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Motivation 

 A need to explore the effects of parameter uncertainty in FE 
models – this can constitute a large parameter space 

 Exploring this large parameter space is very costly, both in 
terms of man hours and computation time 

 These costs makes studying the uncertainty difficult 

 If the number of meshes and/or the number of runs can be 
reduced, these uncertainty studies are attainable 

Our Method: 

 Rather than mesh and run at each of many parameter values, 
approximate the system matrices using Taylor series 

 To reduce computational cost, use Craig-Bampton reduced-
order representations of these systems and approximate the 
CB matrices 
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Example Sensitivity Study 

 Need predictions to that account for uncertainty 

 Want to explore the effect of these uncertain variables on 
the modes of the system 
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 Due to: 
 Manufacturing variability 

 Geometry 

 Assembly 

 Machining, welding 

 Insufficient property data 

 Uncertainty in many variables: 
 Plate thickness 

 Material density 

 Material modulus 

 

 



• Approximate the CBR  
System Matrices 

• Saves meshing time 
• Saves solution time 

How this Works: 

Compute 
Eigen Solution 

Three Parameterization Methods: 

Full DOF 
Parameterization 

• Approximate the Full 
DOF System Matrices 

• Saves meshing time 
• No change in solution 

time 

Reduced-Order Model 
Parameterization 

Eigen Value & Vector 
Parameterization 

• Approximate the 
eigen values and 
vectors based on 
nominal model 

• Saves meshing time 
• Saves solution time 

Build Nominal 
Model 

Compute 
Derivatives of 

M, K 

Use Taylor 
Series to 

Approximate 
Perturbed 

States 
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Detailed Process: 

 Make mesh 

 Make input deck 

 Run Eigen Solve 
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Full DOF 
Parameterization 

Reduced-Order Model 
Parameterization 

Normal, Sweep 
Method 

*Loop N Times 

 Make 5 meshes 

 Make 5 input decks 

 Build 5 M, K 

 Compute Derivatives 

 Approximate M, K 

 Run Eigen Solve 

 *Loop N Times 

 Make 5 meshes 

 Make 5 input decks 

 Compute 5 CBR 
system M, K 

 Compute Derivatives 

 Approximate 
reduced M, K 

 Run reduced Eigen 
Solve 

 *Loop N Times 



Review of Taylor Series 

 Series expansion function about a point 

 Here, the “point” is the value of an entry in the Mass or 
Stiffness matrix for the Nominal model 

 𝑓 𝑥 = 𝑓 𝑎 + 𝑓′ 𝑎 𝑥 − 𝑎 +
𝑓′′ 𝑎

2
𝑥 − 𝑎 2 + ⋯ +

𝑓 𝑛 𝑎

𝑛!
𝑥 − 𝑎 𝑛 

 𝑓(𝑥) = function of parameter 𝑥. 𝑀1,5 𝜌 , for example. 

 𝑎 = point 𝑓(𝑥) is expanded about 
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 Order of Taylor Series refers to the 
highest-order derivative 

 More accurate approximation to true 
function with higher order 



Review of Finite Differences 

 Method for approximating derivatives of functions 

 Here, the function is the entry of M,K as a function of parameter.  
 𝑀1,5 𝜌 , for example. 

 Used Central Finite Differences here 

 

Derivative: Accuracy: 
Number of 

Meshes: 

1st 

2 2 

4 4 

6 6 

2nd 

2 3 

4 5 

6 7 

3rd 

2 4 

4 6 

6 8 

4th 

2 5 

4 7 

6 9 
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 First Derivative: 𝑓′ 𝑥 ≈
𝑓 𝑥+ℎ −𝑓 𝑥−ℎ

2ℎ
 

 ℎ is the step size between nominal value and +/- values 

 Higher Derivatives: 𝑓′′ 𝑥 ≈
𝑓 𝑥+ℎ  − 2𝑓 𝑥  + 𝑓 𝑥−ℎ

ℎ2  

 Better approximations had with higher accuracy 
differences 
 First Derivative with 2nd order accuracy: 

 First Derivative with 4th order accuracy:  

 But, higher derivatives require more meshes 



Calibration Set: Points Required 

 Calibration Set = Points Required for FD Calculations 

 Central Finite Differences require several points above and 
below the Nominal point 

 Points (matrices) at the nominal, 𝑓(𝑎), and perturbed points, 
𝑓 𝑎 − 2ℎ , 𝑓 𝑎 − ℎ , 𝑓 𝑎 + ℎ , 𝑓 𝑎 + 2ℎ , etc. 

 Each point requires the construction of the Mass & Stiffness 
matrices 
 Unique mesh and/or input deck parameters  
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Parameter Value 



Parameter 

𝑀
3

,3
En

tr
y 

Looking at Matrix Derivatives 
 How does a Finite Difference work on a Matrix? 

 Simply: 

 Entry-by-Entry → 𝑀3,3 Entry at Nominal & Perturbed states 

 Calibration Set: 𝑀3,3(−2ℎ)
 , 𝑀3,3(−ℎ)

 , 𝑀3,3(𝑛𝑜𝑚.)
 , 𝑀3,3(+ℎ)

 , 𝑀3,3(+2ℎ)
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Nominal +ℎ Point −ℎ Point 



Entries in M, K From Taylor Series 

 Each Entry in System Matrices is Approximated 

 𝑀3,3(1.13𝑥𝑛𝑜𝑚) = 𝑀3,3 𝑥𝑛𝑜𝑚 + 𝑀3,3
′ 𝑥𝑛𝑜𝑚 ∆𝑥 +

𝑀3,3
′′ 𝑥𝑛𝑜𝑚

2
∆𝑥

2 + ⋯ 

 ∆𝑥= 0.13𝑥𝑛𝑜𝑚 

 𝐾3,3(1.13𝑥𝑛𝑜𝑚) = 𝐾3,3 𝑥𝑛𝑜𝑚 + 𝐾3,3
′ 𝑥𝑛𝑜𝑚 ∆𝑥 +

𝐾3,3
′′ 𝑥𝑛𝑜𝑚

2
∆𝑥

2 + ⋯ 

 Note: since we’re approximating each entry, resulting system 
matrices may be physically un-realizable 

 

 Craig-Bampton Reduced Systems: 
 Components are reduced, resulting in reduced 𝑀CBR, 𝐾CBR matrices 

 These reduced 𝑀CBR, 𝐾CBR matrices are then approximated 
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Parameterized Beam Model 

 2 component system 

 Components connected with springs representing bolts 

 Each component can be reduced to a Craig-Bampton 
superelement 

 Non-trivial size: 6192 nodes, 18576 DOF 

 Parameters Explored: 
 Modulus, Density, Thickness 
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Creating the Calibration Set 

 For each Parameter: 
 5 runs 

 5 meshes & 5 input decks 

 Here, used +/- 6% of nominal value for Calibration Set 

 Parameter range explored to +/- 20% 
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Parameter -2 h -h Nominal +h +2h 

Density [kg/m3] 7398 7634 7870 8106 8342 

Modulus [GPa] 197 204 210 216 223 

Thickness [mm] 23.5 24.3 25.0 25.8 26.5 



Parameter Effects on Modes 
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Parameterizing the Modulus: 

Four Modes First Mode Only 



Parameter Effects on Modes 
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Parameterizing the Density: 

Four Modes First Mode Only 



Parameter Effects on Modes 
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Parameterizing the Thickness: 

Four Modes First Mode Only 



Effect on Mass, Stiffness Matrices 
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CBR Parameterization Full DOF Parameterization 

Mass 

Matrix 

Stiffness 

Matrix 



Effect of: Order of Taylor Series 
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Full DOF Parameterization CBR Reduced DOF Parameterization 



Effect of: Calibration Set Range 
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Changing Thickness Changing Density 



Practical Considerations: Mode Order 
 With changes to the system matrices, mode order can change 

relative to the Nominal model 

 To compare mode-by-mode to Nominal model, much compare 
like modes 

 Use a MAC to find which modes are similar, THEN compare 
frequencies 
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Without MAC Filter With MAC Filter 



Practical Considerations: Node Order 
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 To compute derivatives, each M, K matrix in Cal. Set must be 
same size 

 Nodes must stay in same order 
 Otherwise, computing derivatives with effective terms: 

 𝑀2,2
0  , 𝑀5,5

+1 , 𝑀3,3
−1  

Consistent 
Numbering: 

Inconsistent 
Numbering: 



Cost Savings – Workflow Review 

 “Normal” Method: 
 Make a mesh & run simulation at each perturbed point & parameter 

 Parameterized Full-DOF Method: 
 Make 7 meshes & run 7 simulations 

 Approximate M, K at any other points  

 Compute eigen solution using these M, K 

 Parameterized Reduced-Order Model Method: 
 Make 7 meshes & run 7 CBR solutions, making the reduced M, K 

 Approximate the reduced M, K at any other points 

 Compute eigen solution with reduced M, K 

 Cost is even throughout with the “Normal” method 

 Cost is all up front with the Parameterized methods 
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Cost Savings – Simple Example 

 Say we want to explore 5 different variables, 200 points each 

 10,000 runs total 

 Want to know effect on modes for each of these cases 

 *ignoring meshing time* 
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Method 1 Value 5 Values 100 Values 1000 Values 10000 Values

Normal, Full Sweep 2.2 11.0 220.0 2200.0 22000.0

ROM Parameterization 11.0 11.2 14.3 44.3 344.1

Solution Time [s]



Conclusions 

 Stochastic modeling of real systems is prohibitively expensive 
 Man hours: meshing, model setup 

 Computer hours: solving full DOF problems 

 Methods here reduce these costs: 
 Only need enough meshes to compute FD derivative to desired order 

 By making approximation on CBR matrices, solution cost reduced 

 Demonstration on non-trivial model is promising: 
 Reasonable agreement with Truth curve – frequency vs. parameter 

 The CBR parameterization looks more stable than full DOF 

 Implemented via post-processing in MATLAB 

 More study required: 
 Effect of Calibration Set range 
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Questions? 

Thanks again to my collaborators: 
 M.R. Brake 

 S.D. Topping,  

 N.M. McPeek-Bechtold 

  J.A. Fike,  

 R.V. Field 

 R. Dingreville 
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BACKUP SLIDES 
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Craig-Bampton Reduction 
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