion of the torus so the contention bound is not the bottle-
neck (for memory dependent and independent bounds).

Contention free at
Algorithm wo torus dimension:

dependent independent
Classical 3 3 2
Strassen [26] ~ 2.81 4 3
Schénhage[22] ~ 2.55 5 4
Strassen [27] ~ 2.48 6 5
Vassilevska [28] || ~ 2.3727 7 6

Table 2: Minimum torus dimension, so that
communication-cost is not contention-bounded for
a selection of algorithms. Memory dependant (per-
fect strong scaling range) and independent require-
ments are shown separately. Last three algorithms
are under some technical assumption / conjecture,
see details in [7].

3. DISCUSSION AND FUTURE RESEARCH

Bisections. For matrix multiplication algorithms (and
many other ones) on common network topologies, the con-
tention lower bound is maximized for subsets of processors
of size about P/2; that is, when the inter-processor network
bisection is concerned. Is this always the case, or do we ex-
pect to have combinations of algorithms and networks where
contention bounds dominate, but for cuts other than the bi-
section? Contrived example could be when hs(Gnet) is not
a decreasing function of s. For example, two networks of
processors, a large and a small one, where each of them is
well connected, but the connection between the large and
the small one is narrow.

Applicability. Other immediate applications of the main
theorem for combinations of networks (e.g., tori of various
dimensions, meshes, hypercubes, fat-tree and dragonfly) and
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Figure 1: Communication bounds for Strassen’s al-
gorithm on d-dimensional tori (log-log scale). Hor-
izontal lines correspond to perfect strong scaling.
Ppin is the minimum number of processors required
to store the input.

classes of algorithms (e.g., algorithm that access arrays, see
[12]) are excluded from this note. Note however that good
enough network expansion is not always good enough. A
network may have expansion sufficiently large to preclude
the use of our contention bound for a given computation,
yet the contention may be inevitable for any parallel algo-
rithm realizing the computation on the network. This calls
for further study on how well computations and networks
match each other. Similar questions have been addressed
in a series of elegant papers by Leiserson and others carry-
ing optimistic message, and having a large impact on how
networks for parallel supercomputers are designed. They
showed that the equivalent of graph expansion in the phys-
ical world is essentially sufficient [8, 15, 19]. In particular,
parallel computer that uses a fat tree communication net-
work can simulate any other computer, at the cost of at most
polylogarithmic slowdown.

Communication Efficient Algorithms. Some parallel
algorithms are network aware, and attain the per-processor
communication lower bounds, when network graphs allows
it, (cf. [20, 25] for classical matrix multiplication on 3D
torus). Many algorithms are communication optimal when
all-to-all connectivity is assumed, but their performance on
other topologies has not yet been studied. Are there algo-
rithms (e.g., for matrix multiplication) that attain the com-
munication lower bounds for any network graph (either by
auto tuning, or by network-topology-oblivious tools)? Can
we benchmark the effect of contention lower bound in prac-
tice, on various combinations of computations and super-
computers?
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