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Coherent Neutrino-Nucleus

Scattering (CNNS)
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Product is a recoiling Ge nucleus

Condition for coherence: transfer
momentum q << 1/(Ge nucleus radius)

~ tens of MeV

Z boson
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Why Germanium?

E:(1—cosb)

Recoil energy £ =
gy L, VA

Average recoil energy (E )=716 eV

(E,/ MeV)2

A

Lower A (and N) is better”

If the maximum recoil energy is below threshold, we
won’t see any recoils at all. The optimized target

lonization table

, where M = nucleon mass'

isotope depends on detector performance.

With Germanium, ~3eV / electron, we drift 100’s of

electrons.

Challenge is to surpass electronic readout noise.

1 Drukier & Stodolsky, PRD 30(11), 1984.

#ofe | Ar (%) | Xe (%)
0 71.0 |98.9

1 15.1 1.1

2 6.7 small
3 3.2

4 1.7

5 0.9
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Antineutrino signal vs. HPGe

threshold
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FWHM=2.350 The noise pedestal recedes faster
Threshold~5 o than the signal with decreasing noise
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Point-Contact HPGe detector

Decrease capacitance to
lower noise threshold

and improve resolution
p+
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BEGe2: a P-type ‘Point’ Contact

Modified Broad Energy Ge

detector by Canberra INC
Large mass 0.82kg
Point contact ~5mm diameter,

Low capacitance ~1.5pF -

147eV FWHM is the lowest value so far
for a large mass Germanium
detector, but still too high

Negligible contribution from other
circuits (preamp and High Voltage)
according to SPICE analysis

Most of noise from detector element
and Front-End (FE) electronics
(HPGe crystal + JFET assembly)

FWHMA2, keVA2
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Sources of electronic noise in the

Front-End
S BEGe2|
FWHM?® ==+ F|+ Pt Fats :
T : "~ 147eV FWH
T = shaping time ~, " <
Usually, the smaller the input
capacitance is at the first amplification ’

stage of the signal, the lower the
electronic noise at the output.

9 2 3 4 5 6 7 8 é
1 10
Shaping Time, us

P ~ liakage: depends on crystal
fabrication and operating
F~ Cdetector + Cfeedback + CJFET + Cstray temperatu re

S~ Cdetector + Cfeedback + CJFET + Cstray

Coetector < A(contact diamq , £ is the main noise component in BEGe2

= In JFETSs, F noise is negligible

m F can also originate from lossy dielectric in
contact with JFET input
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BEGe2 with LBNL Front-End

 LBNL Front-End proven performance with 20g mini PPC: 85eV FWHM
* Achieved as low as 55eV FWHM without detector

 JFET on thin silica substrate to reduce stray capacitance

TTTT] T T T T
10/1/10

SNL BEGe
LMFE III, MX-11

Fabricated @ LBNL

N:g £ 150 eV FWHM_>
= All noise components are identical in two z o evR
very different FE assemblies (Canberra FE O w0= 123372745 . E
with 4-terminal Mx20 JFET vs. LBNL FE with V2= 0uta s s
3-terminal Mx11 JFET) T
= Therefore, noise originates from the L
detector element rrEme (1)
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Testing in LBNL Front-End

. . 10°E T
LBNL mini-PPC-20g & o
| i I Va2 26V,1d = 8mA | = FWHM = 85eV, threshold ~ 185eV
i 5 = Low-Mass Front-End: JFET in thin
& ] silica substrate to reduce stray
O by . . .
3 s ov P o capacitance, radio purity
CE e = Achieved as low as 55eV FWHM
T without detector.
P I . A = Adapted to test larger BEGe
= > . b detector to investigate F noise
Fabricated by Paul Luke @ LBNL Results by Paul Luke @ LBNL
Canberra BEGe 800g
: 10°F T
: Results w/ BEGe: 150eV FWHM,
same as in Canberra Front-End It
10° | )
‘:g ¢ 150 eV FWH —
g LL 121 eV FwHM ’
102 | =
8 w_0=1233.7+745 ]
S w_1=6.3372%4
4 W_2=29418+456
1 ul |

Fabricated @ LBNL
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Testing in LBNL Front-End

Capacitor ~ 2.5pF
4 BEGe ~ 1.5pF _ P
A BT B = Replacing detector £ o :
i ST : with a larger capacitor I N
G ] suggest that the flat -
3 = - = sE 211 eV FWHM —» g
I noise is capacitance- o T
E s 150eVFWHM-AT> induced Ng o
9 L 1216V FWHM <uzj Al
102 i h ] 1028:_ E
g Ok = Next: reduce detector oL w_0 = 1507.7 £ 151 s ) ]
Jf w2=20418+456 ] - . 4w 1=11.935+647
: capacitance with a [T
N smaller point contact! I R
100‘1 2 4 6 81 2 4 6 810 2 4 6 8100 0.1 2 4 6 81 2 4 6 810 2 4 6 8100
FWHM time (us) FWHM time (ps)

LBNL currently fabricating 1kg-detector: different
surface and contact preparation, 1.5 mm pc
diameter

First iteration: C~0.9pF, l;cacage~1TMA

Adapting LMFE cryostat to different aspect ratio crystal
Modifying readout to 4-terminal JFET (Mx20)
Problems with incomplete charge collection

Can we achieve (~50-80eV FWHM) with a
| Fabricated @ LBNL | 1-kg large crystal?
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Background signals < 3keV

Cosmic secondary n and Scattering off Ge nucleus Ge-nucleus recoils

J-induced n
Cosmic secondary n and  Nuclei activation: "'Ge,
u-induced n 8Ga,%Zn _ 5
Cosmic primary p at sea  Nuclei activation: "3As, el EEel el el
68 from X-rays and Auger e-,
level Ge : )
internal to germanium
Thermal n "1Ge activation
Y Natural radioactivity from Forward-peaked
detector materials Compton scattering
Solar and Geo v Scattering off Ge nucleus Ge-nucleus recoils
WIMP ?

@ Sandia National Laboratories



Shielding background particles

The usual,
= Any existing overburden
= Tight muon veto

= Polyethylene neutron moderator and
borated thermal neutron absorber

But also,

= Ultra-low background Lead

= Anticoincidence Compton veto

= Radioclean shield and detector
materials

Lithium-drifted n+ contact covering Shielding for SONGS deployment
most Ge surface

= Shield during transportation

Courtesy Charles Greenberg
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Measured backgrounds from other

experiments: SONGS Tendon Gallery

SONGS2009: CANBERA BEGe, 440g, —macronox |
163eV_FWHM, at 30m.w.e. ———

= Background counts: ~10keV-'kg'd.

= Near-threshold counts: ~22keV-kg'd-.

= No evidence of significant increase in
neutron background at this overburden with SR L L.
. . 0 0.5 1 1.5 2 2.5

proper shielding.

energy (keV)

250 F

200F

150 F

counts / keV kg day

100 F

= Signal processing to reduced cosmogenic
background not applied because no raw
preamplifier trace were recorded, but x2-3
reduction expected (see next slide).
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Measured backgrounds from other

experiments: underground mine

CoGeNT2010

CoGeNT2010 data: in Soudan mine at 2,100m.w.e.
- CANBERA BEGe, 4409g, 163eV FWHM

« After 3 months underground, and
“microphonics” and “risetime” cuts

(=)
=

%

2

counts/0.05 KeV 18.5 kg days

« Background counts: ~2keV-'kg-'d-

* Near-threshold counts: ~8keV-'kg'd- L ’ﬂh—”ﬁ[L

[ —
(i 1S FEIEY)

ionization energy ( keVee)

+

s Confirmed that decays from cosmogenic activation internal to Ge

populate the region <3keV. (Use cosmogenic peaks for calibration.)

= Partial energy deposition events (from nuclei decays ) are a significant

near threshold but can be efficiently rejected by “risetime” cuts.

= Natural radioactivity from materials is estimated to be negligible
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Conclusions

m Electronic noise threshold is the main
barrier for CNNS observation with PPC
HPGe detectors

= Our tests indicate that the path to lower
noise is smaller capacitance: reducing
detector and stray capacitance

s LBNL-SNL working on development of 1-kg
detector with small point contact diameter
and optimized low-threshold FE

= “Measured” background (CoGeNT2010,
SONGS2009) allow possible observation of
CNNS (reactor ON/OFF) at ~210eV
electronic threshold
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