SAND2014-0372C

An Evaluation of BitTorrent’s Performance In HPC
Environments

Abstract—A number of novel decentralized systems have
recently been developed to address challenges of scale in
large distributed systems. The suitability of such systems
for meeting the challenges of scale in high performance
computing (HPC) systems is unclear, however. In this
paper, we begin to answer this question by examining the
suitability of the popular BitTorrent protocol to handle
dynamic shared library distribution in HPC systems. To
that end, we describe the architecture and implementation
of a system that uses BitTorrent to distribute shared
libraries in HPC systems, evaluate and optimize BitTorrent
protocol usage for the HPC environment, and measure the
performance of the resulting system. Our results demon-
strate the potential viability of BitTorrent-style protocols
in HPC systems, but also highlight the challenges of these
protocols. In particular, our results show that the protocol
mechanisms meant to enforce fairness in a distributed
computing environment can have a significant impact on
system performance if not properly taken into account in
system design and implementation.

I. INTRODUCTION

In this paper, we present our research to evaluate
the suitability of the BitTorrent protocol in an high
performance computing (HPC) context. We describe and
evaluate a system, BitLib, that attempts to solve the
data distribution and access problem of dynamic shared
libraries (DSLs) on HPC systems. BitLib is built using
off-the-shelf components, such as the ctorrent BitTorrent
client and the Linux Filesystem in Userspace (FUSE)
module.

This work is part of a larger effort to examine the
suitability of distributed system techniques for handling
communication and data distribution challenges in HPC
systems [16], [4]. By identifying existing protocols that
can be adapted to HPC environments and evaluating
their strengths and weaknesses, we seek to expand the
tool set available to solve HPC communication and
data distribution problems. BitTorrent, one of the more
mature and well-known distributed systems protocols, is
particularly interesting in this regard, due to its potential
suitability for solving DSL distribution problems.

We use shared library dissemination as the HPC data
distribution problem for our evaluation. While dynamic
executables are common on single systems, until re-
cently, most scalable HPC applications have been stati-
cally linked. Dynamic linking has several benefits, such
as updating libraries without recompilation and reduced
memory overhead. With increasing application size, dy-
namic linking has become more desirable in an HPC
context. Simply pulling dynamic libraries from HPC
filesystems, which are frequently optimized for write
performance, can result in poor system performance.

Our work makes several contributions. First, we eval-
uate the use of BitTorrent in an HPC environment,
identifying its strengths, weaknesses, and sources of
those weaknesses. Secondly, we describe the architecture
and implementation of a system, BitLib, which uses
BitTorrent to address the DSL distribution problem.
Finally, we evaluate the performance of this system and
analyze the potential advantages and pitfalls that the
BitTorrent protocol presents in this situation.

In the rest of this paper we present further details on
our work. In Section II, we discuss the background of
the DSL problem and the BitTorrent protocol. Section II1
contains a description of the architecture of our system.
Section IV presents the results of an evaluation of
this system on two mid-sized clusters, as well as an
initial scaling study on a large-scale supercomputing
system. Section V then presents an in depth analysis
of the BitTorrent protocol, detailing the weaknesses and
the changes we made to our system to mitigate them.
Section VI discuses other work done in the area. Finally,
Section VII concludes and presents directions for future
work.

II. BACKGROUND

In this section we discuss the background for this
work. First we discuss the BitTorrent protocol. We then
discuss the issues behind the distributed shared library
problem we use to evaluate the suitability of BitTorrent
to solving data movement problems in HPC systems.



A. BitTorrent

BitTorrent [3] is a distributed, peer-to-peer protocol
designed to distribute sets of files in a decentralized
manner. It’s expected use case is transferring a small
number of very large files. It also assumes comparatively
low-bandwidth, high latency links, that peers that mostly
download all the files in a torrent in a single download
session, and that peers may attempt to freeload on
network services.

1) Overview: The basic BitTorrent system includes
three types of participants: an uploader, a tracker, and
one or more clients. The uploader (also known as the
initial seeder) begins by creating a torrent description
file for a file or set of files within a directory, and
dividing its list of files into pieces that can be requested
independently. It then registers the torrent and itself with
a tracker, and waits for a client to connect and request
pieces.

Clients also use the description file to connect to the
associated tracker. When a client connects to the tracker,
it registers as a peer. It then performs an announce
operation, which gets the client a list of peers from the
tracker and requests to connect with other clients. As
the other clients respond and establish connections, the
client receives piece status data, indicating what data
each client has. The client then requests pieces from
other clients. The other clients receive these requests and
serve the data. This protocol works well on the Internet
for distributing movies and large open-source software
projects, for example.

2) Key Mechanisms: BitTorrent includes a number of
protocol mechanisms and policies designed to make it
scale in a distributed environment with limited trust be-
tween clients. These include a fairness algorithm and an
endgame mode, as well as other mechanisms described
in the basic BitTorrent specification referenced above.

a) Fairness Algorithm: The fairness algorithm is an
essential part of the BitTorrent protocol that encourages
peers to contribute to the swarm, prevents adversarial
peers from having an adverse effect on the swarm, and
optimizes the performance of the swarm. This algorithm
is based on the assumption BitTorrent makes about
peers: they care more about the information they receive
than the information they distribute, so peers need an
incentive to ensure they interact fairly.

The basic algorithm uses tit-for-tat choking based on
tracking the upload/download ratio of peers. Peers are
classified into two groups in this algorithm: seeders and
leechers. Seeders have all the data they have marked
for download, while leechers are peers that are actively

downloading from the network. Seeders keep a certain
number of unchoked peers available to upload to, and
opt to keep peers with the highest transfer rate. Leechers
focus on uploading to the peers that it can download from
at the fastest rate. All peers look for new connections by
randomly unchoking another peer at a set interval, and
peers choke peers based on their upload/download ratio.

This algorithm optimizes performance when seeking
to transfer an entire archive, as leechers follow a policy
that allows them to become seeders, and seeders greedily
seek to push new data in the network. Unfortunately,
peers can get snubbed: if a leecher only has data that its
connected peers already have, it looks like an adversarial
peer and can get choked by all other nodes. BitTorrent
performs a periodic anti-snubbing check to attempt to
find new peers in this case.

b) Peer Distribution Selection: In addition, BitTor-
rent assumes a large number of drop-in/drop-out peers
and that most of the peers want the full data set. Because
of this, seeders have distribution preferences that focus
on sending full copies of the data in a distributed manner
to the swarm. To get this effect, seeders prefer handling
requests of files they haven’t sent out recently and from
nodes they haven’t sent to recently.

c) Endgame Mode: Since pieces are downloaded
individually from different peers, a peer can end up
getting stuck downloading a piece from a slow peer.
If this piece is one of the last to be downloaded, it
can extend the time of download by however long it
takes to download that piece. The endgame mode feature
addresses this by downloading the final pieces from
multiple peers. This assumes, however, that BitTorrent
clients know the full set of files they want to download
a priori.

B. Dynamic Shared Libraries

Application programmers’ demand for shared library
support on large scale HPC platforms has greatly in-
creased. These techniques were originally developed to
increase resource efficiency for multi-user timeshared
desktop and enterprise level platforms, however. As a
result, standard implementations contain obstacles to
scalability, especially on large clusters and HPC plat-
forms.

Historically, large-scale HPC systems have used stat-
ically linked executables, where all references are re-
solved at compile time and all executable code is con-
tained in the resulting binary. Such binaries can be
efficiently distributed to tens of thousands of nodes in



several minutes, typically using a hierarchical distribu-
tion over the network. While distributing a single object
at launch has its advantages, the increasing use of large
solver libraries can result in executables exceeding 1GB
in size. Since code paths are decided based on the
specific problem or input, large portions of unused code
must be statically built into executables which can bloat
executables with unnecessary code.

Dynamically linked binaries, in contrast, defer most
of the linking process until run-time. When a binary
begins executing, the dynamic linker attempts to resolve
all unresolved references, causing a large number of
file stat operations. While these operations can be ef-
ficiently accomplished on a single system, on a large
HPC platform performance declines with the number of
concurrent processes. This can cause tens of thousands
of simultaneous file operations for the same set of shared
libraries on a shared filesystem to resolve references.
These operations are latency-sensitive; handling them
quickly is essential. Even small delays can cause time-
outs which result in duplicate requests, further increasing
load on the file server. All references must be resolved
before the program can begin execution.

Once the program is executing, if any of the shared
object code resolved during the initial run-time linking
process is required, the dynamic loader is employed to
service the request. Typically, this is done using the
OS filesystem interface. Requested objects which were
memory mapped during the linking phase are demand
paged. Again, this process is efficient for single systems.
On HPC systems, bulk synchronous executions make
requests roughly at the same time. Because of this, it
is possible that tens of thousands of nodes will make
simultaneous requests to a single shared object. All of
the processes will request a page (or pages) of the shared
object at roughly the same time from the single shared
library on the shared filesystem. The bandwidth and
meta-data coordination of this data distribution poses the
second key challenge.

Possible solutions to these key challenges are unfortu-
nately quite disparate. Parallel filesystems are typically
optimized for delivering large amounts of bandwidth.
While this seems encouraging on the surface, parallel
filesystem performance for shared files (N to 1) is
typically much worse than can be achieved in an N to
N organization. File operations like directory searches,
file stats, and opens often expose bottlenecks in parallel
filesystem meta-data services.

As a result, modern HPC systems, for example the
Cray XT/XE/XK line of supercomputers, generally use

a hierarchy of file caches for system shared libraries.
The recent Alliance for Computing at Extreme Scale
(ACES)! capability platform, Cielo, uses this strategy
for user-provided shared libraries. This approach is more
efficient than any other available file system on Cielo [9].
However, even when using this more efficient hierarchy
of caches, the application runtime can still increase
substantially when compared with a statically linked
binary [2].

III. ARCHITECTURE

To evaluate the ability of BitTorrent to meet the
challenges dynamic shared libraries present, we designed
BitLib. This system includes four main features to sup-
port dynamically linked and demand loaded libraries in
HPC systems:

1) Data distribution to nodes that can handle moving
large shared libraries to tens or hundreds of thou-
sands of nodes without bottle-necking a single or
small number of file system nodes;

2) Incidental loading of libraries, such as those loaded
by a dlopen call but were not linked against the
executable;

3) Meta-data management that can handle re-
peated directory queries for searching the file
system for appropriate shared libraries (e.g.
LD_LIBRARY_PATH searches); and

4) Straightforward integration with the compute-node
operating systems so that the resulting system
can be deployed to and maintained for production
systems with minimal extra effort.

In the remainder of this section, we describe the overall
architecture of BitLib and our approach to addressing
the challenges above.

A. Overall Architecture

In the general approach, shown in Figure 1, user
actions take place when specifying a job to run, when
the job is launched, and when requests are made at
runtime for the requested files. When constructing a job
to submit, users declare a set of files, for example a
directory of shared object files, to make available to the
application. Our system creates a small description file
that contains information needed about the files to make
available. Because clients selectively download libraries,
this description file can be set-up to be all-inclusive of

'ACES is a collaboration between Sandia National Laboratories
and Los Alamos Laboratory to design and field capability class
platforms for the DOE NNSA Tri-lab community



Phase Preparation Distribution Initialization Runtime
User Executable Load Application Aoplication
Existing Action Prepares Transfered Exectuable Requests To Rzzds File
Executable To Nodes on Node Open a File
Initialize Retrieve File
Create and Bundle ) Request
Added Acti Register Description F'Ifjssﬁtem Sys;ir)nmlnfo Block From
ed Action Description File With g BitTorrent
. Description Bootstrap
File Executable . Peers
File Daemons

Fig. 1.

the available libraries allowing reuse of the description
file, even between applications.

When a job is launched, the description file is dis-
tributed to each compute node as part of the launch
process. This file specifies what local directory on the
compute node the files should be mounted on, as well
as all of the information necessary to handle file lookups
at runtime. This information is used to begin the trans-
fer of data to compute nodes when data is requested,
and to serve, in a peer-to-peer fashion, requests from
other compute nodes. In addition, bootstrap daemons on
system service or I/O nodes also process the description
file so that they can handle requests from compute nodes
to bootstrap data movement onto the compute nodes for
peer-to-peer distribution.

As the job runs, metadata and data requests (e.g.
resulting from a call to dlopen library function) are
handled by communicating with other compute nodes
and, when necessary, with bootstrap daemons on service
nodes. We describe the details of our approach to han-
dling such requests in the remainder of this section.

B. Data Movement

BitLib supports three different strategies for down-
loading shared libraries: bulk download, per-file down-
load, and prefetch mode. Bulk download mode always
downloads the the entire torrent. This is the use-case for
which BitTorrent is optimized, but can download files
from the torrent that are not needed, which wastes mem-
ory and network bandwidth. Per-file download requests
individual files from the torrent swarm as the application
requests them, allowing on-demand downloads from a
large number of libraries. Finally, BitLib also supports
a hybrid mode that prefetches a pre-defined subset of
torrent files, generally those dynamically linked with
the executable, while supporting per-file download of

Steps in System Operation

additional files such as those opened using dlopen.
This hybrid mode is the default BitLib mode.

We use the Enhanced ctorrent [8] BitTorrent client
as the back-end for our data movement. This client
has been tested over many years, is relatively stable,
and has a command line interface which we utilize to
control it programatically. We use Opentracker [5] as
the BitTorrent tracker in this project, because it is one of
the few BitTorrent trackers that runs from the command
line. Both of these components are open source and were
chosen for their small set of dependencies.

We use Enhanced ctorrent directly for our initial
seeders. The initial seeders are given the full set of
data, so they can service requests from the clients.
The BitLib client in our system use Enhanced ctorrent
programmatically, controlling the instance with pipes.
Opentracker is run on a service node and serves as the
coordinator that all the clients and initial seeders connect
to.

C. Meta-data Management

Metadata management in BitLib is currently straight-
forward. When BitLib starts up, it parses the torrent
description file for file names and sizes. The necessary
meta-data this leaves out is permissions. Because per-
missions are strictly read only, and the user has to have
read access to them to run the system, we use a default
set of permissions for all of the files.

D. Bootstrapping

Our system bootstraps before the target process runs
by running via a script that sets up BitLib. The steps to
bootstrap BitLib are:

1) Launch Opentracker on a service node
2) Create a torrent file that points to this tracker



3) Push the library folder to a service node and run
ctorrent to seed from that node

4) On each node, compare the linked libraries to the
torrent to generate a bulk fetch list and start BitLib

The way we currently have implemented this boot-
strapping process is through run scripts specific to run-
ning pynamic on Cielo’s environment. However, there
are a number of ways this can be improved; creating a
global list of supported libraries with a single instance
Opentracker would allow an admin to preform the first
three steps once, for all users. This would also result in
the sharing of libraries between jobs, if they both used
the same library. To allow for users to add additional
files, this process can be easily modified to crete two
BitLib directories on a node, each serving different files.

E. OS Integration

To integrate BitLib into the host operating system,
we use the FUSE (Filesystem in USErspace) filesys-
tem framework. FUSE provides an interface by which
developers can override filesystem functions to provide
different types of functionality. By implementing a FUSE
module, BitLib can provide peer-to-peer file data trans-
port while still remaining transparent to the application
programmers.

To illustrate our FUSE integration, we describe the
BitLib data path at the file granularity. Initially the
application makes a request for a file, such as in a
dlopen call. This request is routed through the kernel
to the FUSE module. The FUSE module, upon receiving
a request to open a file, requests the file from the
BitTorrent library. The BitTorrent library changes the
priority of these files from undesired to normal or high.
The BitTorrent library then starts actively looking for
the file from the BitTorrent swarm, saving the file into
a RAM disk. As pieces of the file are downloaded, the
BitTorrent library will advertise and upload these pieces
to other nodes. After the file is downloaded, FUSE will
provides an interface for the application to access the file
on the RAM disk.

IV. EVALUATION

In this section, we present an evaluation of BitLib
with different configurations and on different systems.
We also present results from an initial scaling study of
BitLib on the Cielo system.

A. Experimental Setup

We primarily evaluated BitLib on two different sys-
tems, Sandia’s Teller and Muzia testbed systems. Teller

is a 104 node cluster with the AMD Trinity Fusion
processors, 16 GB of RAM per node, and QDR In-
finiband and Gigabit Ethernet networks. Muzia is a 20
node Cray XEG6 testbed connected via Cray’s Gemini
interconnect. Both machines run versions of the Linux
operating system, the Tri-labs OS in the case of Teller,
and the Cray Linux Environment in the case of Muzia.

In addition, we also had limited access to up to 1024
nodes of the ASC Cielo supercomputer for an initial
scaling study. Cielo is a 8,944 node Cray XE6 system,
again connected via Cray’s Gemini interconnect. Like
Muzia, it runs the Cray Linux Environment. It uses a
160 GB/sec Lustre filesystem for back end file storage.

We evaluated BitLib performance on these systems
using the Pynamic distributed shared library bench-
mark [11]. Pynamic generates a number of shared li-
braries, and a python MPI program which dynamically
links and imports each of the shared libraries, visits
each of the generated functions, and then does a small
computation phase where it does some simple MPI
command to generate a small fractal image. We used
the default Pynamic set-up with 495 shared libraries, 215
of which are utility libraries, each with 1850 functions,
with each function name being 100 characters long.
This amounts to about 1.4GB of shared libraries. The
utility libraries are C libraries without python hooks,
and they are linked to the executable but they are not
imported within the benchmark. It is important to note
that a significant fraction of Pynamic’s runtime is spent
to importing and visiting the modules. For instance, on
Muzia, it takes roughly 190 seconds after the libraries
have been loaded into the RAM disk for Pynamic to
complete.

Unless otherwise stated, each datapoint is the average
of three runs, and BitLib was run using the hybrid
prefetching mode of file transfer. For Pynamic, this
results in all of libraries being pre-fetched, rather than
being transferred on demand.

B. Comparison Against Default Filesystems

We began by examining the performance of BitLib at
different node counts on the Teller and Muzia clusters.
Figure 2 presents the results of these two clusters com-
pared against their default NFS filesystem performance.
On Teller, BitLib performs approximately the same as
NFS while running over Ethernet and Infiniband. On
Muzia, BitLib’s approach outperforms NFS over Gemini.

C. Impact of File Transfer Modes

We then examined the impact of file transfer mode
on BitLib performance, specifically whole archive, per-



225
200
B
§ =N\ FS
a 100 = =BitLib - 1B
“v=BitLib - ETH
75
50
25
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Nodes
(a) Teller
325
300 ﬁ’é
275 /
250 ) ) ‘_aJ
225
200
8175
H
§ 150 =NFS
=L =BitLib
125
100
75
50
25
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Nodes
(b) Muzia
Fig. 2. BitLib Scaling Performance on Different Clusters

file, and prefetching downloads of shared libraries. As
described in Section III-B, BitLib can communicate in
three different modes, with a hybrid prefetching mode
as the default. Figure 3 shows the results of changing
the file download strategy when running over Infiniband
on a single node of the Teller testbed. Bulk download
generally performs best in these single-node tests, with
the prefetching strategy performing competitively. In
contrast, the per-file downloading strategy works very
poorly. This is because sequences of independent file
requests violates BitTorrent’s assumed use case, causing
a severe performance hit. Section V provides further
discussion of the BitTorrent features that caused this
downloading scheme to perform poorly.

D. Impact of Network Architecture

We then examine the performance of BitLib on multi-
ple network fabrics, as shown in Figure 4. The Infiniband
and Ethernet numbers are from on the Teller cluster

1400

1200

1000

800

Seconds

600

400

| _

Bulk Prefetch

Single Download Restarting ctorrent Pipe to ctorrent

Fig. 3. Impact of file download strategy on BitLib Performance

and the Gemini numbers are from the Muzia cluster.
As these are different systems, we attempt to isolate the
effect of the BitTorrent traffic by examining only the
benchmark slowdown compared to the single-node case
on that system.

In this comparison, we can see that BitLib slows
down linearly on Ethernet, quickly becoming limited
by network bandwidth. In contrast, it performs well
on Infiniband and Gemini interconnects, both of which
have greater bandwidth and a more scalable topology
compared to the 1Gb Ethernet network.

E. Scaling Study

Finally, we were also able to perform an initial eval-
uation of the scalability of BitLib on up to 1024 nodes
of the ASC Cielo supercomputing systems. Because of
time and access limitations, we were only able to run a
single test at each system size, however, so these results
are only an initial study.

Figure 5 presents the results of tests of Cielo Pynamic
performance running both BitLib and the standard Lustre
file system. In this comparison, we can see that, for a
small number of nodes, BitLib performs about as well
as Lustre, paying a little bit of overhead for the extra
communication. In the 256 node case, BitLib perfor-
mance is poor, likely due to an outlier measurement. At
512 nodes and beyond, Lustre performance slows more
rapidly, while BitLib continues to scale well, resulting
in BitLib outperforming Lustre in the 512 and 1024
experiments.

V. USING BITTORRENT IN HPC

As described in Section II, BitTorrent’s expected use-
case, single, bulk transfers of large set of files over



-~

: / e

==

1.25

o/

e=gmEthernet

| fini

Normalized Runtime

d
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Nodes

(a) Normalized Slowdown on Teller

== Gemini

Normalized Runtime
=
N
&

9 10 11 12 13 14 15 16
Nodes

(b) Normalized Slowdown on Muzia

Fig. 4. Normalized Slowdown

slow networks, is different from that of a file system
supporting demand-loading of shared libraries. BitTor-
rent includes multiple mechanisms, namely a fairness
algorithm, peer distribution selection scheme, and an
endgame mode, that all depend on these assumptions. As
was shown in Section I'V-C, these mechanisms can have
significant negative impact on BitLib performance. In
this section, we analyze the impact of these mechanisms,
and describe how we mitigated them in BitLib.

A. Protocol Mechanism Challenges

As shown in Figure 6, the rate of optimistic unchoking
and anti-snubbing checks in BitTorrent are designed for
low bandwidth, high latency networks. In HPC systems,
however, greater bandwidths can transfer 1 gigabyte
files in roughly 10 seconds over gigabit Ethernet, while
optimistic unchokes are only done once every 30 seconds
and anti-snubbing checks are done after 60 seconds. As
a result, better connections will frequently not be found

350

/

300 .
250 W

200

== ustre

Seconds

150 —=gitLib

100

1 2 4 8 16 32 64 128 256 512 1024
Nodes

Fig. 5. [Initial Performance Results on Cielo

60
50
40

B

H

S 30

g

3
20
m :. .
0

Time to Transfer 1GB Over Time Until Next Fairness Time Until Next Optimistic Time Until Anti-snubbing
Gigabit Ethernet (TCP/IP) Algorithm Check Unchokes Check

Fig. 6. Granularity of BitTorrent’s Fairness Algorithm

until after the download has completed and a snubbed
peer will not react until almost a minute after their
download stops.

In addition, peer distribution selection mechanisms
can adversely impact system performance in cases where
clients all ask for the same data from a small number
of seeders. In particular, the distribution scheme will
only give the data to the first requester, serializing the
distribution of critical data. This case can occur in per-
file mode in BitLib, where all clients are asking for the
same piece of a small shared library at startup.

Finally, endgame mode also impacts BitLib perfor-
mance, as it is invoked every time BitLib nears com-
pletion of a file download. In addition to downloading
data multiple times unnecessarily, it also reduces the
upload/download ratio of the client. Again, this is par-
ticularly problematic in BitLib per-file mode.



B. Combined Mechanism Impact

The combined impact of these mechanisms was a
catastrophic performance failure in per-file mode in
BitLib. In particular, while the system worked well for
one client and a single initial seeder, it performed poorly
with the addition of more clients in per-file mode. This is
because, in per-file mode, all clients begin by requesting
pieces from the same shared library, as opposed to
different pieces of a large archive. When this happens,
the initial seeder receives two requests for the same file,
services the first one, and disregards the second one.

This process continues until the first client’s fairness
algorithms chokes the second client because of its poor
download ratio. At this point, the second client is choked
by both the initial seeder and the first client. The first
client then completes in a normal time, and the second
node is starved until it receives an optimistic unchoke.
This problem prevails even as additional clients are
added; one node always gets ahead and is preferred by
the seeder.

C. Mitigation

We examined multiple ways of dealing with this
problem. Trying to coalesce open requests, our initial
approach, failed because when the dynamic loader was
opening the files, a read of the file header always
followed. Hence, we needed to download the file before
moving on to the next open. Adding extra files to
increase the download size (e.g. in bulk download mode)
improved performance, but wasted time downloading
potentially unnecessary files. In the end, hybrid prefetch-
ing mode was an effective pragmatic compromise. By
prefetching necessary data at program startup, all clients
received good download ratios while still downloading
useful data. As a result, they were not unnecessarily
choked later when they began requesting individual files
on demand in response to dlopen calls.

VI. RELATED WORK

Research related to this effort comes primarily from
two areas; HPC, the target of this research, and dis-
tributed systems. Sandia National Laboratories con-
ducted some earlier experiments specifically directed
towards supporting DSLs on HPC platforms that utilized
light-weight kernels and custom run-time systems. While
this experiment was generally successful, it required
extensive changes to the standard loader and run-time
and was not portable to other commodity software stacks.

This effort, and a more general survey of other poten-
tial approaches, was documented in a Sandia technical
report [10].

The Blue Gene/P system uses an 10 forwarding ap-
proach to address scalable 10 (Blue Gene L supported
only statically compiled binaries) [19], . though the
authors of this paper focus on IO performance and
bottlenecks in general and do not specifically address
DSLs. Cray Inc. has also implemented DSL support
using ta filesystem proxy, the Data Virtualization Service
(DVS) [18]. Coverage of Cray’s approach and an opti-
mization that extended the scalability of this approach (a
DVS optimization) can be found in [9]. Other researchers
have investigated optimizing IO on HPC platforms us-
ing proxy methods and data compression ([20], [13],
and [1]). These techniques can improve the scalability
of using DSLs but have not focused on this issue.

Magic Ermine [12], a tool developed to aid in binary
portability, was also investigated in [10] as a possible
hybrid method of combining both the executable and the
required DSLs into a single package which could then
be efficiently distributed on the target HPC platform.
While interesting, this approach would generate very
large combined executables along with other limitations.

In the distributed systems area there are a number
of related research efforts. Chord [17], CAN [14], Pas-
try [15], and Tapestry [21] are peer-to-peer Distributed
Hash Table systems introduced in 2001. All share the
same fundamental idea but have significantly different
approaches. The original protocol for BitTorrent was also
designed in 2001 but specifically targeted peer-to-peer
file sharing over the Internet.

XGet [7] is a research effort for file transmission that
used the 9P protocol. When evaluating their software,
they compared it with BitTorrent. While BitTorrent per-
formed faster than their software, there were notable
limitations, namely, a cumbersome user interface and the
use of a metadata file. We address the first limitation
by creating a BitTorrent client that, instead of using
an explicit user interface, takes input in the form of
filesystem calls. We address the second limitation by
distributing the metadata with the executable, a solution
specific to our problem.

General HPC file system approaches, Lustre, GPFS,
PVEFS, or Panasas, use parallel techniques to achieve
good performance in aggregate, but are not optimized
for handling shared libraries. These packages are tuned
for high volume, bursty I/O, such as writing checkpoint
or reading restart files. The serial I/O to a single file on
these parallel systems is not much better than a single



disk file system. In fact, most shared libraries are stored
on cluster-local disk or on network attached storage
(NAS) and accessed via NFS. As mentioned previously,
I/O forwarding techniques from NFS servers have been
developed with some, but insufficient success.

More recent research efforts have also made consid-
erable progress on these access issues. For example,
Zhao, et al. have done work supporting DSLs with their
FMcache and DLcache [22] projects. Their approach
is to create a cache file using a small scale run of
the target program and push the cache to the nodes
at launch time. While their approach has scalability
and high performance, it makes the assumption that the
program can be run at small scale and will require the
same libraries at small scale as it will at large scale. The
other caveat of their approach is that changing the DSLs
used by a program requires additional small scale runs
to update the cache.

Spindle [6] is a project by Frings et al. to use overlay
networks to create a tree based data distribution network.
Their data distribution model is similar to ours; BitTor-
rent distributes each piece in a tree like manner, although
it is random and changes per piece. This allows our sys-
tem to adapt to changes in the network. Our approaches
also differ as they use a custom overlay network and we
use an off-the-shelf BitTorrent implementation.

VII. CONCLUSIONS

In this paper, we have discussed the performance and
issues we encountered when trying to use an off-the-shelf
BitTorrent client in an HPC context. We examined Bit-
Torrent’s suitability by trying to apply it to the problem
DSL distribution. While this approach has many benefits
in scalably and reliably distributing data, there are issues
with how it is tuned for its preferred use case.

For future work, we plan to look at and evaluate modi-
fications to a BitTorrent client to increase its applicability
to an HPC environment. First, we plan to look adapt
a tested, open-source, and high performance BitTorrent
client into a library to get quicker and more detailed
communication and control. Second, we plan to examine
how modest changes and tuning of BitTorrent for HPC
networks would impacts its performance on individual
file downloads. More generally, we plan to examine the
potential benefit of features like the fairness algorithm
in an HPC context. Finally, we plan to examine if there
features of the HPC networking environment that can
be utilized to improve the performance of BitTorrent in
that context, such as non-TCP transfers and broadcast
communication.

ACKNOWLEDGMENTS

Sandia National Laboratories is a multi-program lab-
oratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Cor-
poration, for the U.S. Department of Energy’s National
Nuclear Security Administration (NNSA) under contract
DE-AC04-94AL85000.

This work was funded by NNSA’s Advanced Simula-
tion and Computing (ASC) Program.

REFERENCES

[1] N. ALI, P. CarRNs, K. ISKrRA, D. KIMPE, S. LANG,
R. LATHAM, R. ROSS, L. WARD, AND P. SADAYAPPAN, Scal-
able 1/0 forwarding framework for high-performance comput-
ing systems, in International Conference on Cluster Computing,
IEEE, Sept. 2009.

[2] B. BARRETT, R. BARRETT, J. BRANDT, R. BRIGHTWELL,
M. CURRY, N. FABIAN, K. FERREIRA, A. GENTILE, S. HEM-
MERT, S. KELLY, R. KLUNDT, J. H. LAROS III, V. LE-
UNG, M. LEVENHAGEN, G. LOFSTEAD, K. MORELAND,
R. OLDFIELD, K. PEDRETTI, A. RODRIGUES, D. THOMPSON,
T. TUCKER, L. WARD, J. V. DYKE, C. VAUGHAN, AND
K. WHEELER, Report of Experiments and Evidence for ASC
L2 Milestone 4467 - Demonstration of a Legacy Application’s
Path to Exascale, Technical Report SAND2012-1750, Sandia
National Laboratories, March 2012.

[3] B. COHEN, The bittorrent protocol specification, 2008.

[4] M. G. DoSANIH, P. G. BRIDGES, S. M. KELLY, AND J. H.
LAROS 111, A peer-to-peer architecture for supporting dynamic
shared libraries in large-scale systems, in Parallel Processing
Workshops (ICPPW), 2012 41st International Conference on,
IEEE, 2012, pp. 55-61.

[5] D. ENGLING, opentracker—an open and free bittorrent tracker,
Web, 2010.

[6] W. FRINGS, D. H. AHN, M. P. LEGENDRE, T. GAMBLIN,
B. R. DE SUPINSKI, AND F. WOLF, Massively parallel load-
ing., in ICS, 2013, pp. 389-398.

[71 H. N. GREENBERG, L. IONKOV, AND R. MINNICH, XGet: A
Highly Scalable and Efficient File Transfer Tool for Clusters, in
LCI International Conference on High-Performance Clustered
Computing, January 2009.

[8] D. HOLMES, Enhanced ctorrent, htt
net/dholmes/ctorrent.

[9] S. M. KELLY, R. KLUNDT, AND J. H. LAROS III, Shared

Libraries on a Capability Class Computer, in Cray User Group

Annual Technical Conference, May 2011.

J. H. LARroS III, S. M. KELLY, M. J. LEVENHAGEN, AND

K. T. PEDRETTI, Investigating Methods of Supporting Dynam-

ically Linked Executables on High Performance Computing

Platforms, Technical Report SAND2009-5515, Sandia National

Laboratories, 2009.

G.L.LEE, D. H. AHN, B. R. DE SUPINSKI, J. GYLLENHAAL,

AND P. MILLER, Pynamic: the python dynamic benchmark,

in Proceedings of the IEEE 10th International Symposium on

Workload Characterization, Sept. 2007, pp. 101-106.

Magic Ermine. http://www.magicermine.com/erk/.

K. OHTA, D. KIMPE, J. CoPE, K. ISKRA, R. ROSS, AND

Y. ISHIKAWA, Optimization Techniques at the 1/O Forward-

ing Layer, in International Conference on Cluster Computing,

IEEE, Sept. 2010.

p://www. rahul.

(10]

(11]

(12]
(13]



[14]

[15]

(16]

[17]

(18]

[19]

[20]

(21]

[22]

S. RATNASAMY, P. FRANCIS, M. HANDLEY, R. KARP, AND
S. SHENKER, A Scalable Content-Addressable Network, in
Special Interest Group on Data Communication (SIGCOMM),
August 2001.

A. ROWSTRON AND P. DRUSCHEL, Pastry: Scalable, decen-
tralized object location and routing for large-scale peer-to-peer
systems, in IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), November 2001.

P. SOLTERO, P. BRIDGES, D. ARNOLD, AND M. LANG, A
gossip-based approach to exascale system services, in Pro-
ceedings of the 3rd International Workshop on Runtime and
Operating Systems for Supercomputers, ACM, 2013, p. 3.

I. STOICA, R. MORRIS, D. KARGER, M. F. KAASHOEK, AND
H. BALAKRISHNAN, Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications, in Special Interest Group on
Data Communication (SIGCOMM), August 2001.

S. SUGIYAMA AND D. WALLACE, Cray DVS: Data Virtualiza-
tion Service, in Cray User Group Annual Technical Conference,
May 2008.

V. VISHWANATH, M. HERELD, K. ISKRA, D. KIMPE, V. MO-
ROZOV, M. PAPKA, R. RoSs, AND K. YOSHII, Accelerating
I/O Forwarding in IBM Blue Gene/P Systems, in Internatioinal
Conference for High Performance Computing, Networking,
Storage and Analysis (SC), ACM, Nov. 2010.

B. WELTON, D. KIMPE, J. COPE, C. PATRICK, K. ISKRA, AND
R. Ross, Improving I/O Forwarding Throughput with Data
Compression, in International Conference on Cluster Comput-
ing, IEEE, Sept. 2011.

B. Y. ZHAO, K. J. D., AND A. D. JOSEPH, Tapestry: a
Sault-tolerant wide-area application infrastructure, SIGCOMM
Comput. Commun. Rev., 32 (2002).

7. ZHAO, M. Davis, K. ANTYPAS, Y. YAO, R. LEE, AND
T. BUTLER, Shared library performance on Hopper, in Cray
User Group Annual Technical Conference, May 2012.



