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Ionomers
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thermoplastic elastomers

• low T: ionic aggregates behave like 
crosslinks

• material is elastic
• high strength

• high T: ionic aggregates break up
• material flows (is a liquid)

ion-selective membranes
typically in water

• water purification
• fuel cells



Possible Application: Batteries
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• organic solvents
• PEO + lithium salts + solvent

• need containment
• flammable!

• conductivity dominated by anions
• salt concentration at electrodes
• extra heating

• solvent free PEO + salt
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Issues with current electrolytes in Li-ion batteries:
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Issues with current electrolytes in Li-ion batteries:

ionomers as next generation electrolytes?

• safer: no solvent

• serve as electrolyte & separator

• less packaging

• improved electrochemical stability

• higher efficiency: single ion conductors



Ionomers: Polymers + Ions
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• electrostatic forces favor aggregates
• polymer entropy limits size

often form ionic aggregates
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do aggregates lead to low conductivity?



Current Ionomer Conductivities
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• conductivity too low

• needed for Li-ion batteries: ≥ 10-4 S/cm at room temp.

• Li salt + solvent:  10-2 S/cm

• gel polyelectrolytes: 1-3 10-3 S/cm

• ionomers: often  < 10-5 S/cm

• why?

• few mobile ions (ion pairs instead)

• often get ionic aggregates

Need for electrochemical apps:

• relation between molecular architecture & morphology

• effects of morphology on ion transport 

• understanding of ion transport mechanisms

Simulations can help!



Modeling (Simulating) Polymers
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Re

b

string model
• good for theory
• mesoscales

coarse-grained model
• used a lot in simulations
• intermediate length, time scales

atomistic model
• chemically specific
• limited in time, length scales



Precise Ionomers
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precise polymers:
• acid group every 9, 15, 21 carbons
• swap H for Zn2+, Li+, Na+, Cs+

• nomenclature: pxAA-y%M

Acyclic Diene Metathesis (ADMET)
Precise Copolymer



Morphology: Li-neutralized pAA
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coloring by cluster

p9AA-10%Li p9AA-43%Li p9AA-100%Li

p21AA-43%Li



Dynamics in Acid Copolymers
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• H’s move about 31 Å during simulation
• not yet diffusive

Lueth, C. A., Bolintineanu, D. S., Stevens, M. J. & Frischknecht, 
A. L. J Chem Phys 140, 054902 (2014).



Dynamics in Ionomers
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p9AA-43%Li

last 100 ns of 500 ns simulation
very slow!

conductivity by DRS

J. Runt, H. Choi, et al.



A Faster Ionomer
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Lin, K.-J. & Maranas, J. K. Macromolecules 45, 6230–6240 (2012).



Coarse-Grained Simulations
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Ions in the polymer backbone: 
“ionenes”

backbone beads 
per repeat unit - Na+

Ions pendant to the backbone:
“pendants”

Nbb = 3 

Nbb = 3, 5, 7, 9 (11)
800 polymers
100% neutralization
bulk dielectric constant = 4
counterion size = ½
Bjerrum length = 35.7

108 time steps

B 
e2

40rkT
 35.7

Rg  3.13.3



Ionomer MD Simulations
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+ Coulomb interactions

NVT ensemble: Langevin thermostat 

noise W sets temperature

• 800 chains of 35-36 beads
• 4-12 charges per chain
• 1 cation per charged bead (anion)

• equilibrate for 107 timesteps
• collect averages for 4x107

• 1M CPU-hours ≈ 325 days on 128 cores

LAMMPS: open source MD code from Sandia 

http://lammps.sandia.gov/

 = 4

+ temperature

repulsive LJ interactions + FENE springs ... 

2,816 nodes / 22,528 cores



Ionenes: percolated

Nbb = 9

εr = 4 

Small clusters Large clusters
Only charged beads shown

Pendants: not percolated

-

+ +-

Aggregate Morphology: Architecture Matters

15Hall et al., Phys. Rev. Lett. (2011)



Randomly Spaced Ionomer Model

Periodic
- Random Block Copolymer

connect blocks randomly

vary X/Y

Nbb = Number of backbone beads per charged bead

Fully Random Copolymer
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• random block

• mimic ROMP

• fully random

• mimics typical random polymerization
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Random Block Copolymer 
Pendants: stringy, large clusters

εr = 4 

Nbb = 9

Small clusters Large clusters

Periodic Pendants:
narrow cluster size distribution

Mean cluster size 87 Mean cluster size 31

Aggregate Morphology: Random vs. Periodic
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• Experimental/Simulation Agreement

• Peak location similar

• Increasing spacing moves peak to left

• Random spacing moves and broadens peak

Experiment Simulation

Hall et al., J. Am Chem. Soc. (2012)

+-

+-Random block
Nbb = 5

S(k)
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‘Pseudorandom’
15C-C per COOH
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- Na+

CG MD: Comparison to X-ray Scattering
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Cluster Dynamics

Ions move.

Is there any?

Color distinct clusters by 
different color

Start Finish (107 steps later)
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Historical View of Dynamics
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http://www.princeton.edu/cbe/people/faculty/register/group/r
esearch/ionomers/ionomer-melt-rheology-and/

• requires traversing low dielectric polymer matrix

• large activation energy barrier

• ion pairs “hop” between aggregates

this is SLOW



Ion Trajectories
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periodic pendants Nbb=9

ions move by cluster 
rearrangment/collision

2 separate clusters
Follow one counterion

Clusters have collided

Ion has moved to other cluster.
NEVER separated from a cluster.

Clusters reform with ion moved



Energies and Cluster Dynamics

Pendant (discrete clusters)+ – pair energy (contact) is 48 kT.

pairs are not likely to separate.

energy to split a cluster is much less
ideal, 2D crystallite has a separation energy of 
only 20 kT:

simulations show clusters are flexible (they’re 
liquids after all) and the energies will be less 
than these crystallite calculations.

ions move a lot within a cluster Red anions on one polymer.

Blue ions initially within 3σ of red anions.

Other ions which temporarily come within 3 σ
are transparent.

5000 million time steps



• Ionenes, pendants similar at short times

• Pendants slower but qualitatively similar at long times

Mean Squared Displacements
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Ion Dynamics
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cations in periodic pendants

indicative of 2 time scales:
• local motion in clusters
• slower rearrangment between clusters

non-Gaussian parameter

cations for Nbb = 9



• Ionenes conduct better than pendants

• Greater concentration of ions increases diffusion

• Blocky random copolymerization increases diffusion

Counterion Diffusion Constants

Ionenes

εr = 4
25

Hall et al., Macromolecules (2012)



Static Electric Field
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add force  Fx = qEx to each ion

how strong a field should we add? 

electrostatic force

LJ units: |q| = 1, kT = 1,  = 1; 

for field

at contact, r = 0.75F = -63/kT

F = 1/kT

rough estimate in real units: 
 = 0.4 nm, T = 298K, E = 0.8 V/nm = 8x106 V/cm 



Check Field Strengths
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Effects on Clusters
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Aggregates Align in High Fields
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Effect of Field on Structure
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Mean-Squared Displacements
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ionenes
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Mean-Squared Displacements
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pendants
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Directional MSDs
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Conductivity
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Nernst-Einstein
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if ions are uncorrelated:

system  NE  = /NE

ionene N = 3 5.7x10-4 1.6x10-3 0.36

ionene N = 9 2.4x10-5 1.3x10-4 0.18

pendant N = 3 2.7x10-4 7.5x10-4 0.36



Time-Dependent Structure Factors
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Time-Dependent Structure Factors
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The New Picture
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stringy morphologies ion motion by cluster rearrangment



Conclusions
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Hall, et al., Phys Rev Lett 106, 127801 (2011); 
J. Am Chem. Soc. 134, 574 (2012);
Macromolecules, 45, 8097 (2012) 

 aggregates have many shapes

 molecular architecture important

 isolated aggregates for pendants or large spacing

 percolation for ionenes or short spacing

 ion motion by cluster rearrangment

 ions diffuse faster in percolated morphologies

 ion motion is correlated

coarse-grained atomistic

Alam et al., Materials 5, 1508 (2012)
Bolintineanu et al., ACS Macro Lett. 2, 206 (2013);
Bolintineanu et al., Macromolecules 46, 5381 (2013);
Lueth et al., J Chem Phys 140, 054902 (2014)
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Average Local Structure
one polymer (white, red anions) and nearby ions (red anions, blue counterions) 

Nbb=9, frames are 1000 steps apart

periodic pendant, frames averaged:

0 10 50 200 800

0 10 50 200 800

periodic ionene, frames averaged:

other periodic pendant 
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