

High-Order Implicit-Explicit Multi-Block Method for Hyperbolic PDEs

Tanner B. Nielsen^a, Travis C. Fisher^b, and Steven H. Frankel

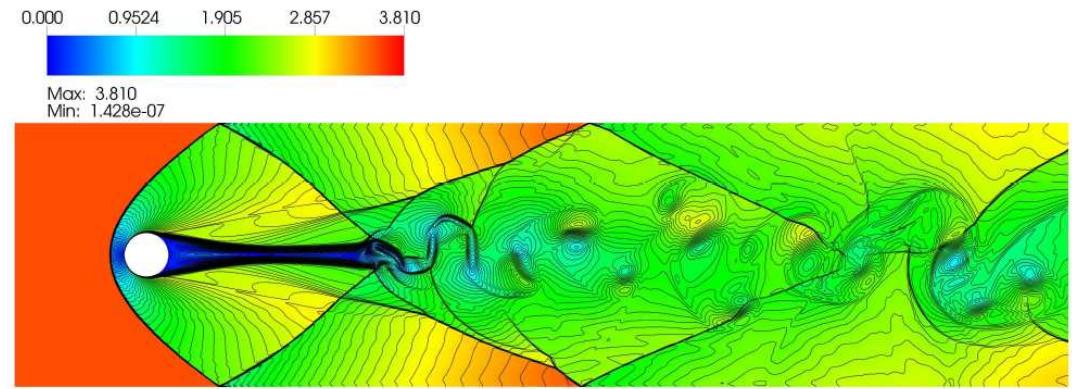
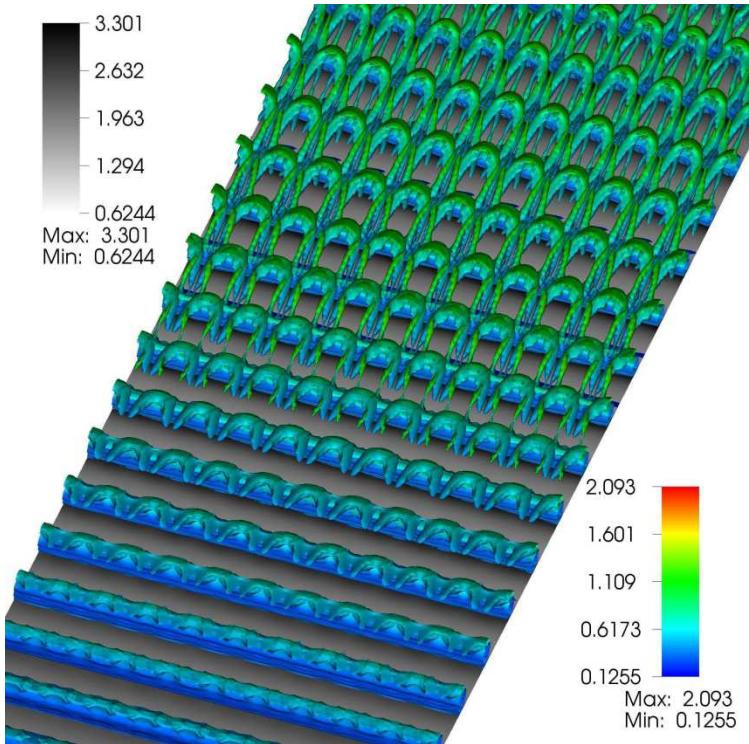
School of Mechanical Engineering
Purdue University, West Lafayette, IN

^aNow Jacobs ESSA Group, NASA MSFC, Huntsville, AL

^bNow Sandia National Laboratories, Albuquerque, NM

AIAA SciTech, 13-17 January 2014
National Harbor, MD

An Exploratory Effort

Use domain decomposition-like method to partition domains to isolate stiffness

Leverage IMEX generality to couple domains

Problems of Interest

This work focuses on model problems: $u_t + f(u)_x = \epsilon(Cu_x)_x$

Target Problems in DNS, LES, and Hybrid RANS/LES

Time dependent problems

Target maximum CFL or diffusion limit (DFL) ~ 10

Need to accurately capture resolved vortex time scale

Spatial Discretization

$$\mathbf{u}_t + \mathbf{D}_x \mathbf{f}(\mathbf{u}) = \mathbf{D}_x^2(C) \mathbf{u} + \mathbf{g}(\mathbf{u}, \mathbf{u}_b)$$

Summation-by-parts finite difference method

$$\mathbf{D} = \mathbf{P}^{-1} \mathbf{Q} \quad \mathbf{D}_x^2(C) = \mathbf{P}^{-1} \left(\mathbf{B} \mathbf{C} \mathbf{D} - \mathbf{D}^T \mathbf{P} \mathbf{C} \mathbf{D} - \mathbf{R}(C) \right)$$

Formal boundary closure on finite domain

Linearly Stable

High-Order Accurate

Use SAT penalty boundary conditions

IMEX Runge-Kutta Scheme

$$\mathbf{u}_t \Big|_t = \mathbf{F}(\mathbf{u}(t), t)$$

Additive Runge Kutta

$$\mathbf{u}^{(i)} = \mathbf{u}^{(n)} + \Delta t \sum_{k=1}^{n_{rk}} \sum_{j=1}^s a_{ij}^{(k)} \mathbf{F}^k(\mathbf{u}(t_j), t^{(n)} + c_j \Delta t)$$

$$\mathbf{u}^{(n+1)} = \mathbf{u}^{(n)} + \Delta t \sum_{k=1}^{n_{rk}} \sum_{j=1}^s b_j^{(k)} \mathbf{F}^k(\mathbf{u}^{(j)}, t^{(n)} + c_j \Delta t)$$

$$\hat{\mathbf{u}}^{(n+1)} = \mathbf{u}^{(n)} + \Delta t \sum_{k=1}^{n_{rk}} \sum_{j=1}^s \hat{b}_j^{(k)} \mathbf{F}^k(\mathbf{u}^{(j)}, t^{(n)} + c_j \Delta t)$$

IMEX Runge Kutta

$$c_j^{(IM)} = c_j^{(EX)}$$

$$b_j^{(IM)} = b_j^{(EX)}$$

$$\hat{b}_j^{(IM)} = \hat{b}_j^{(EX)}$$

Implicit uses ESDIRK Runge Kutta

Requires Nonlinear Solve

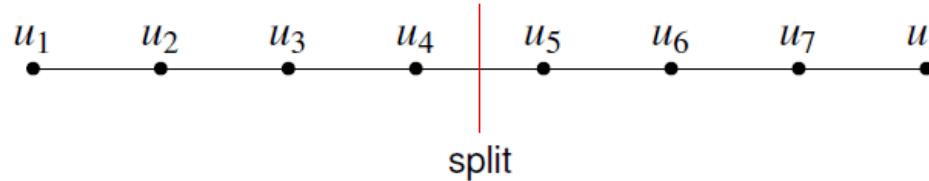
$$\mathbf{u}^{(i)} - \Delta t \mathbf{F}^{IM}(\mathbf{u}^{(i)}, t^n + c_j \Delta t) = \mathbf{u}^{(n)} + \Delta t \sum_{k=1}^2 \sum_{j=1}^{i-1} a_{ij}^{(k)} \mathbf{F}^k(\mathbf{u}(t_j), t^{(n)} + c_j \Delta t)$$

Time Step Controller

Maximum CFL for Explicit Runge Kutta schemes may be greater than 1.

Use temporal error estimate:

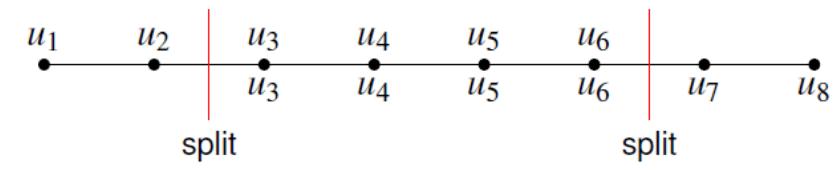
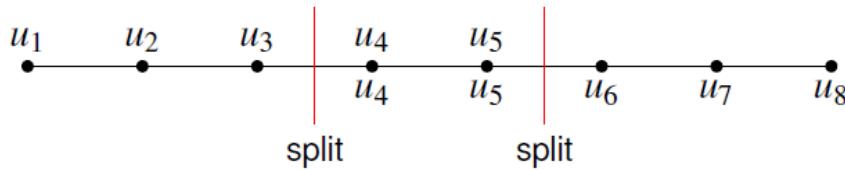
$$\delta = \|u - \hat{u}\| = C\Delta t^p$$


$$\frac{\delta^{(n+1)}}{\delta^{(n)}} = \left(\frac{\Delta t^{(n+1)}}{\Delta t^{(n)}} \right)^p$$

Set allowable time error, $\delta^{(n+1)} = \epsilon$

$$\Delta t^{(n+1)} = \Delta t^{(n)} \left(\frac{\epsilon}{\delta^{(n)}} \right)^{\frac{1}{p}}$$

Works for implicit and explicit.



One-Dimensional Domain Partitioning

$$\left(\begin{array}{ccccc} a_1 & c_1 & & & \\ b_2 & a_2 & c_2 & & \\ b_3 & a_3 & c_3 & & \\ b_4 & a_4 & & c_4 & \\ & b_5 & a_5 & c_5 & \\ & & b_6 & a_6 & c_6 & \\ & & & b_7 & a_7 & c_7 & \\ & & & & b_8 & a_8 & \end{array} \right) \cdot \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \\ u_8 \end{pmatrix}$$

No Overlap

One-Dimensional Domain Partitioning

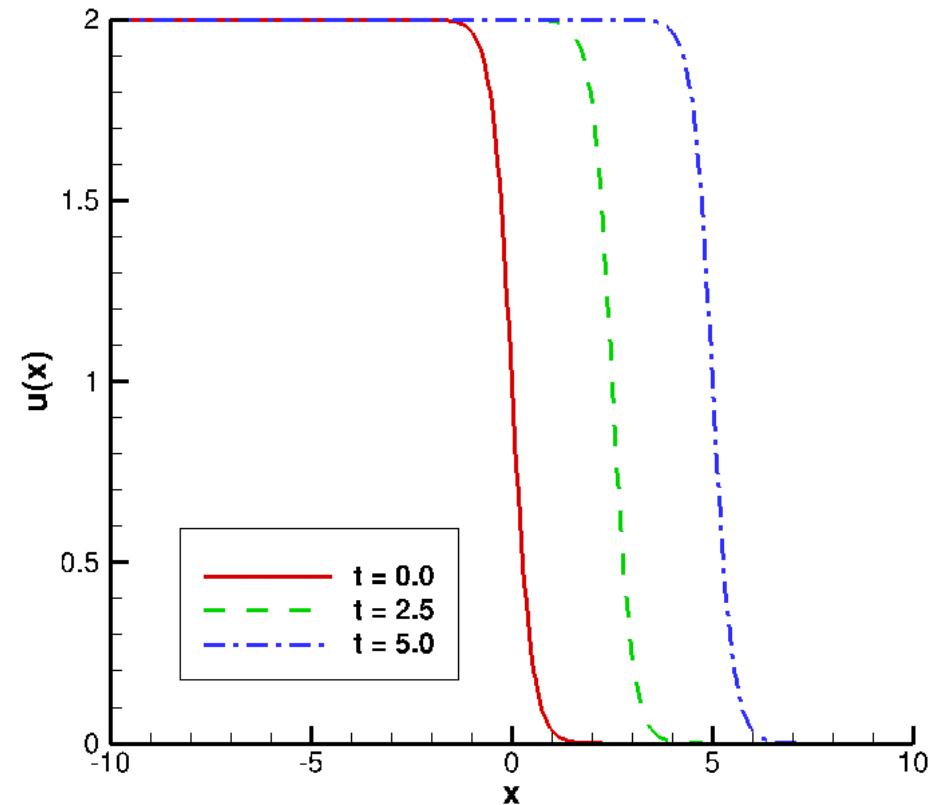
$$\left(\begin{array}{cc|cc}
 a_1 & c_1 & & \\
 b_2 & a_2 & c_2 & \\
 b_3 & a_3 & c_3 & \\
 b_4 & a_4 & c_4 & \\
 b_5 & a_5 & c_5 & \\
 \hline
 & & & c_5 \\
 b_4 & & a_4 & c_4 \\
 & a_5 & c_5 & \\
 & b_6 & a_6 & c_6 \\
 & b_7 & a_7 & c_7 \\
 & b_8 & a_8 &
 \end{array} \right) \cdot \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \\ u_8 \end{pmatrix} = \left(\begin{array}{cc|cc}
 a_1 & c_1 & & \\
 b_2 & a_2 & c_2 & \\
 b_3 & a_3 & c_3 & \\
 b_4 & a_4 & c_4 & \\
 b_5 & a_5 & c_5 & \\
 b_6 & a_6 & c_6 & \\
 \hline
 & & & c_6 \\
 a_3 & c_3 & & \\
 b_4 & a_4 & c_4 & \\
 b_5 & a_5 & c_5 & \\
 b_6 & a_6 & c_6 & \\
 b_7 & a_7 & c_7 & \\
 b_8 & a_8 & c_8 &
 \end{array} \right) \cdot \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \\ u_8 \end{pmatrix}$$

Overlap = 1

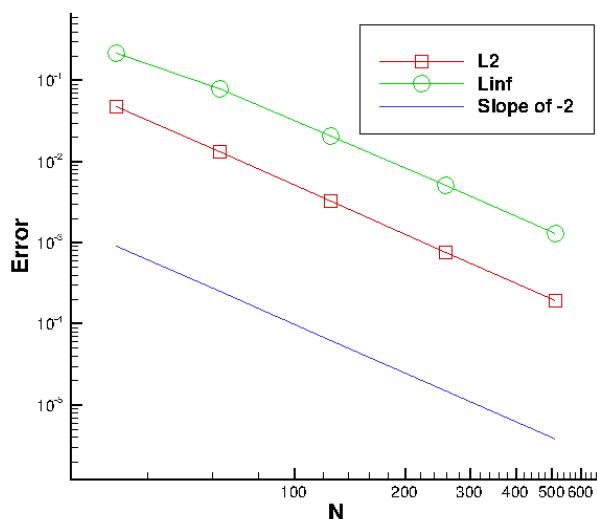
Overlap = 2

One-Dimensional Test

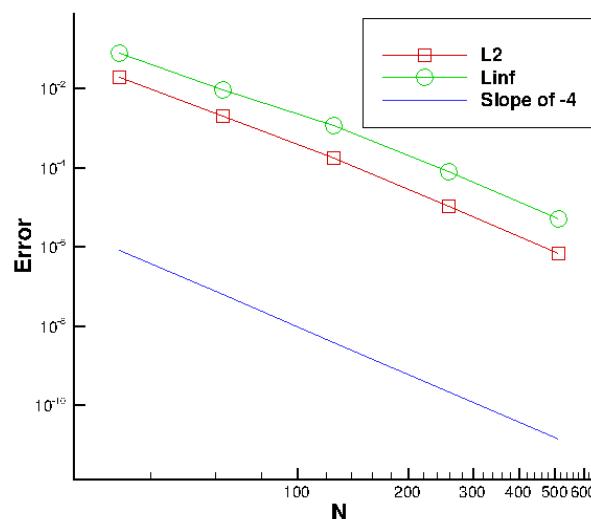
$$u_t + f(u)_x = \mu u_{xx}$$

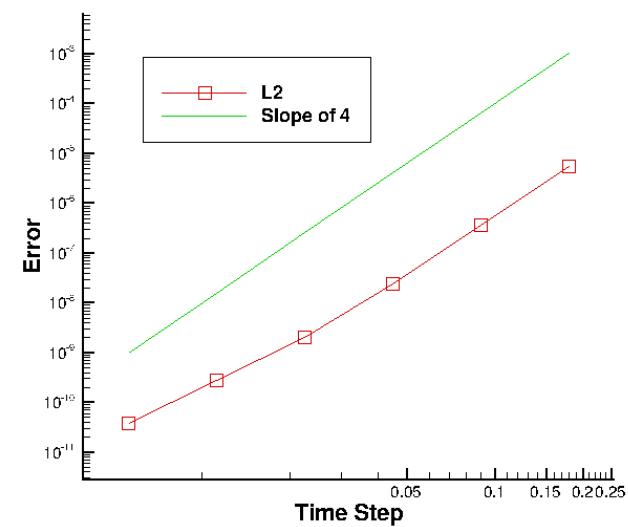

$$u_t + D_x f(u) = \mu D_x^2 u + g_b$$

$$f(u) = \frac{u^2}{2}$$


$$v(x, t) = 1 - \tanh\left(\frac{x - t - x_0}{2\mu}\right),$$

$$x \in [-10, 10], \quad t \in [0, T]$$


$$\mu = 0.25, \quad x_0 = 0$$


One-Dimensional Test: Accuracy

1-2-1
2nd Order Expected

2-4-2
4th Order Expected

6 Stage IMEX
4th Order Runge Kutta

One-Dimensional Test: Grid Refinement

N = 257

	SBP 1-2-1			SBP 2-4-2		
	CFL	DFL	Factor of Increase	CFL	DFL	Factor of Increase
Fully Explicit	0.64	1.03	1.00	0.46	0.74	1.00
IMEX, overlap = 0	3.60	5.78	5.60	2.49	4.00	5.39
IMEX, overlap = 1	12.85	20.64	20.00	10.20	16.39	22.06
IMEX, overlap = 2	13.78	22.13	21.44	10.25	16.47	22.17
IMEX, overlap = 5	13.90	22.33	21.64	10.25	16.47	22.17
IMEX, overlap = 10	13.90	22.33	21.64	10.25	16.47	22.17

N = 512

	SBP 1-2-1			SBP 2-4-2		
	CFL	DFL	Factor of Increase	CFL	DFL	Factor of Increase
Fully Explicit	0.31	0.98	1.00	0.20	0.66	1.00
IMEX, overlap = 0	1.48	4.75	4.83	1.08	3.44	5.25
IMEX, overlap = 1	12.39	39.65	40.33	9.22	29.49	45.00
IMEX, overlap = 2	12.80	40.96	41.67	9.22	29.49	45.00
IMEX, overlap = 5	12.75	40.80	41.50	9.22	29.49	45.00
IMEX, overlap = 10	12.80	40.96	41.67	9.22	29.49	45.00

N = 1013

	SBP 1-2-1			SBP 2-4-2		
	CFL	DFL	Factor of Increase	CFL	DFL	Factor of Increase
Fully Explicit	0.16	1.03	1.00	0.12	0.77	1.00
IMEX, overlap = 0	0.71	4.49	4.38	0.53	3.34	4.33
IMEX, overlap = 1	8.41	53.23	51.88	7.29	46.18	60.00
IMEX, overlap = 2	10.64	67.34	65.63	7.90	50.03	65.00
IMEX, overlap = 5	10.64	67.34	65.63	7.90	50.03	65.00
IMEX, overlap = 10	10.64	67.34	65.63	7.90	50.03	65.00

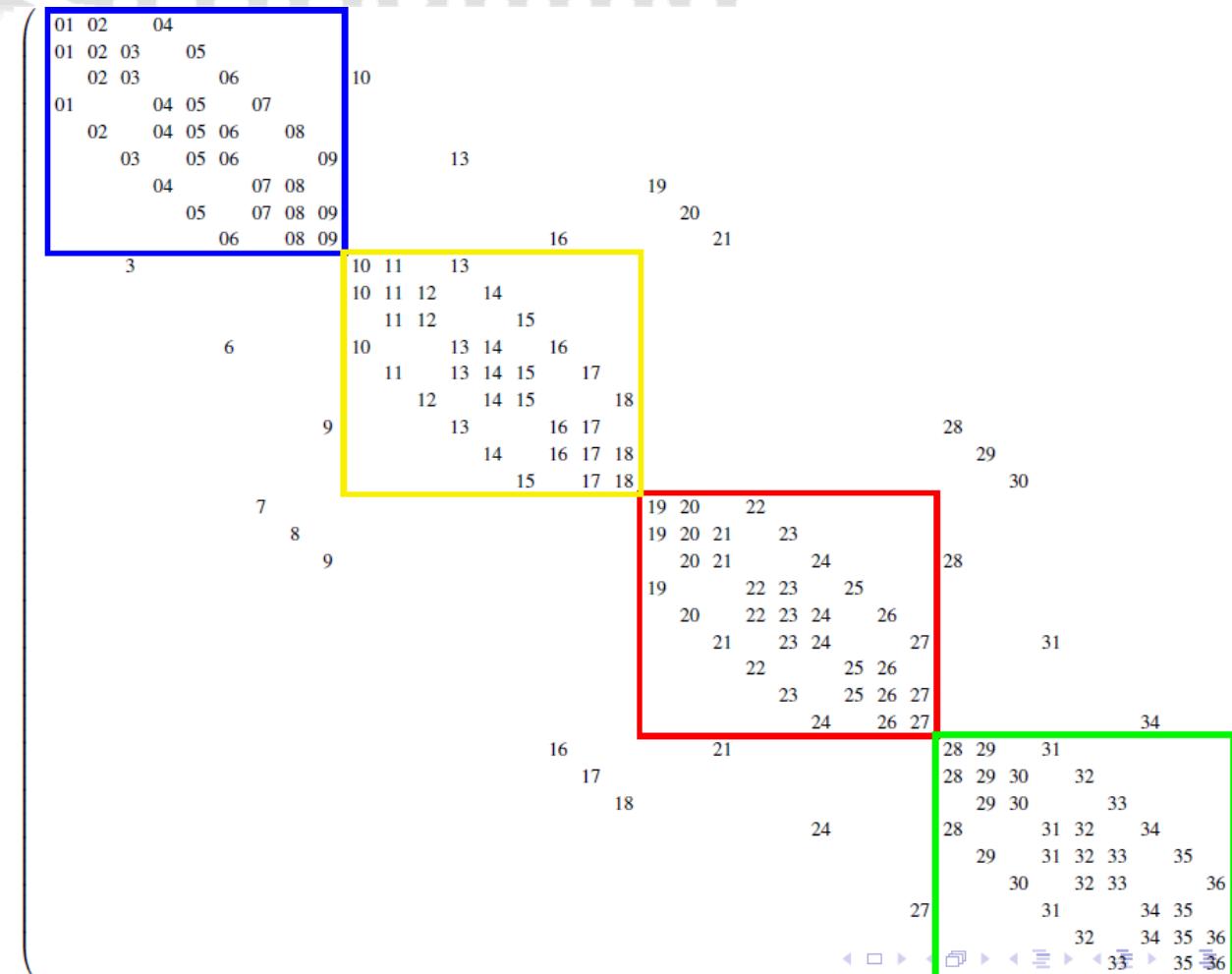
One-Dimensional Test: Effect of Viscosity

 $\epsilon = 0.0625$

	SBP 1-2-1			SBP 2-4-2		
	CFL	DFL	Factor of Increase	CFL	DFL	Factor of Increase
Fully Explicit	1.20	0.94	1.00	1.00	0.74	1.00
IMEX, overlap = 0	9.88	7.91	8.22	6.71	5.37	6.72
IMEX, overlap = 1	14.03	11.22	11.67	11.21	8.97	11.23
IMEX, overlap = 2	13.93	11.14	11.59	11.11	8.89	11.13
IMEX, overlap = 5	13.77	11.02	11.46	10.91	8.72	10.92
IMEX, overlap = 10	14.08	11.26	11.72	10.96	8.77	10.97

 $\epsilon = 0.125$

	SBP 1-2-1			SBP 2-4-2		
	CFL	DFL	Factor of Increase	CFL	DFL	Factor of Increase
Fully Explicit	0.61	0.98	1.00	0.46	0.74	1.00
IMEX, overlap = 0	3.48	5.57	5.67	2.46	3.93	5.33
IMEX, overlap = 1	13.21	21.14	21.50	10.19	16.30	22.11
IMEX, overlap = 2	13.77	22.04	22.42	10.24	16.38	22.22
IMEX, overlap = 5	13.88	22.20	22.58	10.24	16.38	22.22
IMEX, overlap = 10	13.93	22.28	22.67	10.24	16.38	22.22


 $\epsilon = 0.25$

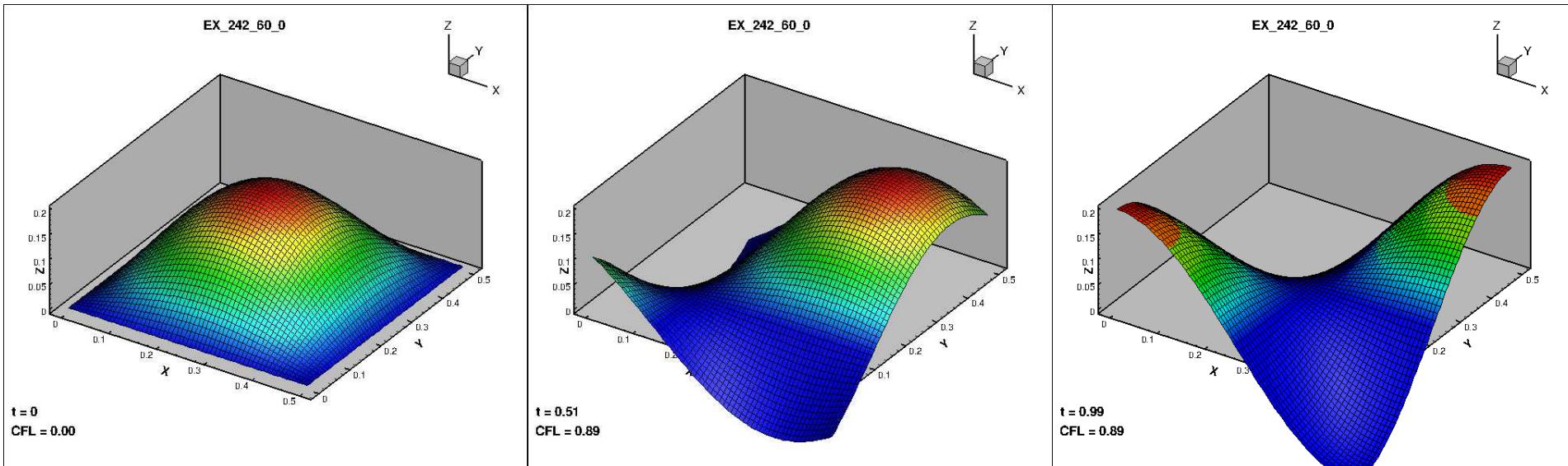
	SBP 1-2-1			SBP 2-4-2		
	CFL	DFL	Factor of Increase	CFL	DFL	Factor of Increase
Fully Explicit	0.31	0.98	1.00	0.20	0.66	1.00
IMEX, overlap = 0	1.48	4.75	4.83	1.08	3.44	5.25
IMEX, overlap = 1	12.39	39.65	40.33	9.22	29.49	45.00
IMEX, overlap = 2	12.80	40.96	41.67	9.22	29.49	45.00
IMEX, overlap = 5	12.75	40.80	41.50	9.22	29.49	45.00
IMEX, overlap = 10	12.80	40.96	41.67	9.22	29.49	45.00

Two-Dimensional Domain Partitioning

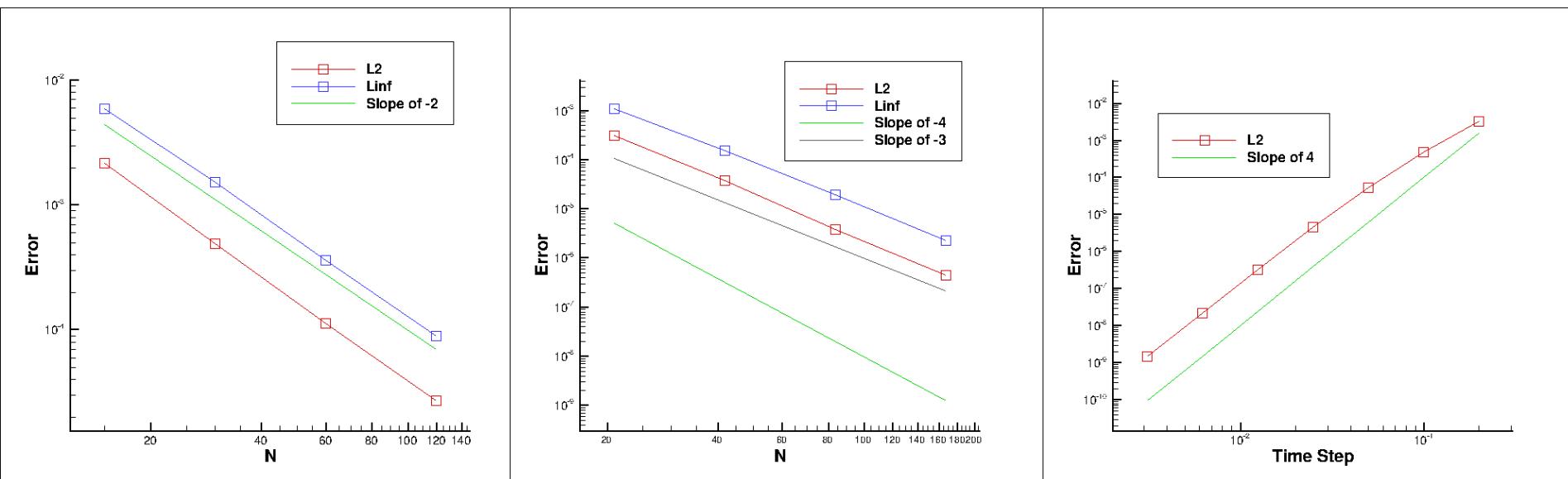
25	26	27	34	35	36
22	23	24	31	32	33
19	20	21	28	29	30
07	08	09	16	17	18
04	05	06	13	14	15
01	02	03	10	11	12

Apply reordering to increase matrix density

Two-Dimensional Test


Two-Dimensional Test

$$u_t + Au_x + Bu_y = 0$$


$$u_t + AD_x u + BD_y u = g_b$$

$$v(x, y, t) = \sin(2\pi(x - At)) \sin(2\pi(y - Bt)),$$

$$x \in [0, 0.5], y \in [0, 0.5], t \in [0, T]$$

Two-Dimensional Test: Accuracy

1-2-1
2nd Order Expected

2-4-2
4th Order Expected

6 Stage IMEX
4th Order Runge Kutta

Two-Dimensional Test: Grid Refinement

$N_x=30, N_y=30$

	SBP 1-2-1		SBP 2-4-2	
	CFL	Factor of Increase	CFL	Factor of Increase
Fully Explicit	2.0	1.0	1.5	1.0
IMEX, overlap = 0	-	-	-	-
IMEX, overlap = 1	7.5	3.8	-	-
IMEX, overlap = 2	7.4	3.7	-	-
IMEX, overlap = 3	7.7	3.9	6.6	4.4
IMEX, overlap = 4	8.0	4.0	7.0	4.7

$N_x=90, N_y=90$

	SBP 1-2-1		SBP 2-4-2	
	CFL	Factor of Increase	CFL	Factor of Increase
Fully Explicit	2.0	1.0	1.5	1.0
IMEX, overlap = 6	-	-	-	-
IMEX, overlap = 7	15.7	7.9	-	-
IMEX, overlap = 8	15.8	7.9	-	-
IMEX, overlap = 9	16.0	8.0	14.3	9.5
IMEX, overlap = 10	16.1	8.1	14.4	9.6

$N_x=60, N_y=60$

	SBP 1-2-1		SBP 2-4-2	
	CFL	Factor of Increase	CFL	Factor of Increase
Fully Explicit	2.0	1.0	1.5	1.0
IMEX, overlap = 3	-	-	-	-
IMEX, overlap = 4	11.6	5.8	-	-
IMEX, overlap = 5	12.0	6.0	-	-
IMEX, overlap = 6	12.2	6.1	10.6	7.1
IMEX, overlap = 7	-	-	11.0	7.3
IMEX, overlap = 8	12.6	6.3	11.2	7.5
IMEX, overlap = 9	12.7	6.4	11.2	7.5

$N_x=120, N_y=120$

	SBP 1-2-1		SBP 2-4-2	
	CFL	Factor of Increase	CFL	Factor of Increase
Fully Explicit	2.0	1.0	1.5	1.0
IMEX, overlap = 6	-	-	-	-
IMEX, overlap = 7	18.5	9.3	-	-
IMEX, overlap = 8	-	-	-	-
IMEX, overlap = 9	19.0	9.5	-	-
IMEX, overlap = 10	19.2	9.6	-	-
IMEX, overlap = 11	19.5	9.8	17.2	11.5
IMEX, overlap = 12	19.5	9.8	17.7	11.8

Shortcomings and Future Work

- Need to compare simulation times
 - Problems examined were uniform grids
 - Need problems with scale separation
 - Stiffness needs to be isolated
 - Requires efficient linear solver for block size
- Need to implement in compressible Euler and Navier-Stokes
- Need to extend to 3D
- Evaluate other discretization types

Acknowledgement

- A significant portion of this work was performed at NASA Langley Research Center as part of the Langley Aerospace Student Scholars (LARSS) program, under the mentoring of Dr. Mark H. Carpenter. The authors gratefully acknowledge his contributions and insight in this effort.
- Support for this work by Dr. Fisher was funded by the NASA Co-op Program