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Preview e

= Background — 5 mins
= Laser combustion diagnostics

= Sandia applications in “hostile” environments

= Coherent anti-Stokes Raman scattering (CARS) — 10 mins

= Fundamentals with nanosecond laser pulses
= Application to meter-scale fire measurements
= Ultrafast (fs/ps) CARS development — 30 mins
= Why ultrafast?
= Time domain Raman processes and proof-of-concept

= Game-changing advance: SHBC
= Flame measurements: accuracy and precision
= Application to composite fire problem

= New ultrafast applications to shock physics (5 mins)




Laser-based diagnhostics empower combustion research

* Non-perturbing

Free of radiation and
Insertion errors

2-D or even 3-D
guantitative imaging
Multiple parameters
(T/species/soot/velocity...)

* High temporal resolution —
10 ns or better

 High spatial resolution — 10
—10°>cm?

* Most effective In clean,
laboratory flames
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Sandia’s application space presents significant challenges |rh Naiona

Laboratories

| Propellant Burn
-  p———

= “Dirty” environments gk e N .

= Fire research 7SR ocarbon
» Energetic materials iy

= Soot, aluminum
particulate

= Luminosity
= Scattering

= Absorption/optical
thickness

= Large-scale of
combustion systems

— !
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O = 3.14 C4H,-Air Flame Sooting




Coherent anti-Stokes Raman Scattering (CARS) () .

PROBE VOLUME

Focusing
Lens

Pump
Beams

Coherent, laser-like signal beam
—> spatially isolated
- readily coupled to fibers

Blue-shifted signal beam
—> spectrally isolated

Orders of magnitude stronger
than incoherent scattering

“Stokes” Beam




CARS Physical Processes: Light/Matter Interaction ) Hetons

Laboratories

= A ‘polarization’ or induced
dipole is prepared by pump
and Stokes beams

= This polarization scatters the
second pump wave

= Constructive interference in

one phase-matched direction
only virtual levels

Coherent Anti-Stokes Raman

vib./rot.
transition
Energy (cm™)
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A broadband source permits single-shot detection

If all lasers are narrowband one energy level is

probed

Temperature and concentration
In one measurement.

Signal Intensity

Frequency

If one (or more) laser is broadband then a range of
energy levels differences are probed
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Temperature sensitivity comes from the spectral shape i) fers
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— LIl Collection Optics

A CARS Beam
Crossing Lens

Measurement
Volume

CARS
Collectlon Opt] CS

[Beam Propagatior
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Single-Shot Spectra Provide Simultaneous

Sandia
Temperature/Species Information in Sooting Fire i) Yoot
« CARS spectra from sooting fire show 1 N —ouma g
N,,CO,, H,, and O, s DIFF
L T=1014K ]
* Full ensemble of species data not 0.6 | Co, /N, =0055|
available as of yet : M, 71,7000
: . : 0.4 - ]
- Two representative spectra with theoretical - | %\
fits (Sandia CARSFT code) shown here g 02 ]
s o
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Radial Temperature Profiles — Sooting Pool Fire ) et
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Temperature PDF — Sooting Pool Firél .
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Joint/Temperature Soot Statistics for Emission ) feea

Radiative Transfer Equation

ddi wilan(T) )= CARS Beam Crossmg
S
\ Joint Temp. Soot
Statistics Desired
* CARS system combined with LII soot
detection SOOt L”

« Average soot in 107° cc CARS volume
correlated with enthalpy-pooled temperature
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Mean Temperature Conditioned on Soot Kearney and Pierce, Combust. Flame 159 (2012)




Femtosecond CARS




Why Ultrafast? ) .,

e High-quality (transform-limited) broadband sources
At Av = const.

* High repetition rates (kHz vs 10 Hz)
* Transient vs. steady state measurements =>» no linewidths!

404
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fs/ps Rotational CARS Experimental Arrangement®) .

PROBEVOLUMEjz

Focusing
Lens

Picosecond, frequency narrow probe att= 7

femtosecond broadband
preparation pulsesatt =0

- ®



WcAR

t=1
probing

“The story here Is really in the time domain”




Pump/Stokes Preparation LUl
* Impulsive molecular alignment at time t =0
—~ Evenly Spaced Rotor Frequencies

e Assem ar J states

2 \
* Rotor ¢ %: 7\ ——T=300K :
g
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* The result is a periodically recurring and long-lived Raman polarization




Measured Response in N, at T=300 K (@&,
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Probe Step ) e,

®OcARS

preparation




Probe Step and Spectral Synthe5|s 1) .

Pure Gases, T = 300 K
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Proof-of-Concept Experiments in Air @&,

Fabry-Perot  agjustable

K”B Swidth-Carving” \ Etalon(s) Probe Delay
andwidth-Carving” to Probe \ «—>

generate ps probe pulse

= Raman lines “resolved” Pump ]

—
_ Stokes/anti-Stokes
Y

= Two different probe
resolutions investigated
with single- and double-
etalon configurations

= Very inefficient (0.8 to 2.4%
or less transmission)

pectrum
(cm

doodo
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=  Atmospheric air spectra in
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Low noise fs preparation pulses result can result in 7
higher single-laser-shot precision i

0.3 —

0.6 ns CARS .

0.4 —
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Room-temperature N, spectra




Model validation in room-temperature air: 1.5-ps probe  (rh) i
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Collision-free spectra acquired at 1 kHz rate! A Nt

Laboratories

— T
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Single-shot temperature histograms
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Proof-of-concept: Results and observations i) Yoo

* We have demonstrated single-shot
thermometry and concentration

. . 800 C '.' 'SHOT-AVERAGED, '1.5'-ps' PROBE ! o :
measurements in air at temperatures [ @ SHOT-AVERAGED, 7-ps PROBE
u p to 800 K 700 L O SINGLE-SHOT MEAN, 1.5 ps PROBE
(O SINGLE-SHOT MEAN, 7-ps PROBE

TUBE FURNACE TEMPERATURE (

e Air temperatures are generally within
2.5% of the tube-furnace control
thermocouple, with some exceptions
at T =800 K.

* Single-shot temperature precision is
1-2%. This superior to all but the best

Temperature (K)

Co_r_rect Ratio = 0.2683

results obtained with ns-CARS o E
* Excellent shot-to-shot spectral E e
repeatability from low-noise fs z % ? ®
preparation pulses O o025t ° * o
F 2 2 _ ]
« 02 measurements need additional 0.24 L 70, /N, =2370 -
refinement 023 b+ v v v e
300 400 500 600 700 800
* Probe pulse energy must be Tube Furnace Thermocouple (K)
increased to reach flame S.P. Kearney et al., Optics Express 21 (2013)

temperatures

]
-




Second-Harmonic Bandwidth Compression (SHBC) & =

 Commercial device (Light CL
: 800 n ——
Conversion) y

180 cm™ _ _ﬂ__,__jl
* Converts fs radiation at 800 nmto 100 fs %CL \rj 400 nm

- -1
ps radiation at 400 nm 3-5cm

3-6 ps

. Stretchers
e Grating pulse stretchers

* Phase-conjugate temporal chirps
imparted upon broadband fs pumps =

* Sum-frequency generation in BBO
e Qutput linewidth 3.5-4.0cm™

Aogy ~ dofdt
-1
Aa)sfg ~(At)

e Conversion efficiency: 35-50%!

Frequency (cm-

e Output pulse energy: 1-1.4 mJ!

- =
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fs/ps CARS Instrument ) s

[

Ti.S Amplifier
3 mJ, 1kHz, 90 fs

Spectrograph

f=1000 mm




Hencken Burner

m

Sandia
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Slightly lifted flat flame
Flow rates 98 to 116 SLPM
Non-premixed

Provides nearly adiabatic flames

Temperature and major species
mole fractions calculated from
equilibrium

CH,/air flame

D -

Temperature Field Measured
by Rayleigh Scattering
(CH,/air)

Burner Hole Configuration

ERATURE [K]
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Shot-Averaged Spectra from Near-Adiabatic H,/air flame i) Yoo

—Experiment — —Theory ——Residual ¢ =0.39
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Raman Shift (cm™) Raman Shift (cm™)

* Spectra averaged for several thousand laser shots to optimize SNR

* N, contributions dominate all spectra

III

* 0O, sensitivity arises from alteration of spectral “envelope” and subtle line shifts
/]

-
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Temperature and O,/N, Measurement Precision Tz,

140 _ 120 |
120 f : 100 |

_ 100 f _ 80 :
c r C i
g o g o
40 | 40 [

20 |

20 |

O [ . ol H122EH I ol JJLJJJ ool JJJJJ JJJJLJ_J I :‘ O el | L. i 2 :
780 980 1180 1380 1580 1780 1980 2180 2380 0.025 O 055 0. 085 0. 115 0.145 O 175

Temperature (K) O_/N, Ratio
0| T | o (%) | 0N, |00 (%)
0.34 1235 26.8/2.2% 17.4%  0.34/1.95%
0.39 1338 40.7/3.0% 16.1%  0.46/2.85%
0.50 1539 32.8/2.1% 13.7%  0.64/4.67%
0.72 2051 75.2/3.6% 7.8% 0.85/10.9%  EM Gain ON

e Temperature precision is 2-3% with EM gain off
e Best results with fs CARS are ~1%.
* ns rotational CARS ~ 3-4%




Acoustic Interaction at gup to 0.55 @&,

Temperature (K) _— 02/N2 Ratio

300 2 02
1280 f Time series at ¢ = Q.34 @ 10,105 « Audible “hum” from burner
< 1260 | ¥ 019 at leanest stoichiometries
© 1240 | 2 ,
= 10185 = * Inspection of Tand O, data
© 1220 1t ] N I .
S 018 @ reveals oscillation in both
S 1200 | ; ) ol
E 1180 10175 © >lghals
1160 £ 0.17 e Sampled at 1 kHz
140N oo o 0300165 * Negative correlation is
0 20 40Time (r?ng) 80 100 consistent with low-level
200 e oscillations in ¢
f=232Hz (b) * Amplitude of temperature
9 150 [ ] oscillation is ~¥30 K (2.4%)
e 100 e Distinct peak in PSD near
=) B 7] . . .
= ] 232 Hz is consistent with
< 50 | ] tone heard from the burner
(n - —
i ] * Precision could be
0 P Lhi ........... ' understated
0 100 200 300 400 500
Frequency (Hz)

- =5



H,/Air Flame Measurement Accuracy ()&,

Equilibrium Temperature (K) Equilibrium O_/N_

@® Temperature (shot-averaged) Olez (shot-averaged)

A Temperature (single-shot mean) O 02/N2 (single-shot mean)
7 | W15
2200 | ]

o> : j0.2
= 2000: ] Ne
5 1800 | 101575
© - i N
g 1600 | jo1 B
S 1400 | ] S
— : 1 0.05
1200 ¢ .
1000 t

P B B BRI R S B . A N O
03 04 05 06 07 08 09 1
Equivalence Ratio
* Temperature accuracy: -3% when shot-averaged spectra are used
* Temperature accuracy: —3-6% when single-shot means are used

* 0O,/N, accuracy is 6%

- * Uncertainty due to metered gas flows: Temperature +3% / O,/N, -_I-6-12%n




C,H,/Air Flames on McKenna Burner @i
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* Premixed hydrocarbon/air flame
« Water-cooled non-adiabatic burner
« Stable region ~5-15 mm above burner

* Previously studied at ¢ = 3.14 in our lab
(and elsewhere!)

« Wide range of stoichiometry, ¢ = 0.75 to
3.14

« Potential contributions from N,, O,, CO,
(CO, minimized by probe delay)

O +SOOT VOLUME
FRACTION [ppm]

—l TEMPERATURE [K]

[wdd] NOILOVY4 FINNTOA LOOS

Il v \\ o e b b gy
5 10 15 20 25 30
HEIGHT ABOVE BURNER [mm]




C,H,/Air Flame Spectra ) s

Laboratories

Shot-Averaged Single-Shot at 1 kHz
—Experiment ——Theory ——Residual —Experiment ——Residual ——Theory
1 T T T T T T T T T T T T T T T T T T 1 FT T T T T T T T T T T T T T T T T T T T T ]
Fh = tdp =0.75 3 .
08 ek 08 ek 1+ Spectra acquired for
oy _ g - 0, B . .
0.4 FO/N, =08 0.4 O/, = 00% | fuel-lean to rich sooting
02F g 0.2 ¢
0 Eas/VA | o} flames
0.2 4-02 ¢ ) ) .
S S T === : L3 < High-quality fits
@ g =091 ' ' 0.8 [0=158 ]
S (4 FO,N, =0.05% 04t E o
8 oof 02k i ¢ Systematic bias toward
I " " \ . .
= 0F I “underfit” of isolated
é‘ -0.2 MMMMMMWM 0.2 ¢ . .
& SR SN 0N A e SN SR . . lines for fuel-rich flames
g o=158 0 V] Josfe=251 ; .
JC) 82 ;d%:i'??m 106! ~1599K i ¢ Fitted temperature
04 104 ¢
T o2t 02| appears to be robust
@) 0k 0 &

* Reliable spectra
obtained in sooting

0.2 § 1-0.2
: —-—
F0 = 3.14

F=3.14" "~

0.8 [+ _ 0827 .
06 i = o8 pom 06 [T = 1548 K regions of the flame
0.4 Fv T Th 04 ¢ .
02 02 * No EM gain used

0 & 0k

0.2 § 0.2 §

04p. o oWy Y o4k N
50 100 150 200 250 300 50 100 150 2010 250
Raman Shift (cm™ Raman Shift (cm™)
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Temperature Histograms C,H,/Air Flame ) i,
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* Measurement volume positioned 11.5 mm above burner where flame is stable

* Minimal variation in temperature in this range of ¢

e Precision is 0.9 to 1.4% in leanest flames investigated : CARS photon yields are highest

* Precision degrades to ~3% in richest flames

* Precision appears to be correlated to photon yield




Temperature Accuracy in C,H,/Air Flames:
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m National
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comparison to ns-CARS
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« Comparison is most valid in
stable region 5-15 mm height

 ns-CARS temperatures based
on fits to shot-averaged spectra

« Agreement of fs/ps and ns
CARS is within 1-3% in these
fuel-rich, sooting flames

» Within reported accuracy of
rotational ns-CARS

* Nns-CARS measurements

 Rotational CARS at Sandia
11/2013

 Vibrational CARS at Sandia
(2006)

 Rotational CARS at Lund
(Vestin et al. 2005)
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Summary and Conclusions .

« High-energy probes generated via SHBC enable flame temperature
measurements with rotational fs/ps CARS

« We have performed a systematic assessment of accuracy and precision
« Near-adiabatic H,/air flames
* Premixed hydrocarbon air flames for ¢ = 0.75t0 3.14

« Temperature accuracy is 3% for shot-averaged spectra, 3-6% for single-shot
means

* Uncertainty in temperature standards is 3%
» Accuracy of O,/N, ratio is 2-6% in H,/air flames
« Temperature precision is outstanding!

« As goodas 1%
» Periodic oscillations of 30 K (2%) amplitude realized in Hencken burner
* Results suggest correlation of CARS signal photons to precision

* Precision of O,/N, ratio is 1-10% and monotonically increases with O,/N,
* O./N, sensitivity arises from spectral envelope and not resolution of O, lines
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Our solution: Use femtosecond laser pulses for mesoscale- ) e

National
Laboratories

resolved experiments on heterageneous materials

 Reliable femtosecond (fs) pulsed laser sources
have become commercially available within the

Reﬂectgdﬁiignal
last ~10 years RS

* Ultrashort 10-14-10-13 sec pulses permit
access to ps-scale events

« Well-controlled laser drive has been
demonstrated in homogeneous films (Moore
group, LANL)

» Broadband yet low-noise laser bandwidth
enables multiple spatially resolved imaging
spectroscopies

N

Probe Beam(s)
for Diagnostics

 Spatially resolved measurements /
on heterogeneous samples at

realistic grain sizes




Femtosecond laser pulses have wide frequency spectra that (g s

National
Laboratories

allow us to encode time into frequency (colar)

 Femtosecond bandwidths

are typically 10s of °"'9i"a'pu'seS/
stretched pulses
nanometers X

Pulse Stretcher

focal plane

« Can be readily compressed
or stretched (chirped) using
grating-based stretchers

« Linear chirp is added in our

grating grating

lab to encode wavelength £ f f i

into time with picosecond

resolution
€
S
I
|_
O
&
§ linear pulse chirp
g measured by XFROG

<€ Wavelength
. 0 50 100 150 200 250 300
Time DELAY (ps)
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Ultrafast Shock Interferometry (USI) for characterization of i i

shackwave structure and EQS measurements

from laser Iab%\
Sample
¢ Drive J'- Probe

» +
N\
cch | A
 USI measures shock wave and —!opeotrometer

material motion
* Picosecond time resolution

_ _ _ __ Time (ps)
* Micron-scale spatial resolution g
» Laser-driven shock supported for =
300-400 ps 2
w
« Shock-induced phase shift g
accumulated during probe Wavelength (nm)

separation, Ar, is monitored




USI interferograms: laser-shocked aluminum films

* 1-micron Al film on glass
substrate

» Ablator surface motion is
tracked

« Surface velocity vs time
and shock breakout
profiles monitored

Hole created by
drive pulse

P

Sandia
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Sandia
USI-measured ablator surface velocity histories i) fers
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