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Goal : Study electron interactions between 1 dimensional
systems coupled at the nanoscale
> Address the wires multiple 1D subbands regime
» Study one-dimensional electron-hole asymmetry
» Ultimately investigate Luttinger liquid theory

Tool : Coulomb Drag measurement
> Direct probe of electron-electron interactions

@w . Independent and vertically-coupled quantum wirey

Device fabrication
Start with double quantum well GaAs/AlGaAs heterostructure

with double stop-etch layer.
> 18 nm wide quantum wires.
> Density of 1.1 (1.4) x 10" cm2for the lower (upper)
layer and combined mobility of 4.0 x 105 cm2/V - s.
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a) Defining the mesa, and depositing and annealing

ohmic contacts.
b) Defining the upper gates, using a combination of

both photo and e-beam lithography,.

c) Performing an Epoxy-Bond-And-Stop-Etch (EBASE)
technique [1], which consists of gluing bare GaAS
on top of the device and flipping it, then etching the
original substrate until the lower 2DEG is ~ 150 nm
away from the surface.

Wires characterization

> The plunger gates are coupled to both wires \

L—, Sweeping a single gate affects both wires
» Non-ballistic wires are observed

L— G < 262/h x N; N = number of 1D subbands
> After subtracting series resistance, approximately even
spacing between steps is observed
> Consistent with non-ballistic 1D subbands [2]
> Similar (UPL = -0.23V) and different (UPL = -0.34V)
subband occupancy can be achieved.
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> A complete mapping of the wires conductance can be
performed as a function of UPL (upper plunger) and LPL
(lower plunger)
> The wire’s features are more apparent in the derivative

1D subbands appear as black and blue stripes
>1D subbands can be tracked over the whole gate voltage
range.
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d) Depositing an insulating Al,0, layer and defining
the lower gates, which are now on top of the device.
Device operation
E device layout pinch-off gate E gates activated
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Advantages of design :
» Independent ohmic contacts, with suitable bias on gates
Probe both wires independently
> Independent control of 1D subbands occupancy in each
wire == Fasyto study multiple and single 1D
subbands regimes
»Hard MBE-defined barrier between the wires
l—b = Fixed interwire separation
= Interwire separation in the 10’s nm range possible
= Regime where Coulomb drag dominates
= Stronger drag signal
= Stronger interwire many-body interactions

Current wire properties :
» 4.2 um long wires
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(Coulomb drag is a direct probe of electron-electron \
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Coulomb drag basics

interactions.

»Send a current |, in one wire

>Measure the resulting voltage drop Vg, in the other wire
L— No current flow allowed in the drag wire

»>Measured quantity is the transresistance
— V 4

>Theory predicts a positive drag between two one
dimensional wires carrying electrons
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Main results

3 regimes are observed in the Coulomb drag measurement

1- Positive drag : Peaks are observe as 1D subbands open
. in either wire (dotted gray lines)
L Previously observed by Debray ez a/. [3] and
predicted from electron-hole asymmetry [4].
2- Low-density negative Coulomb drag : occurs at highly
negative LPL values
« Previously observed by Yamamoto éz. a/. /2] in
I—b similar conditions but in the presence of a
magnetic field.
«Was attributed to Wigner crystallization
3 — High-density re-entrant negative Coulomb drag (yellow
circle)
« Never observed previously
I—p « Is inconsistent with Wigner crystallization
« Might be caused by a non-monotonic in the
wires transmission probability coupled with
electron-hole asymmetry or by a local hole-like
dispersion relation in the quantum wires band
structure.
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> Barrier of 15 nm between both wires
> Effective center-to-center interwire separation < 41 nm
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Drive wire conductance 1232/h)

The maximal amplitude of
the drag signal can reach up
to 35 % of the drive signal.

Coulomb drag tests
Several tests were performed to insure that the signal

observed was truly Coulomb drag.
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/ Conclusion
Summary :

» Fabricated the first vertically-coupled quantum wires
suitable for Coulomb drag measurements

> Measured Coulomb drag and observed both positive and
negative regimes

» Observed new re-entrant negative drag which is
inconsistent with Wigner crystallization and ill-understood at
the moment

Future directions : Study temperature dependence of
Coulomb drag

@] Yamamoto, M. éf a/, Science, 313, 204 (2006) /

> Understand origin of negative Coulomb drag
K>Study Luttinger liquid physics
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