

Exceptional service in the national interest

Efficient Stochastic Finite Element Modeling Using Parameterized Reduced Order Models

R. Schultz, M.R. Brake, S.D. Topping,
N.M. McPeek-Bechtold, J.A. Fike,
R.V. Field, R. Dingreville

Motivation

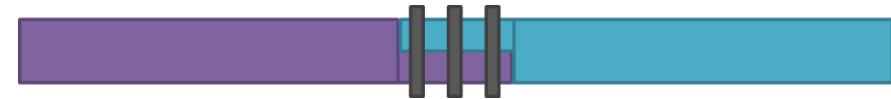
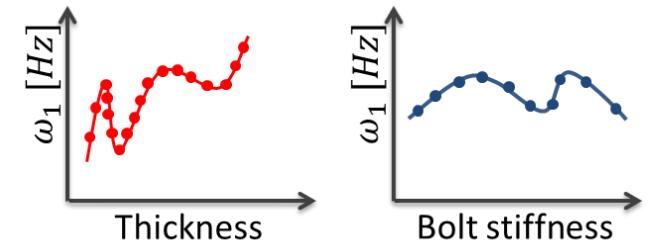
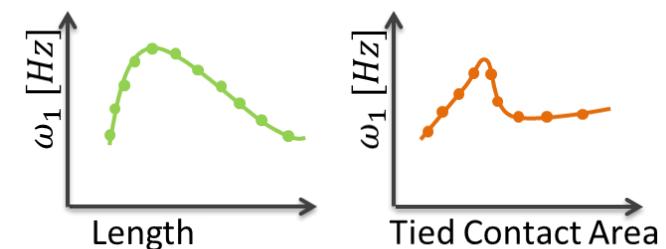
- A need to explore the effects of parameter uncertainty in FE models – this can constitute a large parameter space
- Exploring this large parameter space is very costly, both in terms of man hours and computation time
- These costs makes studying the uncertainty difficult
- If the number of meshes and/or the number of runs can be reduced, these uncertainty studies are attainable

Our Method:

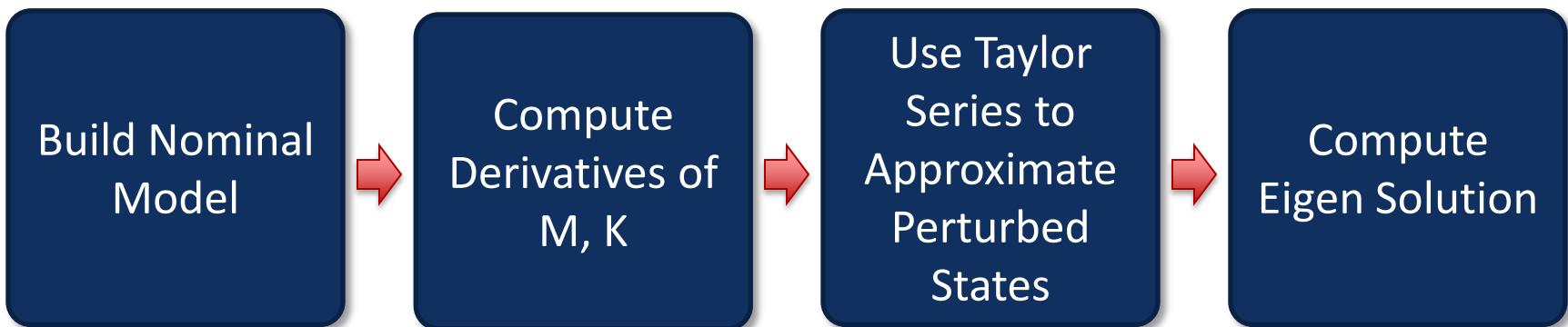
- Rather than mesh and run at each of many parameter values, approximate the system matrices using Taylor series
- To reduce computational cost, use Craig-Bampton reduced-order representations of these systems and approximate the CB matrices

Example Sensitivity Study

- Need predictions to that account for uncertainty
- Want to explore the effect of these uncertain variables on the modes of the system
- Due to:
 - Manufacturing variability
 - Geometry
 - Assembly
 - Machining, welding
 - Insufficient property data
- Uncertainty in many variables:
 - Plate thickness
 - Material density
 - Material modulus



How this Works:



Three Parameterization Methods:

Full DOF Parameterization

- Approximate the Full DOF System Matrices
- Saves meshing time
- No change in solution time

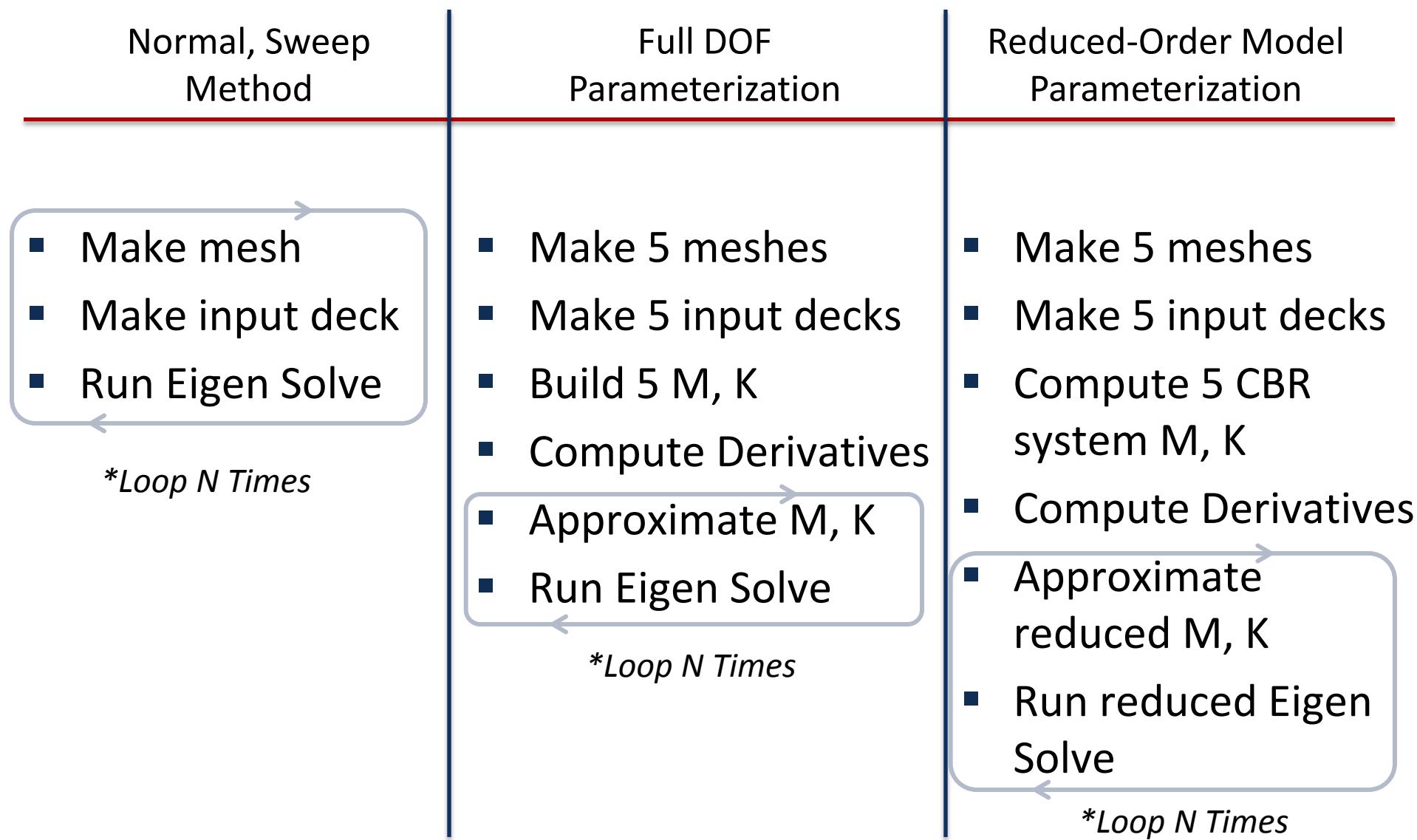
Reduced-Order Model Parameterization

- Approximate the CBR System Matrices
- Saves meshing time
- Saves solution time

Eigen Value & Vector Parameterization

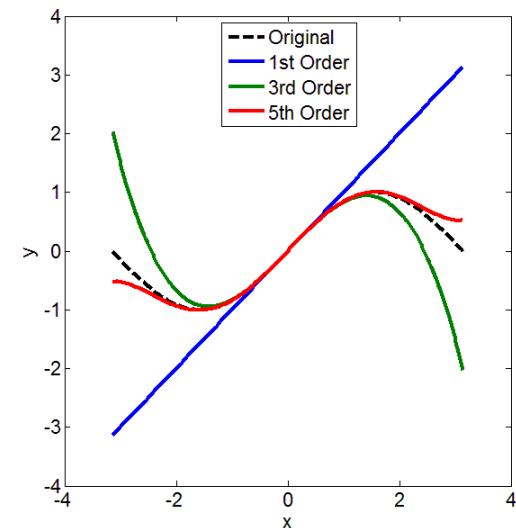
- Approximate the eigen values and vectors based on nominal model
- Saves meshing time
- Saves solution time

Detailed Process:



Review of Taylor Series

- Series expansion function about a point
- Here, the “point” is the value of an entry in the Mass or Stiffness matrix for the Nominal model
- $f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n$
 - $f(x)$ = function of parameter x . $M_{1,5}(\rho)$, for example.
 - a = point $f(x)$ is expanded about
- Order of Taylor Series refers to the highest-order derivative
- More accurate approximation to true function with higher order



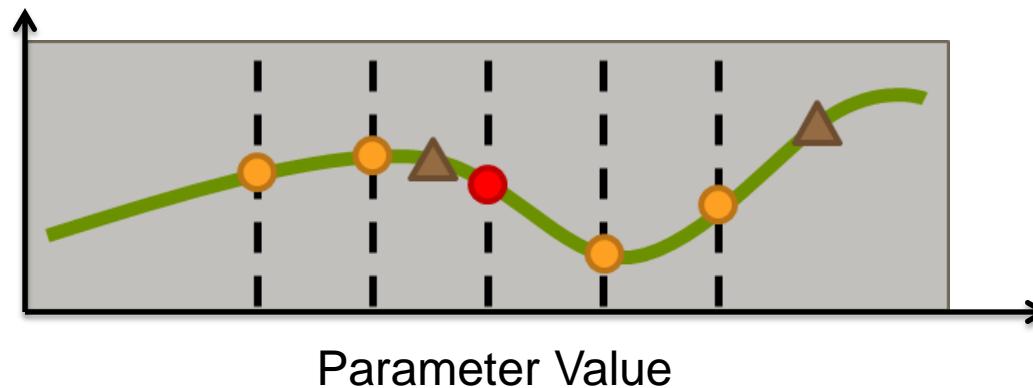
Review of Finite Differences

- Method for approximating derivatives of functions
- Here, the function is the entry of M,K as a function of parameter.
 - $M_{1,5}(\rho)$, for example.
 - Used Central Finite Differences here
- First Derivative: $f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$
 - h is the step size between nominal value and +/- values
- Higher Derivatives: $f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$
- Better approximations had with higher accuracy differences
 - First Derivative with 2nd order accuracy:
 - First Derivative with 4th order accuracy:
- But, higher derivatives require more meshes

Derivative:	Accuracy:	Number of Meshes:
1st	2	2
	4	4
	6	6
2nd	2	3
	4	5
	6	7
3rd	2	4
	4	6
	6	8
4th	2	5
	4	7
	6	9

Calibration Set: Points Required

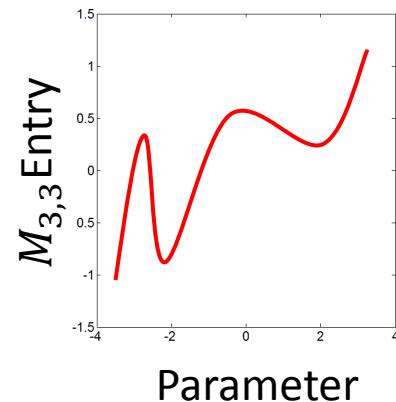
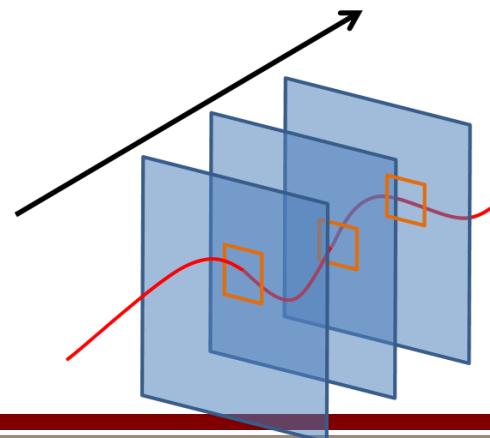
- Calibration Set = Points Required for FD Calculations
- Central Finite Differences require several points above and below the Nominal point
 - Points (matrices) at the nominal, $f(a)$, and perturbed points, $f(a - 2h)$, $f(a - h)$, $f(a + h)$, $f(a + 2h)$, etc.
- Each point requires the construction of the Mass & Stiffness matrices
 - Unique mesh and/or input deck parameters



Looking at Matrix Derivatives

- How does a Finite Difference work on a Matrix?
- Simply:
 - Entry-by-Entry $\rightarrow M_{3,3}$ Entry at Nominal & Perturbed states
 - Calibration Set: $M_{3,3}(-2h)$, $M_{3,3}(-h)$, $M_{3,3}(\text{nom.})$, $M_{3,3}(+h)$, $M_{3,3}(+2h)$

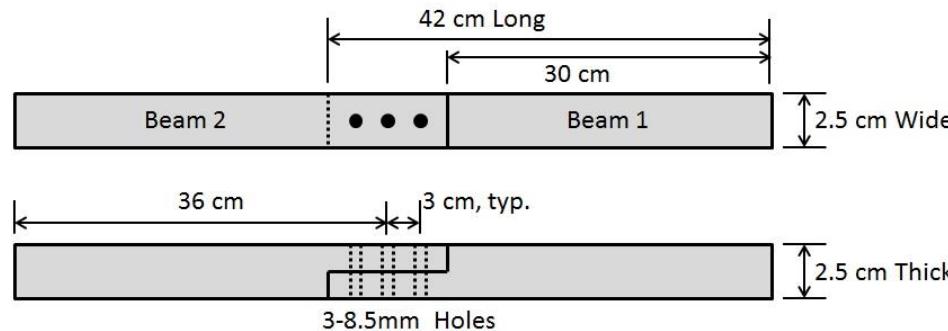
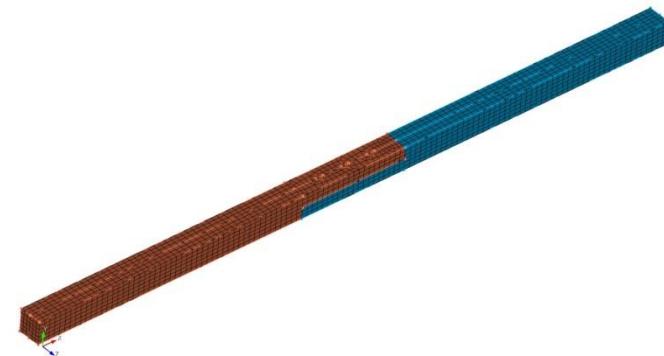
$-h$ Point					Nominal					$+h$ Point				
0.9	0	0	0	0	0	1	0	0	0	1.1	0	0	0	0
0	1.8	0	0	0	0	0	2	0	0	0	2.2	0	0	0
0	0	1.8	0	0	0	0	0	2	0	0	0	2.2	0	0
0	0	0	0	1.8	0	0	0	0	2	0	0	0	2.2	0
0	0	0	0	0	0.9	0	0	0	0	0	0	0	0	1.1



Entries in M, K From Taylor Series

- Each Entry in System Matrices is Approximated
 - $M_{3,3}(1.13x_{nom}) = M_{3,3}(x_{nom}) + M_{3,3}'(x_{nom})(\Delta_x) + \frac{M_{3,3}''(x_{nom})}{2}(\Delta_x)^2 + \dots$
 - $\Delta_x = 0.13x_{nom}$
 - $K_{3,3}(1.13x_{nom}) = K_{3,3}(x_{nom}) + K_{3,3}'(x_{nom})(\Delta_x) + \frac{K_{3,3}''(x_{nom})}{2}(\Delta_x)^2 + \dots$
- Note: since we're approximating each entry, resulting system matrices *may* be physically un-realizable
- Craig-Bampton Reduced Systems:
 - Components are reduced, resulting in reduced M_{CBR}, K_{CBR} matrices
 - These reduced M_{CBR}, K_{CBR} matrices are then approximated

Parameterized Beam Model

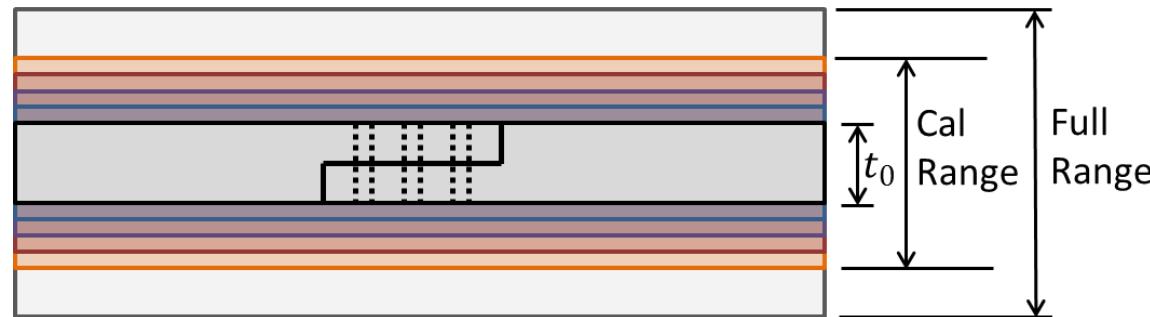


- 2 component system
- Components connected with springs representing bolts
- Each component can be reduced to a Craig-Bampton superelement
- Non-trivial size: 6192 nodes, 18576 DOF
- Parameters Explored:
 - Modulus, Density, Thickness

Creating the Calibration Set

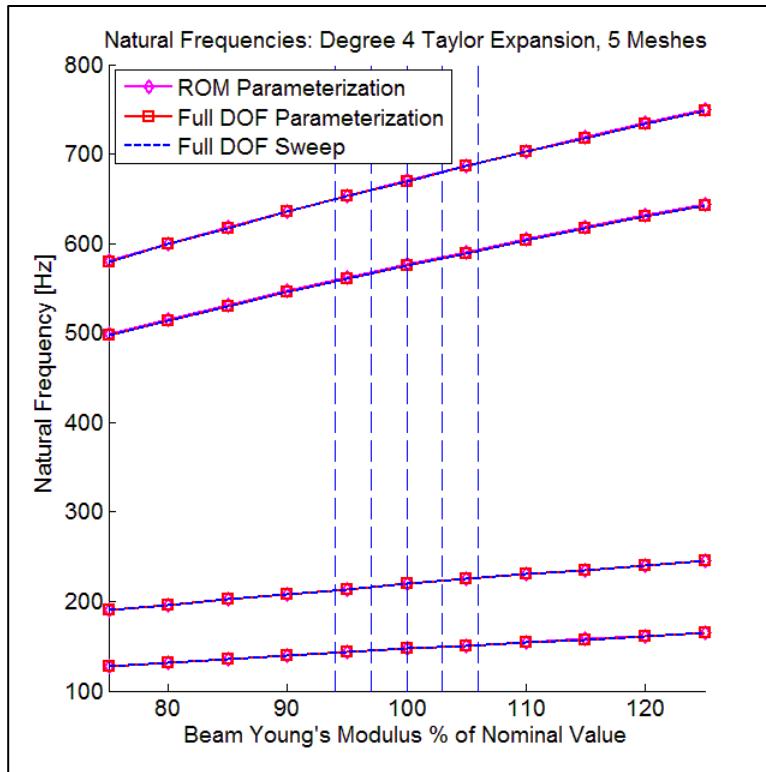
- For each Parameter:
 - 5 runs
 - 5 meshes & 5 input decks
- Here, used +/- 6% of nominal value for Calibration Set
- Parameter range explored to +/- 20%

Parameter	-2 h	-h	Nominal	+h	+2h
Density [kg/m ³]	7398	7634	7870	8106	8342
Modulus [GPa]	197	204	210	216	223
Thickness [mm]	23.5	24.3	25.0	25.8	26.5

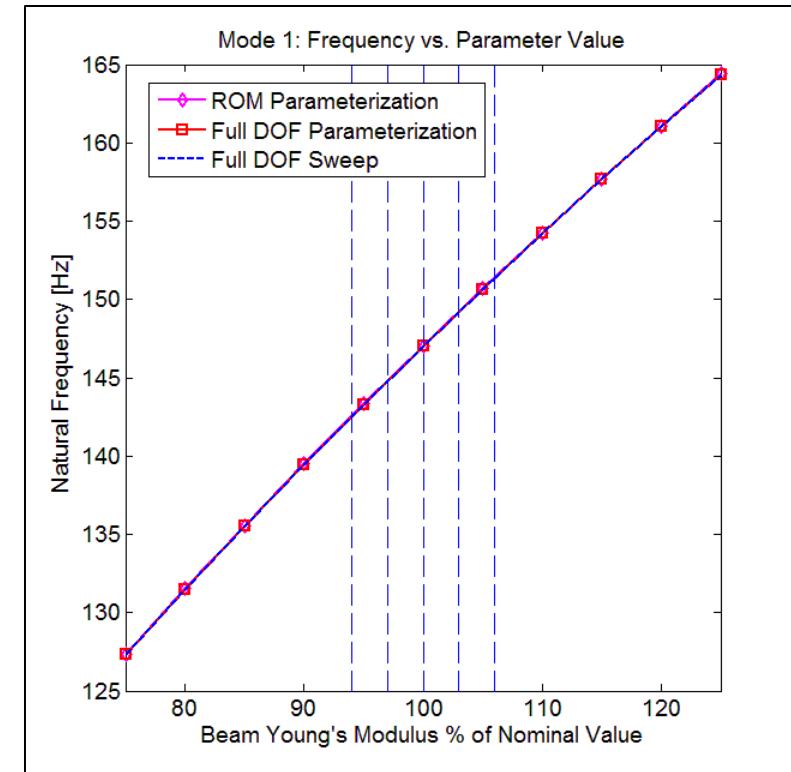


Parameter Effects on Modes

Parameterizing the Modulus:



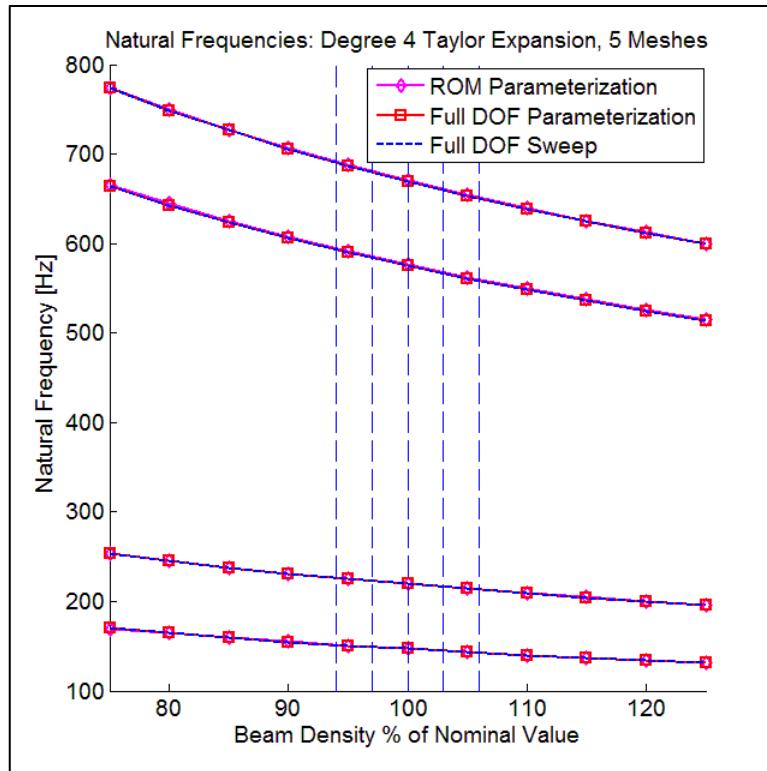
Four Modes



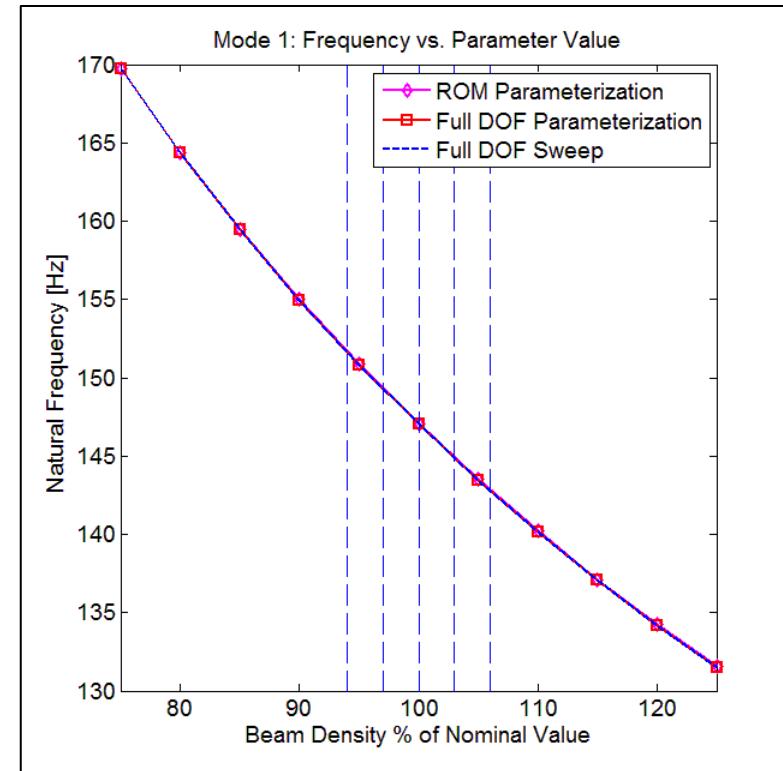
First Mode Only

Parameter Effects on Modes

Parameterizing the Density:



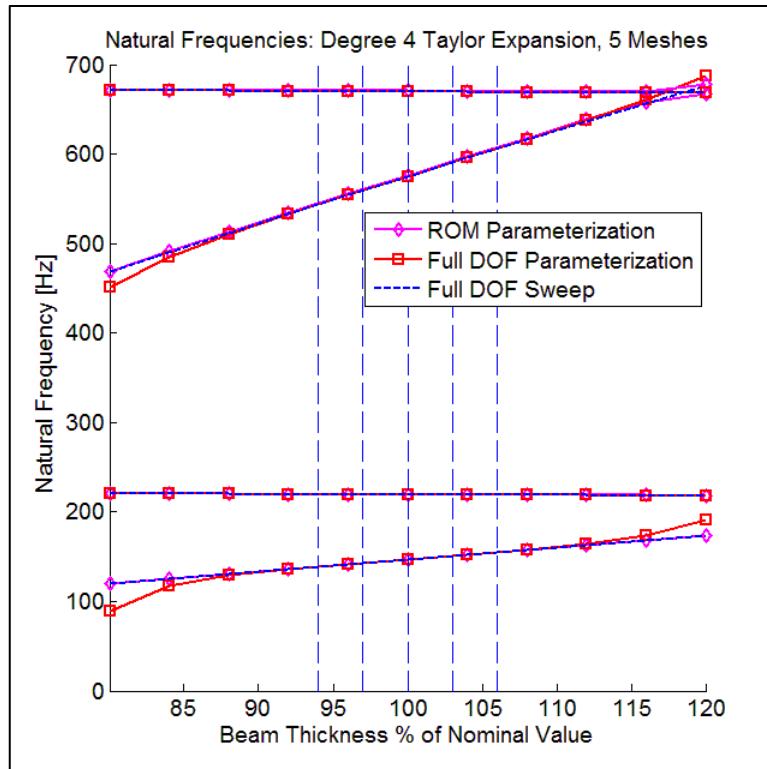
Four Modes



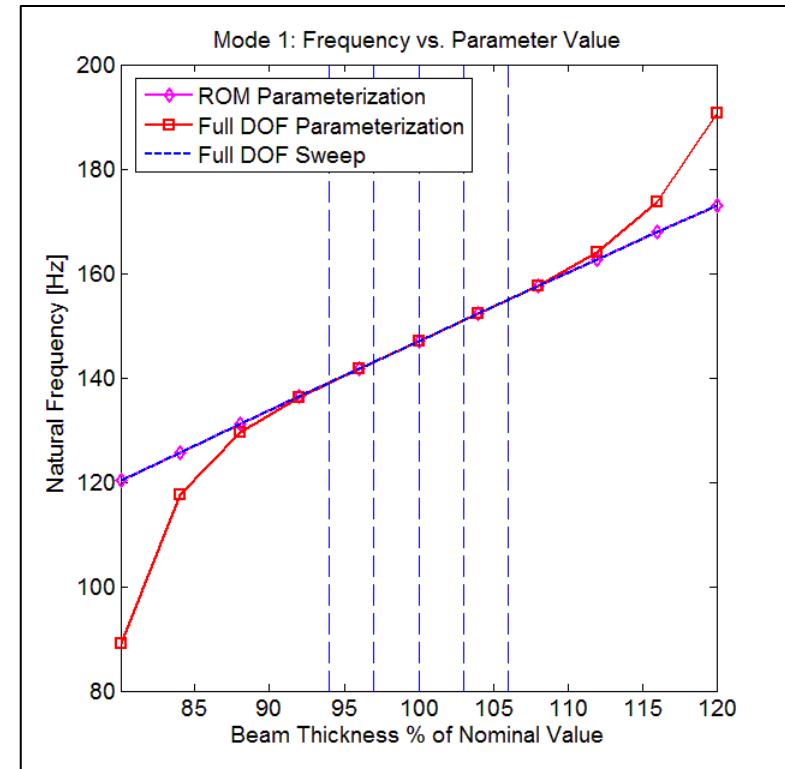
First Mode Only

Parameter Effects on Modes

Parameterizing the Thickness:



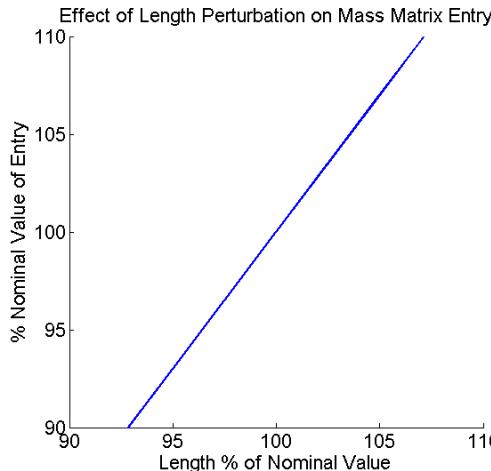
Four Modes



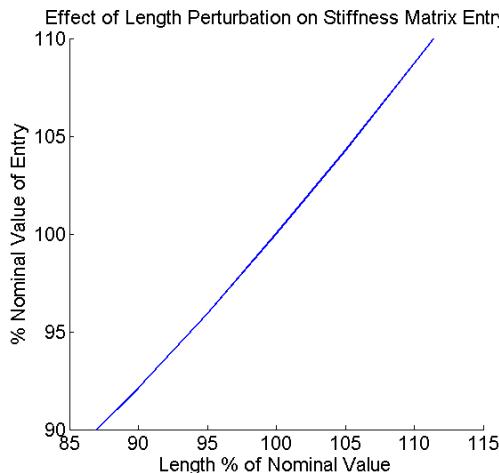
First Mode Only

Effect on Mass, Stiffness Matrices

Full DOF Parameterization

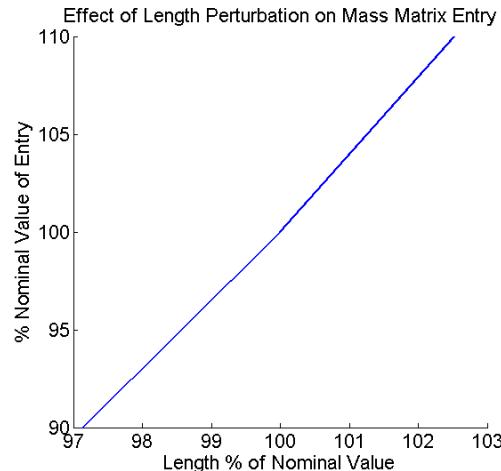
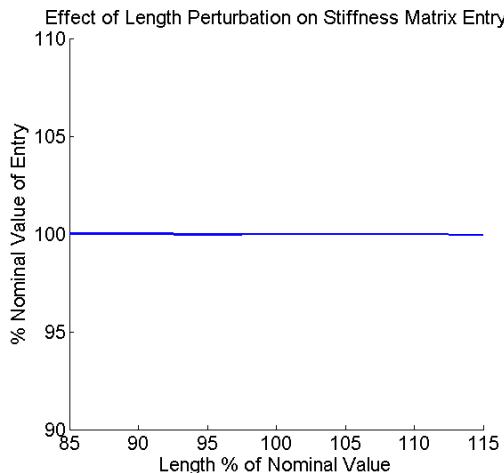


Mass
Matrix



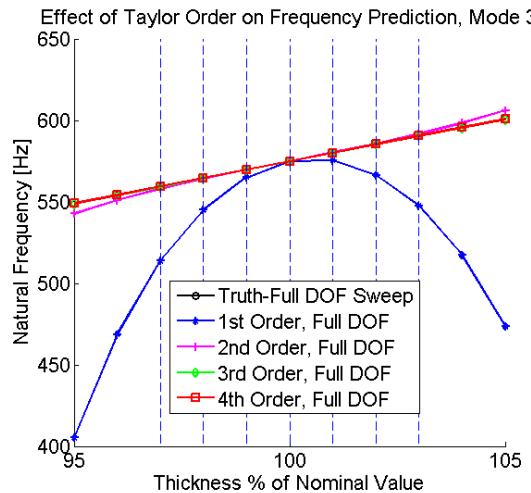
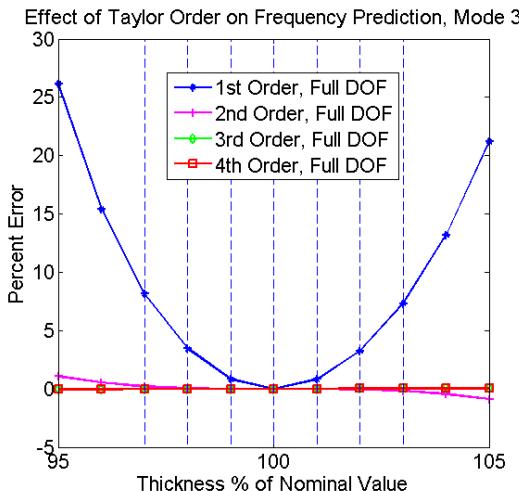
Stiffness
Matrix

CBR Parameterization

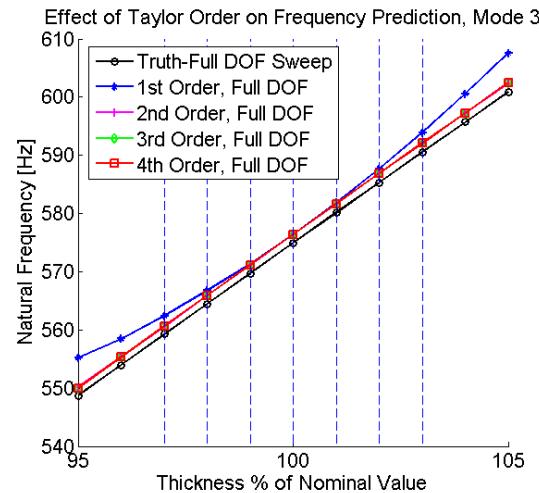
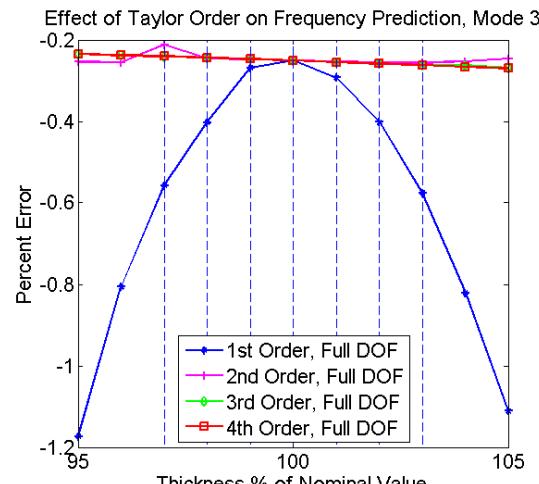


Effect of: Order of Taylor Series

Full DOF Parameterization

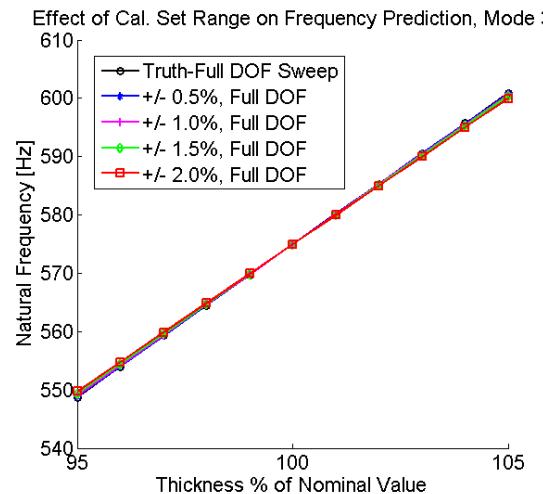
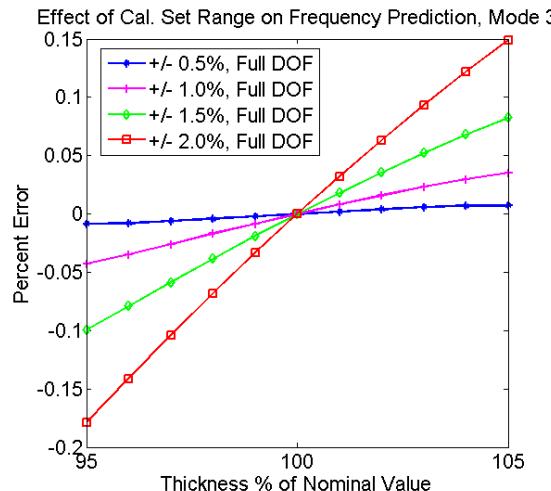


CBR Reduced DOF Parameterization

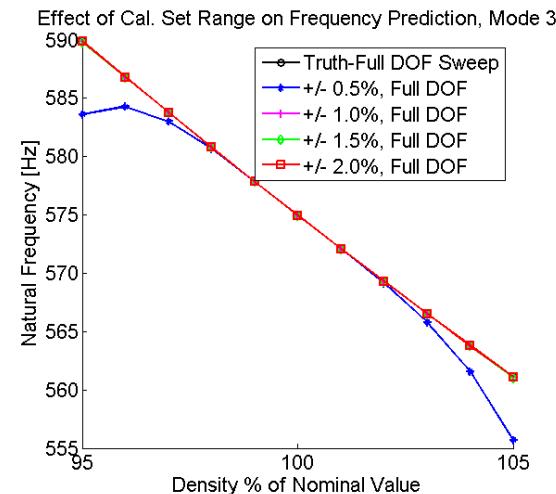
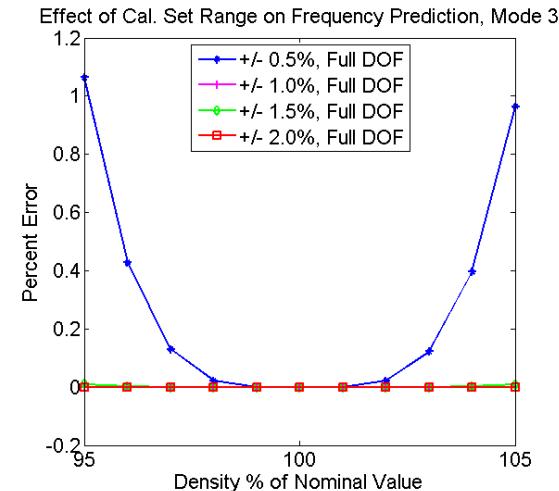


Effect of: Calibration Set Range

Changing Thickness

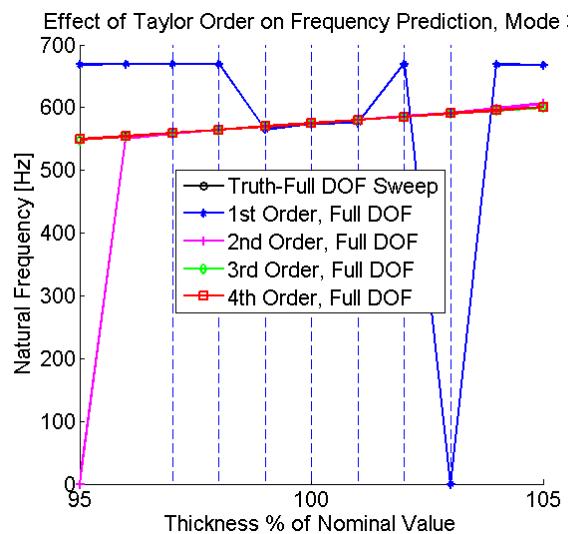


Changing Density

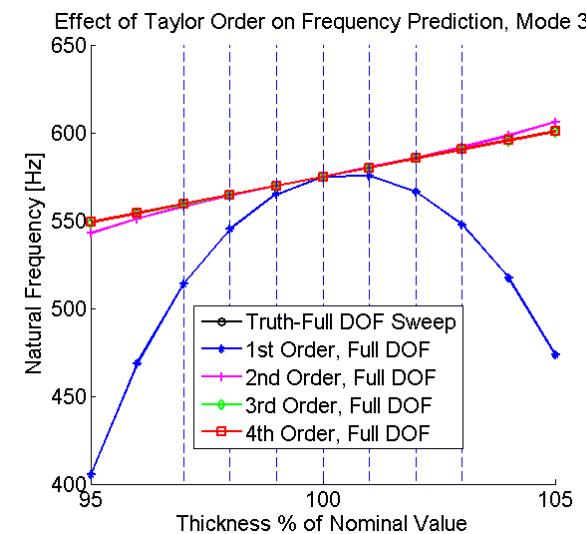


Practical Considerations: Mode Order

- With changes to the system matrices, mode order can change relative to the Nominal model
- To compare mode-by-mode to Nominal model, much compare like modes
- Use a MAC to find which modes are similar, THEN compare frequencies



Without MAC Filter

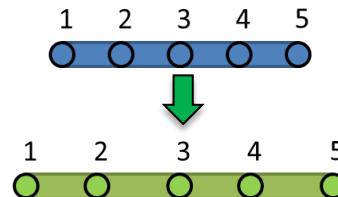
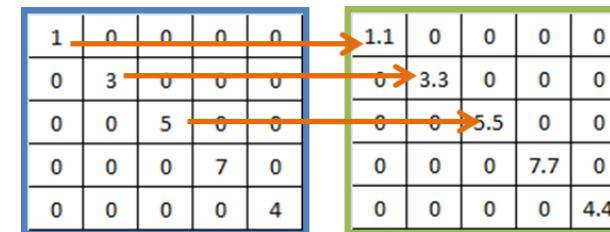


With MAC Filter

Practical Considerations: Node Order

- To compute derivatives, each M, K matrix in Cal. Set must be same size
- Nodes must stay in same order
 - Otherwise, computing derivatives with effective terms:
 - $M_{2,2}^0, M_{5,5}^{+1}, M_{3,3}^{-1}$

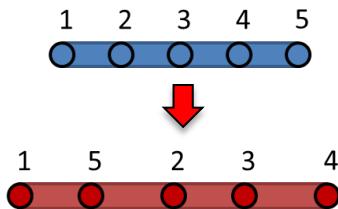
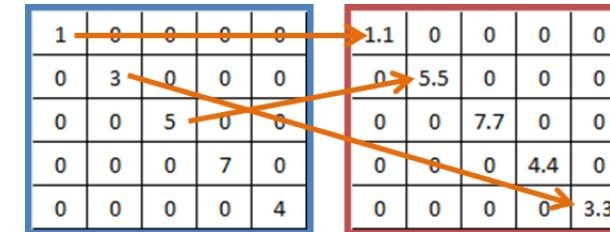
Consistent
Numbering:



1	0	0	0	0	0
0	3	0	0	0	0
0	0	5	0	0	0
0	0	0	7	0	0
0	0	0	0	4	0

1.1	0	0	0	0	0
0	3.3	0	0	0	0
0	0	5.5	0	0	0
0	0	0	7.7	0	0
0	0	0	0	4.4	0

Inconsistent
Numbering:



1	0	0	0	0	0
0	3	0	0	0	0
0	0	5	0	0	0
0	0	0	7	0	0
0	0	0	0	4	0

1.1	0	0	0	0	0
0	5.5	0	0	0	0
0	0	7.7	0	0	0
0	0	0	4.4	0	0
0	0	0	0	3.3	0

Cost Savings – Workflow Review

- “Normal” Method:
 - Make a mesh & run simulation at each perturbed point & parameter
- Parameterized Full-DOF Method:
 - Make 7 meshes & run 7 simulations
 - Approximate M , K at any other points
 - Compute eigen solution using these M , K
- Parameterized Reduced-Order Model Method:
 - Make 7 meshes & run 7 CBR solutions, making the reduced M , K
 - Approximate the reduced M , K at any other points
 - Compute eigen solution with reduced M , K
- Cost is even throughout with the “Normal” method
- Cost is all up front with the Parameterized methods

Cost Savings – Simple Example

- Say we want to explore 5 different variables, 200 points each
- 10,000 runs total
- Want to know effect on modes for each of these cases
- *ignoring meshing time*

Method	Solution Time [s]				
	1 Value	5 Values	100 Values	1000 Values	10000 Values
Normal, Full Sweep	2.2	11.0	220.0	2200.0	22000.0
ROM Parameterization	11.0	11.2	14.3	44.3	344.1

Conclusions

- Stochastic modeling of real systems is prohibitively expensive
 - Man hours: meshing, model setup
 - Computer hours: solving full DOF problems
- Methods here reduce these costs:
 - Only need enough meshes to compute FD derivative to desired order
 - By making approximation on CBR matrices, solution cost reduced
- Demonstration on non-trivial model is promising:
 - Reasonable agreement with Truth curve – frequency vs. parameter
 - The CBR parameterization looks more stable than full DOF
 - Implemented via post-processing in MATLAB
- More study required:
 - Effect of Calibration Set range

Questions?

Thanks again to my collaborators:

- M.R. Brake
- S.D. Topping,
- N.M. McPeek-Bechtold
- J.A. Fike,
- R.V. Field
- R. Dingreville

BACKUP SLIDES

Craig-Bampton Reduction