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ZrH2 Formation during Dry Storage May Limit the Lifetime of 
Used Nuclear Fuel Cladding

Hydride formation in Zr-based cladding is known to degrade clad reliability during 
during dry storage

• The drying cycle dissolves the ZrH2. 

• During dry storage as the clad temperature decreases, the ZrH2 precipitates on 
grain boundaries, dislocation loops and, possibly, other defects.

• ZrH2 forms perpendicular to the tensile stress

• It morphology appears to be needle-like lathes

• B. Clark’s experiments indicate the ZrH2 growth is

diffusion controlled
• Microstructure, stress,
composition, H pick-up,
temperature are know to
Control ZrH2 formation &
morphology.

Zirlo 720 wppmH 140 MPa hoop stress 400 oC

Hydriding of Zircaloy-2
Experiment by B. Clark
T=Dt1/2

D=1.6x10-11m2/s
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Representation of Microstructure and Composition
Hybrid Model

• Potts kMC digitizes represents microstructure using spins qi

• Phase field represents composition with field variable Ci

– Both are on the same grid

Microstructure Composition
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• EOS is a function of volume free energy and interfacial 
energies.

An example of Ev

Equation of State (Thermodynamics)
Hybrid Model

Ev  a C C1 
2
 C2 C 

2   b C C3 q  C4 C q 

Ehyb  Ev(qi ,C)
1

2
J(qi ,qj )

j 1

n












i1

N

  EdC

Volume free 
energy

Interfacial free 
energy

 

EdC  2C (C)2 dV
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Representation of Microstructure and Composition
kMC

• Potts kMC digitizes space into 
discrete ‘bits’ of material
– An ensemble of particles populate the 

lattice

– Each color can represent a membership 
in a phase and / or feature (i.e. grain)

– Each color can also represent 
composition, but true gradients in 
composition would require huge 
simulations
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Kinetic of Evolution
Hybrid Model

•

•

grain growth
change pixel color

Composition change
by diffusion

• Microstructure is evolved in the same 
manner as Potts in response to local free 
energy using Ehyb

– Metropolis algorithm

• Composition evolved as a phase field 
parameter.

• Where Ev is from the hybrid Free Energy
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Phase Equilibrium Calculations for Zr and ZrH1.5
M. Glazoff, INL

FCC ZH1.5

HCP Zr
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Bradbrook et al, JNM 1972

Hydride Precipitates orient on (111) [1120]
(111) [1120]

Morphology of ZrH1.5 Precipitates

ZrH1.5 Precipitates
• Intragranular
• needle-like lathes
• Cubic (FCC)
• specific crystallographic 

orientation with HCP Zr
• Growth is by nucleation 

and diffusion-controlled 
growth
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• Combines elements of Potts and phase-field models to treat microstructure 
and composition evolution.

• EOS is a hybrid of volume free and interfacial energies obtained from both 
models.

• Ev(qi,C) is obtained from Thermo Cal

•

M. Glazov, INL, 2013

Hybrid Potts-Phase Field Model
Equation of State (Thermodynamics)

Ehyb  Ev(qi ,C)
1

2
J(qi ,qj )

j1

n












i1

N

  EdC

Volume free 
energy

Interfacial free 
energy

EdC  2C (C)2 dV

Ev (qi,C)
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Basal pole

Rolling Dir
Transverse Dir

Normal Dir

Zircaloy-4 and other Zr-based claddings are known to 
have texture

Pilgering process imparts texture
• Grain shape, elongated ~2x in rolling direction
• Crystallographic, basal plane parallel to ND with 20 to 

40o rotation around TD
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Nucleation and growth of hydride precipitates is 
simulated by diffusion-controlled kinetics

Model:
• Nucleation sites are designated in the single crystal at random locations
• Nucleation rate is constant
• Energetic bias is given to growth direction of the lathes

Precipitate nucleation and growth compositional evolution



Jan, 2014 ICACC’14, Daytona Beach, V. Tikare 13

ZrH1.5 Precipitation
Polycrystalline Zr

Model:
• Nucleation at random locations and nucleation rate is 

constant
• Energetic bias is given to growth direction of the 

lathes with the orientation of the grain
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ZrH1.5 Precipitation
Uniaxial Stress

Model:
• Same microstructure
• Energetic bias is given to growth direction of the 

lathes with the orientation of the grain and stress 
direction.
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Nucleation and growth of hydride precipitates

ND

TD

RD 100 x 100 x 25 m

Initial microstructure Simulation:
• Microstructure as shown
• Basal plane alignment with RD
• 1000 ppm H
• Zr-H thermo
• Nucleation and growth of 

precipitates
• Diffusion controlled kinetics
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Nucleation and growth of hydride precipitates

10 x 10 x 10 m

Precipitates Composition
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Nucleation and growth of hydride precipitates
Simulation results

No stress Stress in Y-dir Stress in X-dir

Precipitates align themselves perpendicular to the applied stress
• No stress, alignment is ~random along basal plane
• Stress along Y-dir, alignment is perpendicular
• Stress along Z-dir, alignment is less perpendicular

However, simulated precipitates are uniformly 
distributed, individual precipitations do not re-align 

sufficiently to explain observed behavior
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All Zr-based claddings show long-range cooperative 
formation (Billone et al, ANL UFD report, 2013)

ZirloTM

M5TM

Zr-4
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• Hydride precipitate re-orientation cannot be simulated by 
the re-orientation of individual precipitates
– There must be cooperative nucleation and growth of individual 

precipitates that leads to re-orientation as observed by optical 
microscopy.

Conclusions


