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Motivation ) dei

= A need to explore the effects of parameter uncertainty in FE
models — this can constitute a large parameter space

= Exploring this large parameter space is very costly, both in
terms of man hours and computation time

= These costs makes studying the uncertainty difficult

= |f the number of meshes and/or the number of runs can be
reduced, these uncertainty studies are attainable

Our Method:

= Rather than mesh and run at each of many parameter values,
approximate the system matrices using Taylor series

= To reduce computational cost, use Craig-Bampton reduced-
order representations of these systems and approximate the
CB matrices
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Example Sensitivity Study ) .

= Need predictions to that account for uncertainty

= Want to explore the effect of these uncertain variables on
the modes of the system

" Due to: I |

= Manufacturing variability

= Geometry E M\/ E
= Assembly 3 3 SN
* Machining, welding Thickness Bolt stiffness
= |nsufficient property data
= Uncertainty in many variables: § E/\”’
= Plate thickness 3 g
= Material density Length  Tied Contact Area

= Material modulus




How this Works:

Build Nominal

Use Taylor
Series to

Approximate
Perturbed
States
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Compute
s Eigen Solution

Three Parameterization Methods:

Full DOF
Parameterization

Reduced-Order Model
Parameterization

Eigen Value & Vector
Parameterization

* Approximate the Full
DOF System Matrices

* Saves meshing time

* No change in solution
time

Approximate the CBR
System Matrices
Saves meshing time
Saves solution time

Approximate the
eigen values and
vectors based on
nominal model
Saves meshing time
Saves solution time




Detailed Process: ) i

Normal, Sweep Full DOF Reduced-Order Model
Method Parameterization Parameterization
= Make mesh = Make 5 meshes = Make 5 meshes
= Makeinputdeck | = Make 5 input decks |® Make 5 input decks
= Run Eigen Solve = Build5 M, K = Compute 5 CBR

= Compute Derivatives| System M, K
] Approximate M’ K " Compute Derivatives

= Run Eigen Solve " Approximate
reduced M, K

= Run reduced Eigen
Solve

*Loop N Times

*Loop N Times

*Loop N Times
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Review of Taylor Series ) .

= Series expansion function about a point

= Here, the “point” is the value of an entry in the Mass or
Stiffness matrix for the Nominal model

" O =@+ @k — @) + D (= )2 4 4 LD gym

2 n!

= f(x) = function of parameter x. M; 5(p), for example.

= g =point f(x) is expanded about

===QOriginal

= Order of Taylor Series refers to the
highest-order derivative

= More accurate approximation to true
function with higher order

4
3
2
1
> 0r “~
-1
-2
-3
:




Review of Finite Differences ) e,

= Method for approximating derivatives of functions

= Here, the function is the entry of M,K as a function of parameter.
= M, 5(p), for example.
= Used Central Finite Differences here

= First Derivative: f'(x) = ! (x+h)2_hf (x—h)

= histhe step size between nominal value and +/- values

- Number of

= Higher Derivatives: f"(x) ~ L (x+h)_2’;(2x)+f (x=h) - Azy e
= Better approximations had with higher accuracy N g g
differences 2nd : 3
= First Derivative with 2"d order accuracy: L i g
= First Derivative with 4t order accuracy: 2 i
= But, higher derivatives require more meshes 4th : ;
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Calibration Set: Points Required 2.

= Calibration Set = Points Required for FD Calculations

= Central Finite Differences require several points above and
below the Nominal point

= Points (matrices) at the nominal, f (a), and perturbed points,
fla—2h), fa—h), fla+h), f(a+2h), etc.
= Each point requires the construction of the Mass & Stiffness
matrices

= Unique mesh and/or input deck parameters
A

Parameter Value




Looking at Matrix Derivatives ) .
= How does a Finite Difference work on a Matrix?

= Simply:
= Entry-by-Entry - M3 3 Entry at Nominal & Perturbed states
= Calibration Set: M3'3(—2h) , M3'3(—h) , M3’3(nom.) , M3r3(+h) , M3»3(+2h)

—h Point Nominal +h Point
a9 0 1] 1] 1] 1 1] 1] 1] 1] 1.1 0 1] 1] 1]
0 1.8 0 0 1] 0 2 0 0 1] 0 2.2 0 0 0
0 0 1.8 0 0 0 0 2 0 0 1] ] 2.2 0 1]
1] 0 0 1.8 0 1] 0 0 2 0 0 ] 1] 2.2 0
0 1] 1] o |09 0 0 1] 0 1 0 ] 0 1] 1.1

Parameter




Entries in M, K From Taylor Series [

= Each Entry in System Matrices is Approximated

14 M ’,( nom)
- M3,3(1-13xn0m) = M3,3 (xnom) + M3,3 (xnom)(Ax) 4 =22 - (Ax)z + o

2
= A= 0.13x,0m

I/ K ,,( nom)
" K3,3 (1.13x0m) = K3,3 (xnom) + K3,3 (xnom) (Ax) + =2 2x (Ax)z + o

= Note: since we’re approximating each entry, resulting system
matrices may be physically un-realizable

= Craig-Bampton Reduced Systems:
= Components are reduced, resulting in reduced Mcgr, Kcgr matrices
" These reduced M:gr, Kcgr matrices are then approximated




Parameterized Beam Model ) e,

42 cm Long

|‘ 30cm
Beam 2 e 00 Beam 1 E.S cm Wide

36cm 1 |3 cm, typ.
B

[ I E.S cm Thick

3-8.5mm Holes

= 2 component system
= Components connected with springs representing bolts

= Each component can be reduced to a Craig-Bampton
superelement

= Non-trivial size: 6192 nodes, 18576 DOF
= Parameters Explored:

= Modulus, Density, Thickness




Creating the Calibration Set ) .

= For each Parameter:

= 5runs
= 5 meshes & 5 input decks

= Here, used +/- 6% of nominal value for Calibration Set
= Parameter range explored to +/- 20%

Parameter -2h -h Nominal +h +2h
Density [kg/m3]| 7398 7634 7870 8106 8342
Modulus [GPa] | 197 204 210 216 223
Thickness [mm]| 23.5 24.3 25.0 25.8 26.5

Full
Range




Parameter Effects on Modes

Parameterizing the Modulus:

800

Natural Frequencies: Degree 4 Taylor Expansion, 5 Meshes

|| === Full DOF Sweep
T

—&— ROM Parameterization
—&— Full DOF Parameterization

400+

Natural Frequency [Hz]

300+
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165

160

155

150

145

140

Natural Frequency [Hz]

135

130

|
80 90 100

Beam Young's Modulus % of Nominal Value

120

Four Modes

Mode 1: Frequency vs. Parameter Value

—&6— ROM Parameterization
—&— Full DOF Parameterization

90 100 110 120
Beam Young's Modulus % of Nominal Value

First Mode Only




Parameter Effects on Modes

Parameterizing the Density:
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Laboratories

Natural Frequencies: Degree 4 Taylor Expansion, 5 Meshes Mode 1: Frequency vs. Parameter Value

800

17
| —6— ROM Parameterization
—&— Full DOF Parameterization

L A Full DOF Sweep

—&6— ROM Parameterization
—&— Full DOF Parameterization

----- Full DOF Sweep
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Beam Density % of Nominal Value Beam Density % of Nominal Value
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Parameter Effects on Modes L

Parameterizing the Thickness:

Natural Frequency [Hz]

Natural Frequencies: Degree 4 Taylor Expansion, 5 Meshes

7005—3 e o .
[ |
[
600+ | |
500}t | —&— ROM Parameterization
) | —&— Full DOF Parameterization
o I E— Full DOF Sweep
I I I
400 0
0
0
300 0
0
- . |
B— B—a & 5— £
200} ] + bl o
Fr 1
) |
1004 [ N
0
0
0 AR I N B
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Beam Thickness % of Nominal Value
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Four Modes

Natural Frequency [Hz]

200

Mode 1: Frequency vs. Parameter Value

180+

160

140

1204

100

—6é— ROM Parameterization
—&— Full DOF Parameterization
----- Full DOF Sweep

90 g5 100 105 110 115 120
Beam Thickness % of Nominal Value

First Mode Only




Effect on Mass, Stiffness Matrices (@&

Full DOF Parameterization

CBR Parameterization

Mass
Matrix

Stiffness
Matrix

Effect of Length Perturbation on Mass Matrix Entry
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Effect of: Order of Taylor Series

CBR Reduced DOF Parameterization

Full DOF Parameterization

h
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Natural Frequency [Hz]

Effect of Taylor Order on Frequency Prediction, Mode 3
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Effect of: Calibration Set Range ) .

Changing Thickness Changing Density

Effect of Cal. Set Range on Frequency Prediction, Mode 3 Effect of Cal. Set Range on Frequency Prediction, Mode 3
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Practical Considerations: Mode Order @&x.

= With changes to the system matrices, mode order can change
relative to the Nominal model

= To compare mode-by-mode to Nominal model, much compare
like modes

= Use a MAC to find which modes are similar, THEN compare

frequencies
Effect of Taylor Order on Frequency Prediction, Mode 3 Effect of Taylor Order on Frequency Prediction, Mode 3
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Practical Considerations: Node Order @®x.

= To compute derivatives, each M, K matrix in Cal. Set must be
same size
= Nodes must stay in same order

= QOtherwise, computing derivatives with effective terms:
. Mg,z »Mgr,é :M3_,31,

1 2 3 4 5 1dolololo 11lololo|o
. O O O 00 P P - — — oH33] ol ol o
Consistent 3 P e s i oo bos o [ o
Numbering: 1 2 3 4 5 oloflo|7 |0 olofof|77]0
O O O O 0O olololo]|a o|lo|o|o]|aa
1 2 3 4 5 1 4—otototodBiilo]o|o] o
. OO O 00 0| 34 ol o ayss|o| oo
Inconsistent

‘ 0 0 5 0 0 7.7 0 0

Numbering: o
umpering: 1 s 5 3 4 ojlolo]|7]|o0 0.0 |24 0
@ ¢ © o o 0jo0jO0]o0]4 000 3.3




Cost Savings — Workflow Review @

= “Normal” Method:
= Make a mesh & run simulation at each perturbed point & parameter

= Parameterized Full-DOF Method:
= Make 7 meshes & run 7 simulations
= Approximate M, K at any other points
= Compute eigen solution using these M, K

= Parameterized Reduced-Order Model Method:

= Make 7 meshes & run 7 CBR solutions, making the reduced M, K
= Approximate the reduced M, K at any other points
= Compute eigen solution with reduced M, K

= Costis even throughout with the “Normal” method
= Costis all up front with the Parameterized methods




Cost Savings — Simple Example
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= Say we want to explore 5 different variables, 200 points each
= 10,000 runs total
= Want to know effect on modes for each of these cases

= *jgnoring meshing time*

Solution Time [s]

Method 1 Value 5 Values 100 Values | 1000 Values | 10000 Values
Normal, Full Sweep 2.2 11.0 220.0 2200.0 22000.0
ROM Parameterization 11.0 11.2 14.3 44 3 344.1

Laboratories



Conclusions ) i

= Stochastic modeling of real systems is prohibitively expensive
= Man hours: meshing, model setup
= Computer hours: solving full DOF problems
= Methods here reduce these costs:
= Only need enough meshes to compute FD derivative to desired order
= By making approximation on CBR matrices, solution cost reduced
= Demonstration on non-trivial model is promising:
= Reasonable agreement with Truth curve — frequency vs. parameter
= The CBR parameterization looks more stable than full DOF
= |Implemented via post-processing in MATLAB
= More study required:
= Effect of Calibration Set range
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Questions?

Thanks again to my collaborators:
= M.R. Brake

S.D. Topping,

N.M. McPeek-Bechtold

J.A. Fike,

R.V. Field

= R. Dingreville
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Craig-Bampton Reduction ) .




