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Maximize Parallelism for  
Manycore Architectures; Portable & Performant 
 Unified Task + Data Parallelism 

 Task decomposition of heterogeneous computations 
 Data decomposition of homogeneous computations 
 Unify: tasks of data parallel computations 

 Integrate and extend Sandia’s Kokkos + Qthreads libraries 
 Kokkos: performance portable manycore data parallelism 

 Multicore CPU, NVidia GPU, Intel Xeon Phi “devices” 
 Parallel_for, parallel_reduce, parallel_scan 
 Multidimensional arrays with device-polymorphic data layout 
+ Interface for tasks with internally data parallel operations 

 Qthreads: efficient scheduling of single-thread tasks 
 Multicore CPU 
+ Individual tasks that span multiple threads 
+ Scheduling for tasks dispatched to GPU 
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Kokkos: C++ Library / Programming Model 
 Portable to Advanced Manycore Architectures 

 Maximize amount of user (application/library) code that can be compiled 
without modification and run on these architectures 

 Minimize amount of architecture-specific knowledge that a user is 
required to have 

 Allow architecture-specific tuning to easily co-exist 
 Only require C++1998 standard compliant 

 Performant 
 Portable user code performs as well as architecture-specific code 
 Thread scalable – not just thread safety (no locking!) 
 Multidimensional array layout compatible with vectorization 

 Usable 
 Small, straight-forward application programmer interface (API) 
 Constraint: don’t compromise portability and performance 
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Qthreads: C Library / Programming Model 

 Efficient scheduling and execution of tasks 
 Lightweight tasks (very little context in comparison to pthreads) 
 NUMA- (non-uniform memory access) and cache-aware scheduling of 

lightweight tasks onto pinned heavyweight worker threads 
 Synchronization based on software-managed full/empty bits 
 Scalability to many thousands of tasks 

 Actively used 
 Multithreaded graph library (MTGL) 
 Cray Chapel tasking layer implementation 
 OpenMP run time system using ROSE XOMP as the front-end 
 Power-aware concurrency management (MAESTRO project with RENCI) 
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Kokkos + Qthreads: In-progress R&D 
(Sandia internal R&D “on a shoestring”) 

 Three year project; four months elapsed 
 Draft specification for unified programming model @ today 
 Unit testing on multicore CPU and Xeon Phi @ 12 months 
 Heterogeneous finite element miniapplication @ 15 months 
 Informatics (graph based) miniapplication @ 18 months 
 Sparse solver w/sparse LU miniapplication @ 18 months 
 Unit testing task-data parallelism on GPU @ 21 months 
 Heterogeneous finite element miniapplication on GPU @ 24 months 
 Informatics & Sparse solver/LU miniapplication on GPU @ 30 months 
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Task Parallelism: Fibonacci example 
class Fib : public task_serial<long,device> { 
public: 
  const long n ; 
  Fib( long arg ) : n( arg ) {} 
  void apply() { 
    if ( n < 2 ) { 
      task_result = n ; 
    } else { 
      Future<long> child[2] = { task_dependence(0) , task_dependence(1) }; 
      if ( child[0] ) { 
        task_result = child[0].get() + child[1].get(); 
      } else { 
        child[0] = spawn( Fib(n-1) ); 
        child[1] = spawn( Fib(n-2) ); 
        task_respawn( child , 2 ); 
      } 
    } 
  } 
}; 

 
 
 

• Walk through simple Fibonacci example 
– Fib(N) = if ( N < 2 ) then  N  else  Fib(N-1) + Fib(N-2)  
– Simple task parallel (not data parallel) 
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Task Parallelism: Fibonacci example 
int main() { 
  long N ; N << std::cin ;  
  Future<long> f = spawn( Fib<long,device>(N) ); 
  wait( f ); 
  std::cout << f.get(); 
}; 

 
 
 

• How it all starts 
– Spawn the root Fibonacci task from “Main” thread 
– “Main” is not a task, can wait for a task to complete 

• Future : a reference to a Task 
Fib(N) 

Fib(N-1) 
Fib(N-2) 

Fib(N-3) 

Fib(N-4) 
Fib(N-5) 

Fib(N-2) 

Fib(N-3) 

Fib(N-3) 

Fib(N-4) 

Fib(N-4) 

Fib(N-4) Fib(N-5) 

Fib(N-6) Fib(N-5) 

• Simplistic example of a task parallel algorithm 
– There are more efficient algorithms without redundant tasks 
– Presented to illustrate the programming model 
– Do not interpret this example as a recommended pattern 
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Task Parallelism; Fibonacci example 
class Fib : public task_serial<long,device> { 
public: 
  const long n ; 
  Fib( long arg ) : n( arg ) {} 
  void apply() { 
    if ( n < 2 ) { 
      task_result = n ; 
    } else { 
      Future<long> child[2] = { task_dependence(0) , task_dependence(1) }; 
      if ( child[0] ) { 
        task_result = child[0].get() + child[1].get(); 
      } else { 
        child[0] = spawn( Fib(n-1) ); 
        child[1] = spawn( Fib(n-2) ); 
        task_respawn( child , 2 ); 
      } 
    } 
  } 
}; 

 
 
 

• A Task is a Functor derived from a parallel pattern 
– “Fib” derived from “task_serial” 
– Data type of the task’s result: “long” 
– Executes on “device” 

• Functor: C++ class with a required member function 
– User defined data members: “n” 
– Execution calls “apply” 
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Task Parallelism; Fibonacci example 
class Fib : public task_serial<long,device> { 
public: 
  const long n ; 
  Fib( long arg ) : n( arg ) {} 
  void apply() { 
    if ( n < 2 ) { 
      task_result = n ; 
    } else { 
      Future<long> child[2] = { task_dependence(0) , task_dependence(1) }; 
      if ( child[0] ) { 
        task_result = child[0].get() + child[1].get(); 
      } else { 
        child[0] = spawn( Fib(n-1) ); 
        child[1] = spawn( Fib(n-2) ); 
        task_respawn( child , 2 ); 
      } 
    } 
  } 
}; 

 
 
 

• “Apply” function called from a single thread 
• Task sets its “task_result”  

– task_serial<...>::task_result 
• Task will be complete when “apply” returns 

– Except when ... , we will come back to this 
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Task Parallelism; Fibonacci example 
class Fib : public task_serial<long,device> { 
public: 
  const long n ; 
  Fib( long arg ) : n( arg ) {} 
  void apply() { 
    if ( n < 2 ) { 
      task_result = n ; 
    } else { 
      Future<long> child[2] = { task_dependence(0) , task_dependence(1) }; 
      if ( child[0] ) { 
        task_result = child[0].get() + child[1].get(); 
      } else { 
        child[0] = spawn( Fib(n-1) ); 
        child[1] = spawn( Fib(n-2) ); 
        task_respawn( child , 2 ); 
      } 
    } 
  } 
}; 

 
 
 

• Future : a reference to a Task 
• Query completed tasks Fib(N-1) and Fib(N-2) 

– task_serial<...>::task_dependence(#) 
– If these tasks exist ... ; where did they come from? 
– task_result = Fib(N-1) + Fib(N-2) 
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Task Parallelism; Fibonacci example 
class Fib : public task_serial<long,device> { 
public: 
  const long n ; 
  Fib( long arg ) : n( arg ) {} 
  void apply() { 
    if ( n < 2 ) { 
      task_result = n ; 
    } else { 
      Future<long> child[2] = { task_dependence(0) , task_dependence(1) }; 
      if ( child[0] ) { 
        task_result = child[0].get() + child[1].get(); 
      } else { 
        child[0] = spawn( Fib(n-1) ); 
        child[1] = spawn( Fib(n-2) ); 
        task_respawn( child , 2 ); 
      } 
    } 
  } 
}; 

 
 
 

• If tasks Fib(N-1) and Fib(N-2) don’t exist then spawn them 
– Future<result_type> spawn( FunctorType ); 
– Schedules a new task for parallel execution 

• I need to wait for these tasks to complete, but I cannot block 
– GPU: a thread cannot block and spin-waiting is very bad 
– CPU: overhead of context-switch which is bad for performance 

• Solution: re-spawn myself 
– “I cannot complete now, call me again after these other tasks complete” 
– task_serial<...>::task_respawn( Future<> depend[] , # ); 
– When “apply” returns I am not complete 
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Task Dependence Directed Acyclic Graph (DAG) 

 Dependence not limited to spawner-spawnee (parent-child) 
 E.g., Intel Cilk and OpenMP 3.x 

 General task dependence DAG 
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Task-Data Parallelism: L2 norm example 
class Norm2 : public task_reduce<double,device> { 
public: 
  const double * X ; 
  const int            N ; 
  int work() const { return N ; } 
  void operator()( int i , double & v ) const { v += X[i] * X[i] ; } 
  void init( double & v ) const { v = 0 ; } 
  void join( volatile double & v , volatile const double & w ) const { v += w ; } 
  void apply() { task_result = sqrt( task_result ); 
  Norm2( const double * argx , const int argn ) : x(argx), n(argn) {} 
}; 
 
// elsewhere in the “main” thread: 
Future<double> f = spawn( Norm2<double,device>(X,N) ); 
wait( f ); 
double value = f.get(); 

 
 

• Walk through simple L2 norm example 

– Task with data parallel pattern � 𝑥𝑖2
N−1
𝑖=0  

• Spawn just like a simple task 
– A future for waiting and querying result 
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Task-Data Parallelism: L2 norm example 
class Norm2 : public task_reduce<double,device> { 
public: 
  const double * X ; 
  const int            N ; 
  int work() const { return N ; } 
  void operator()( int i , double & v ) const { v += X[i] * X[i] ; } 
  void init( double & v ) const { v = 0 ; } 
  void join( volatile double & v , volatile const double & w ) const { v += w ; } 
  void apply() { task_result = sqrt( task_result ); 
  Norm2( const double * argx , const int argn ) : x(argx), n(argn) {} 
}; 
 
// elsewhere in the “main” thread: 
Future<double> f = spawn( Norm2(x,n) ); 
wait( f ); 
double value = f.get(); 

 
 

• Parallel pattern : “task_reduce” 
– Data parallel with “N” units of work 
– “work” function returns “N” 
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Task-Data Parallelism: L2 norm example 
class Norm2 : public task_reduce<double,device> { 
public: 
  const double * X ; 
  const int            N ; 
  int work() const { return N ; } 
  void operator()( int i , double & v ) const { v += X[i] * X[i] ; } 
  void init( double & v ) const { v = 0 ; } 
  void join( volatile double & v , volatile const double & w ) const { v += w ; } 
  void apply() { task_result = sqrt( task_result ); 
  Norm2( const double * argx , const int argn ) : x(argx), n(argn) {} 
}; 
 
// elsewhere in the “main” thread: 
Future<double> f = spawn( Norm2(x,n) ); 
wait( f ); 
double value = f.get(); 

 
 

• Call “operator()” function N times 
– Work index: 𝒊 ∈ [𝟎. . 𝑵) 
– Called in parallel from “P” threads; P <= N 

• Contribute to reduction value “v” 
– Argument “v” is thread-private 
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Task-Data Parallelism: L2 norm example 
class Norm2 : public task_reduce<double,device> { 
public: 
  const double * X ; 
  const int            N ; 
  int work() const { return N ; } 
  void operator()( int i , double & v ) const { v += X[i] * X[i] ; } 
  void init( double & v ) const { v = 0 ; } 
  void join( volatile double & v , volatile const double & w ) const { v += w ; } 
  void apply() { task_result = sqrt( task_result ); 
  Norm2( const double * argx , const int argn ) : x(argx), n(argn) {} 
}; 
 
// elsewhere in the “main” thread: 
Future<double> f = spawn( Norm2(x,n) ); 
wait( f ); 
double value = f.get(); 

 

• Thread-private values are partial contributions 
– Values must be properly initialized (might not be zero) 
– Values must be properly joined across threads (might not be sum) 

• Why “volatile” ? 
– For performance thread private values are joined in-place  
– Implementation violates threads’ privacy  
– “volatile” so that compiler is “in the know” 
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Task-Data Parallelism: L2 norm example 
class Norm2 : public task_reduce<double,device> { 
public: 
  const double * X ; 
  const int            N ; 
  int work() const { return N ; } 
  void operator()( int i , double & v ) const { v += X[i] * X[i] ; } 
  void init( double & v ) const { v = 0 ; } 
  void join( volatile double & v , volatile const double & w ) const { v += w ; } 
  void apply() { task_result = sqrt( task_result ); 
  Norm2( const double * argx , const int argn ) : x(argx), n(argn) {} 
}; 
 
// elsewhere in the “main” thread: 
Future<double> f = spawn( Norm2(x,n) ); 
wait( f ); 
double value = f.get(); 

 

• Task’s final serial step 
– Opportunity to serially process the task’s result 

data parallel “operator()” 

final serial “apply” 
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Task Groups: Tree Search example 
class Search : public task_serial<void,device> { 
public: 
  const KeyType       key ; 
  const NodeType * node ; 
  void apply() { 
    Future<NodeType*> group = task_dependence(0); 
    if ( node->key == key ) { 
      group_complete( group , node ); 
    } else { 
      for ( int i = 0 ; i < node->num_child ; ++i ) 
        spawn( Search(key, node->child[i]) , & group , 1 ); 
    } 
  } 
}; 
// elsewhere in the “main” thread 
Future<NodeType*> group = group_create<NodeType*>(0); 
spawn( Search( key , root_node ) , & group , 1 ); 
wait( group ); 
NodeType * found_node = group.get(); 

• Search an n-tree for a node with a given key 
– Spawn a search task at each node 
– Until the “winning” task finds the matching node 

• Create a task group, returns a Future 
• Spawn search task on the tree’s root node 

– Dependence on the task group 
• Wait for the group to complete 
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Task Groups: Tree Search example 
class Search : public task_serial<void,device> { 
public: 
  const KeyType       key ; 
  const NodeType * node ; 
  void apply() { 
    Future<NodeType*> group = task_dependence(0); 
    if ( node->key == key ) { 
      group_complete( group , node ); 
    } else { 
      for ( int i = 0 ; i < node->num_child ; ++i ) 
        spawn( Search(key, node->child[i]) , & group , 1 ); 
    } 
  } 
}; 
// elsewhere in the “main” thread 
Future<NodeType*> group = group_create<NodeType*>(0); 
spawn( Search( key , root_node ) , & group , 1 ); 
wait( group ); 
NodeType * found_node = group.get(); 

• Query group’s future, is a dependence 
• If node matches complete the group 

– Set the group’s result value 
– An atomic operation: only one task can “win” 

• Completing the group cancels execution of all 
remaining tasks in that group 
– Prevents them from starting, removes them from schedule 
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Task Groups: Tree Search example 
class Search : public task_serial<void,device> { 
public: 
  const KeyType       key ; 
  const NodeType * node ; 
  void apply() { 
    Future<NodeType*> group = task_dependence(0); 
    if ( node->key == key ) { 
      group_complete( group , node ); 
    } else { 
      for ( int i = 0 ; i < node->num_child ; ++i ) 
        spawn( Search(key, node->child[i]) , & group , 1 ); 
    } 
  } 
}; 
// elsewhere in the “main” thread 
Future<NodeType*> group = group_create<NodeType*>(0); 
spawn( Search( key , root_node ) , & group , 1 ); 
wait( group ); 
NodeType * found_node = group.get(); 

• If node does not match then spawn tasks for child nodes 
– Spawn as member of the group 
– If another task already “won” then spawned tasks will not execute 



Wrapping Up (conclusions pending, stay tuned) 

 Unified Task + Data Parallelism 
 Seamless integration of task and data parallel computations 
 Task decomposition of heterogeneous computations 
 Data decomposition of homogeneous computations 

 Integrate and extend Sandia’s Kokkos + Qthreads libraries 
 Kokkos: performance portable manycore data parallelism 
 Qthreads: efficient scheduling of single-thread tasks 

 Proof will be in the mini-applications 
 Heterogeneous finite element 
 Informatics (graph based) 
 Sparse solver with parallel sparse LU factorization & preconditioning 
 Performance portable mini-application code to CPU, Xeon-Phi, GPU 
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