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Preview 
 Background – 5 mins 

 Laser combustion diagnostics 

 Sandia applications in “hostile” environments 

 Coherent anti-Stokes Raman scattering (CARS) – 10 mins 

 Fundamentals with nanosecond laser pulses 

 Application to meter-scale fire measurements 

 Ultrafast (fs/ps) CARS development – 30 mins 

 Why ultrafast? 

 Time domain Raman processes and proof-of-concept 

 Game-changing advance: SHBC 

 Flame measurements: accuracy and precision 

 Application to composite fire problem 

 New ultrafast applications to shock physics (5 mins) 



• Non-perturbing 

• Free of radiation and 

insertion errors 

Laser-based diagnostics empower combustion research 

•  2-D or even 3-D 

quantitative imaging 

• Multiple parameters 

(T/species/soot/velocity…) 

• High temporal resolution – 

10 ns or better 

• High spatial resolution – 10-4 
– 10-5 cm3 

• Most effective in clean, 

laboratory flames 
 



Sandia’s application space presents significant challenges 

 “Dirty” environments 

 Fire research 

 Energetic materials 

 Soot, aluminum 

particulate 

 Luminosity 

 Scattering 

 Absorption/optical 
thickness 

 Large-scale of 

combustion systems 
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Coherent anti-Stokes Raman Scattering (CARS) 
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Focusing
Lens

Collimating Lens
Pump 

Beams 

“Stokes” Beam 

• Coherent, laser-like signal beam 

 spatially isolated 

 readily coupled to fibers 

• Blue-shifted signal beam 

 spectrally isolated 

• Orders of magnitude stronger 

than incoherent scattering 



CARS Physical Processes: Light/Matter Interaction 

 

 A ‘polarization’ or induced 
dipole is prepared by pump 
and Stokes beams 

 This polarization scatters the 
second pump wave 

 Constructive interference in 
one phase-matched direction 
only 

Lasers 

Molecular Dipole 

CARS 

1 2  vib./rot. 

 transition 

Energy (cm−1) 

 virtual levels 

S 

Coherent Anti-Stokes Raman  



 If all lasers are narrowband one energy level is 
probed 

 

 

 

 

 

 

 

 If one (or more) laser is broadband then a range of 
energy levels differences are probed 
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A broadband source permits single-shot detection 



Temperature sensitivity comes from the spectral shape 
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CARS Probing of 2-m Diameter Liquid Pool Fires 

• Fire Laboratory for Accreditation of Models 

and Experiments (FLAME) Facility 

• Designed to facilitate deployment of optical 

diagnostics for full meter-scale fire testing 

• Laser laboratories with optical access on 

three sides 

• Large scale positioning system to move 

optical and pool fire 

• Fiber-coupled CARS (and soot LII) 

diagnostics fielded 
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Single-Shot Spectra Provide Simultaneous 
Temperature/Species Information in Sooting Fire 
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light pipes

10% Toluene 
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Blend 

• CARS spectra from sooting fire show 

N2,CO2, H2, and O2 

• Full ensemble of species data not 

available as of yet 

• Two representative spectra with theoretical 

fits (Sandia CARSFT code) shown here 

Kearney et al., Proc. Combust. 

Inst. 32, 871-878, 2009. 



Radial Temperature Profiles – Sooting Pool Fire 
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Temperature PDF – Sooting Pool Fire 
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Joint/Temperature Soot Statistics for Emission  

• CARS system combined with LII soot 

detection 

• Average soot in 10−5 cc CARS volume 

correlated with enthalpy-pooled temperature 
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Frederickson and Kearney, Appl. Opt. 50 (2011) 

Kearney and Pierce, Combust. Flame 159 (2012) 



Femtosecond CARS 

14 



Why Ultrafast? 
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• High-quality (transform-limited) broadband sources 
 

• High repetition rates (kHz vs 10 Hz) 
• Transient vs. steady state measurements       no linewidths! 
• Bandwidth manipulation 

Transform limited Chaotic! 

Δ𝜏 Δ𝜈 ≥ 𝑐𝑜𝑛𝑠𝑡. 
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fs/ps Rotational CARS Experimental Arrangement 
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femtosecond broadband 
preparation pulses at t = 0 

Picosecond, frequency narrow probe at t = t 



Time-Domain Rotational Raman: t laser << tmolecule 

17 

“The story here is really in the time domain” 



Pump/Stokes Preparation 
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• Impulsive molecular alignment at time t = 0 

• Assembly of rotors at the beat frequency between upper and lower J states 

• Rotor energy levels are evenly separated: J = 4B(J + 3/2) 

• Rotors periodically “rephase” 

• Assembly rotates according to its thermal (Boltzmann) distribution 

• The result is a periodically recurring and long-lived Raman polarization 

W  o W  2o W  3o 
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Measured Response in N2 at T = 300 K 
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Probe Step 
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Probe Step and Spectral Synthesis 
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Proof-of-Concept Experiments in Air 
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 “Bandwidth-Carving” to 
generate ps probe pulse 

 Raman lines “resolved” 

 
 

 Two different probe 
resolutions investigated 
with single- and double-
etalon configurations 

 Very inefficient (0.8 to 2.4% 
or less transmission) 

 Atmospheric air spectra in 
tube-furnace up to 800 K for 
probe delays up to 20 ps 

.t const  



Low noise fs preparation pulses result can result in 
higher single-laser-shot precision 
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ns CARS 

fs CARS 

Room-temperature N2 spectra 



Model validation in room-temperature air: 1.5-ps probe 
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Collision-free spectra acquired at 1 kHz rate! 
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Single-shot temperature histograms 
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Proof-of-concept: Results and observations 
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• We have demonstrated single-shot 
thermometry and concentration 
measurements in air at temperatures 
up to 800 K 

• Air temperatures are generally within 
2.5% of the tube-furnace control 
thermocouple, with some exceptions 
at T = 800 K. 

• Single-shot  temperature precision is 
1-2%. This superior to all but the best 
results obtained with ns-CARS 

• Excellent shot-to-shot spectral 
repeatability from low-noise fs 
preparation pulses 

• O2 measurements need additional 
refinement 

• Probe pulse energy must be 
increased to reach flame 
temperatures 
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Second-Harmonic Bandwidth Compression (SHBC) 
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800 nm 
180 cm−1 

100 fs 400 nm 
3-5 cm−1 

3-6 ps 
 

Stretchers 

• Commercial device (Light 
Conversion) 

• Converts fs radiation at 800 nm to 
ps radiation at 400 nm 

• Grating pulse stretchers 

• Phase-conjugate temporal chirps 
imparted upon broadband fs pumps 

• Sum-frequency generation in BBO 

   2 ot t d dt t     

   1 ot t d dt t     

1 2 2sfg o     

~sfg d dt 

 
1

~sfg t


 

• Output linewidth 3.5-4.0 cm−1  

• Conversion efficiency: 35-50%! 

• Output pulse energy: 1-1.4 mJ! 



fs/ps CARS Instrument 
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Hencken Burner 
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Burner Hole Configuration 

Temperature Field Measured  
by Rayleigh Scattering 

(CH4/air) 
CH4/air flame 

• Slightly lifted flat flame 

• Flow rates 98 to 116 SLPM 

• Non-premixed 

• Provides nearly adiabatic flames 

• Temperature and major species 
mole fractions calculated from 
equilibrium 



Shot-Averaged Spectra from Near-Adiabatic H2/air flame 

31 

C
A

R
S

 I
n
te

n
s
it
y
 (

a
rb

. 
u
n

it
s
) -0.2

0

0.2

0.4

0.6

0.8

1

Experiment Theory Residual
 = 0.34

T = 1243 K

O
2
/N

2
 = 17.4%

-0.2

0

0.2

0.4

0.6

0.8

1

 = 0.39

T = 1356 K

O
2
/N

2
 = 16.1%

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300

 = 0.56

T = 1692 K

O
2
/N

2
 = 11.6%

Raman Shift (cm
-1

)

-0.2

0

0.2

0.4

0.6

0.8

1  = 0.50

T = 1580 K

O
2
/N

2
 = 13.7%

-0.2

0

0.2

0.4

0.6

0.8

1
 = 0.45

T = 1461 K

O
2
/N

2
 = 14.6%

50 100 150 200 250 300

-0.2

0

0.2

0.4

0.6

0.8

1  = 0.62

T = 1830 K

O
2
/N

2
 = 10.3%

Raman Shift (cm
-1

)

• Spectra averaged for several thousand laser shots to optimize SNR 

• N2 contributions dominate all spectra 

• O2 sensitivity arises from alteration of spectral “envelope” and subtle line shifts 



Temperature and O2/N2 Measurement Precision 
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• Temperature precision is 2-3% with EM gain off 

• Best results with fs CARS are ~1%. 

• ns rotational CARS ~ 3-4% 

 T(K) sT (K/%) O2/N2 sO2 /% 

0.34 1235 26.8/2.2% 17.4% 0.34/1.95% 

0.39 1338 40.7/3.0% 16.1% 0.46/2.85% 

0.50 1539 32.8/2.1% 13.7% 0.64/4.67% 

0.72 2051 75.2/3.6% 7.8% 0.85/10.9% 
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Acoustic Interaction at  up to 0.55 
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• Audible “hum” from burner 
at leanest stoichiometries 

• Inspection of T and O2 data 
reveals oscillation in both 
signals 

• Sampled at 1 kHz 

• Negative correlation is 
consistent with low-level 
oscillations in  

• Amplitude of temperature 
oscillation is ~30 K (2.4%) 

• Distinct peak in PSD near 
232 Hz is consistent with 
tone heard from the burner 

• Precision could be 
understated 

Time series at  = 0.34 



H2/Air Flame Measurement Accuracy 
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• Temperature accuracy: −3% when shot-averaged spectra are used 

• Temperature accuracy: −3-6% when single-shot means are used 

• O2/N2 accuracy is ±6% 

• Uncertainty due to metered gas flows: Temperature ±3% / O2/N2 ±6-12% 
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C2H4/Air Flames on McKenna Burner 
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• Premixed hydrocarbon/air flame 

• Water-cooled non-adiabatic burner 

• Stable region ~5-15 mm above burner  

• Previously studied at  = 3.14 in our lab 

(and elsewhere!) 

• Wide range of stoichiometry,  = 0.75 to 

3.14 

• Potential contributions from N2, O2, CO, 

(CO2 minimized by probe delay) 



C2H4/Air Flame Spectra 
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Single-Shot at 1 kHz 

• Spectra acquired for 
fuel-lean to rich sooting 
flames 

• High-quality fits 
observed for  < 1 

• Systematic bias toward 
“underfit” of isolated 
lines for fuel-rich flames 

• Fitted temperature 
appears to be robust 

• Reliable spectra 
obtained in sooting 
regions of the flame 

• No EM gain used 



Temperature Histograms C2H4/Air Flame 
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• Measurement volume positioned 11.5 mm above  burner where flame is stable 

• Minimal variation in temperature in this range of   

• Precision is 0.9 to 1.4% in leanest flames investigated : CARS photon yields are highest 

• Precision degrades to ~3% in richest flames 

• Precision appears to be correlated to photon yield 



Temperature Accuracy in C2H4/Air Flames: comparison to ns-CARS 
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• Comparison is most valid in 

stable region 5-15 mm height  

• ns-CARS temperatures based 

on fits to shot-averaged spectra 

• Agreement of fs/ps and ns 

CARS is within 1-3% in these 

fuel-rich, sooting flames 

• Within reported accuracy of 

rotational ns-CARS 

• ns-CARS measurements 

• Rotational CARS at Sandia 

11/2013 

• Vibrational CARS at Sandia 

(2006) 

• Rotational CARS at Lund 

(Vestin et al. 2005)  



Summary and Conclusions 
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• High-energy probes generated via SHBC enable flame temperature 

measurements with rotational fs/ps CARS 

• We have performed a systematic assessment of accuracy and precision 

• Near-adiabatic H2/air flames 

• Premixed hydrocarbon air flames for  = 0.75 to 3.14 

• Temperature accuracy is 3% for shot-averaged spectra, 3-6% for single-shot 

means 

• Uncertainty in temperature standards is 3% 

• Accuracy of O2/N2 ratio is 2-6% in H2/air flames 

• Temperature precision is outstanding! 

• As good as 1% 

• Periodic oscillations of 30 K (2%) amplitude realized in Hencken burner 

• Results suggest correlation of CARS signal photons to precision 

• Precision of O2/N2 ratio is 1-10% and monotonically increases with O2/N2 

• O2/N2 sensitivity arises from spectral envelope and not resolution of O2 lines 



Our solution: Use femtosecond laser pulses for mesoscale-
resolved experiments on heterogeneous materials 

• Reliable femtosecond (fs) pulsed laser sources 

have become commercially available within the 

last ~10 years 

• Ultrashort 10–14‒10–13 sec pulses permit 

access to ps-scale events 

•  Well-controlled laser drive has been 

demonstrated in homogeneous films (Moore 

group, LANL) 

• Broadband yet low-noise laser bandwidth 

enables multiple spatially resolved imaging 

spectroscopies 

• Spatially resolved measurements 

on heterogeneous samples at 

realistic grain sizes 



Femtosecond laser pulses have wide frequency spectra that 
allow us to encode time into frequency (color) 
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• Femtosecond bandwidths 

are typically 10s of 

nanometers 

• Can be readily compressed 

or stretched (chirped) using 

grating-based stretchers 

• Linear chirp is added in our 

lab to encode wavelength 

into time with picosecond 

resolution 

Pulse Stretcher 

linear pulse chirp 

measured by XFROG 



Ultrafast Shock Interferometry (USI) for characterization of 
shockwave structure and EOS measurements 
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• USI measures shock wave and 

material motion 

• Picosecond time resolution 

• Micron-scale spatial resolution 

• Laser-driven shock supported for 

300-400 ps 

• Shock-induced phase shift 

accumulated during probe 

separation, t, is monitored 



USI interferograms: laser-shocked aluminum films 
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• 1-micron Al film on glass 

substrate 

• Ablator surface motion is 

tracked 

• Surface velocity vs time 

and shock breakout 

profiles monitored 
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USI-measured ablator surface velocity histories 
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