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In situ TEM ion
irradiation and
cyclic indentations
Is providing initial
insight into the
stability of
nanocrystalline
metals in extreme
environments.
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__Grain Boundary Stability in Nanocrystalline Metals in
: Radiation and Cyclic Environments

Extent of grain growth varies as a function **
of system and radiation environments.
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To a first order mean grain size comparison, these reports appear conflicting.

Not necessarily the case if initial microstructural details and associated properties are considered
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Fatigue induced
grain growth
limiting the fatigue
lifetime




History of In situ lon Irradiation TEM

ion beam line

Workshop on lon

The invention of Irradiation TEM

the TEM _ Huddersfield, UK (2008)
1968 1978 First dual beam system Albuquerque, USA (2011)
First TEM G developed at JAERI and
1961 b|rs ; First in-situ ion irradiation NIMS, Japan Saporro, Japan (2013)
O- emission reported eamine experiments at ANL

combination by

from a TEM filament Thackerv. Nelson
by Pashley, Presland, Y, ’ 1976
and Sansom at

and Meneter at Tl First HYEM with ion
- AERE Harwell, . o
Labs, Cambridge, UK UK irradiation at UVA, USA
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“The direct observation of ion

damage in the electron microscope :
thus represents a powerful means =. T
_of studying radiation damage” :

Facilities reported in literature
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=~ A -Sandia’s New lon Beam Lab

lon Beam Laboratory Capabilities
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Beam burn from
14 MeV Si

Gas Heating TEM
Stage Controls

Microfluidic TEM
Stage Controls

Current Status of the In situ TEM Beamline

Collaborators: D.L. Buller & J.A. Scott

E
)
Double tilt stage

needs to tilt only
12°

Quantitative
Mechanical

Bending Testing
Magnet to TEM Stage
Mix Beams Controls

Pre-TEM Coupon
Irradiation Chamber

ISTEM is operational,
but also still in development
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In situ TEM Luminescence

Collaborators: D. Masiel & D. Buller

Two optical port were
added to the ISTEM already
containing a electron beam
and two ion beams, which

permits in situ TEM
luminescence studies

Optical Mirror in TEM First IBIL in TEM

Optical Pathway in an I3STEM

= Angled mirror with bore hole for the
electron path was installed above the
polepiece

= Another mirror is located just above the ion
beams in the beamline

=« Two perspective of the sample are possible

sPermits in situ IBIL and CL.




Quantifying Defect Evolution

Collaborators: N. Li & A. Misra
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_ Defects are Altered Little by the
"Presence of Grain Boundaries

Collaborators: N. Li & A. Misra
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SFT appear to be directly at GB
No change in defect density is observed near GB




Single lon Strikes

7.9 x 10%ions/cm?/s 6.7 X 107 ions/cm?/s

Improved vibrational and ion beam stability permits us to work at 120kx
or higher permitting imaging of single cascade events




In situ Implantation

Gold thin-film implanted
with 10keV He?*

Result: porous
microstructure

4.0 x 1016 jons/cm? &

1.0 x 1017 jons/cm?




In situ Successive Implantation &
Irradiation

Successive Au** then Hel*
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In situ Concurrent Implantation &
Irradiation

Hel* implantation and Au#* irradiation
of a gold thin film




Single lon Strikes During Concurrent
Irradiation: Nucleation of Helium Cavities

a) Initial
microstructure

b) Cascade: Creation
of dislocation loops,
vacancy clusters,
and three cavities

d) Cascade damage
still evolving

e) Apparent stability

f) Final
microstructure: Only
two remaining
cavities




Combination of in situ Capabilities

Contributors: S.M. Hoppe, B.A. Hernandez-Sanchez, T. Boyle, D. Gross, J. Kacher, & .M. Robertson
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\\ Quantitative :
mechanical Environmental € CoOrrosion
testing

Load (uN)

ﬂ Displacement (nm)

Dilute flow of acetic acid over 99.95% nc-PLD Fe



In situ TEM Quantitative Mechanical Testing

Contributors: H. Bei, & E.P. George

Load (UN)

Elelactron Beam

Indentation

u‘ Displacement (nm)

Fundamentals of Mechanical Properties

o
Q.
Range of Mechanical Testing Techniques §
= Indentation = Wear &
= Compression = Fatigue g
= Tension = Creep ]
<,
= Bending o

Lu 2 J | 0 < os

- Engineering Strain

We have started looking at the effects of ion
irradiation on mechanical properties



In situ TEM Cyclic Loading
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Cyclic contact effect on structure . .
= Associate change in local hardness or ; Al film
compression strength with corresponding : , /
structural evolution in either:

= Indentation of nanocrystalline Cu
films

= Compression of nanocrystalline Al _
films Indenter tip




No, , or Cyclic Evolution in
Nanocrystalline Al
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Summary & Future Interests

= Sandia’s I3’TEM has a range of in situ
: capabilities for extreme enviroments

& = Have applied the current ISTEM >
capabilities to various nanocrystalline '

metals for: ‘ e
Irradiation i

= Single ion strikes ;

= Defect migration

Implantation
= Bubble formation
= Defect cavity interactions

= Cyclic loading ‘
= Grain growth occurs under Ll [t
different cycles [ [e—
= And combinations thereof Sandia’s I’TEM although still under

development is providing a wealth

cOllahoratc s | of interesting initial observations
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