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Introduction

• Motivation

­ Develop models for reliable predictions of failure in structural alloys, 
e.g. high strength rolled aluminum alloys

• Current available models are inadequate to model the evolution of 
anisotropic damage in rolled aluminum alloys

­ Usually restricted to isotropic material behavior

­ Detailed descriptions of the ductile failure processes based on micro-
mechanics are needed, i.e. void nucleation, growth and coalescence

• X-ray computed tomography (CT) could reveal the three-dimensional 
structure of inclusions and voids

­ Attenuation to X-rays is correlated to the density of the material

• In-situ X-ray CT may provide the detailed nature and evolution of the 
damage and its relationship to the material microstructure



In-situ X-Ray CT Experiment
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Initial Proof of Concept

500 mm• A previously failed Al 7075-7351 
sample was examined on the micro-
tomography beamline (8.3.2) at the 
Advanced Light Source at Lawrence 
Berkeley National Laboratory

• Specimen cross-section dimension less 
than 2 mm is adequate for X-ray 
tomography on the beamline

• Constituent particles appear lighter 
than the aluminum matrix, and voids 
are the dark regions

• Each scan takes more than an hour (or 
two hours)

• The resolution of SRCT is 900nm



Experimental Plan

• 96 hours of beam time (in two 48-hour blocks) were granted for in-situ 
SRCT

• Planed to run at lest 6 specimens with at least 5 loading/damage 
states each

• Detail design/planning and determining experimental parameters 
before in-situ SRCT experiments were necessary to fully utilize the 
available beam time

­ The material

­ Specimens

­ Loading stage

­ Load-displacement curves

• SEM micro-structural analyses before/after in-situ SRCT experiment



Material of Interest
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• Specimens were machined from the center layer of a certified 4” 
rolled Al 7075-T7351 plate.  



Grain Analysis Using EBSD
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• The grain is about 
‐ 300 um long in R-direction, 
‐ 100 um in T- direction, 
‐ 50 um in S-direction

• Grain boundary is defined by 5o angle difference in EBSD



Specimens

• Uniform tension and notched tension with 
notch width of 3.05 mm (0.120 in)

• Same minimal diameter of 1.5 mm and 
same overall specimen length  

• The geometry of the notch affects the 
stress triaxiality which is known to 
promote void growth
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Loading Stage

• Modified beamline 8.3.2 loading stage for tensile loading

− Step motor open-loop control

− New fixture design for easy specimen mounting

− New grips with ball joint for precision alignment 

− New confocal displacement sensor

Crosshead



Tension Characterization

10

• The specimens were characterized offline by 
using both MTS 858 table top system and the 
beamline loading stage

­ Collecting CT data at desired strain/damage 
states during in-situ experiment

• MTS tension

­ Extensometer gage length is 0.3 inch

­ Displacement controlled test

­ Ball joint for precise alignment

• Loading Stage

­ Displacement sensor

­ Compliant frame



Anisotropy
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• Load-displacement curves from MTS testing.

• The yield stress is about the same

• The failure disp./strain is the largest when loading in the rolling direction; 
the smallest is the short direction.

Uniform specimens Notched specimens



In-Situ SRCT Experiment



Initial Results

• A very large amount of tomography data

• Reconstruction was done using Octopus software
(A Mota, H Jin, W-Y Lu, JW Foulk III, GC Johnson, “Quantifying the Debonding of Inclusions Through 
Tomography and Computational Homology,” SAND2010-6446, September 2010)

• Data visualization

­ Volume visualization of void/particle

­ Display data of a horizontal slice, perpendicular to the loading direction

­ Display data of a thin vertical section, parallel to the loading direction

• SEM micro-structural analyses



Volume Visualization

*1

*

* *

*

* 4

2

5

6

3

Smooth Transverse Specimen

Scan1 Scan4

Scan5

Scan6

particle void



Volume Visualization
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Data of a Horizontal Slice
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Voids Evolution
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NT Specimen
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NR Specimen
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NS Specimen
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Data of a Thin Vertical Section
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Failure Surfaces
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Second Phase Particles

• Both Iron-rich and 
Magnesium-rich second phase 
particle were identified

• Voids were initiated at the 
locations of the second phase 
particle

Mg

Al Si

Al

Mg
Fe ZnCu

2

1

1

2



Failure Modes
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SEM vs SRCT



Summary

• SRCT data were obtained for a few specimens of 7075-T7351 
aluminum stretched to failure, loaded in principal material 
directions

• The resolution of SRCT data is 900nm, which allows elucidation 
of the mechanisms governing void growth and coalescence. The 
resolution may be not fine enough for nucleation.

• The constituent particles tend to align with the rolling direction 
in the form of stringers

• The voids and anisotropic failure are closely associated with 
these strings of particles

• Quantitative analyses in progress
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