Sandia
National
Laboratories

Exceptional
service

in the

national

interest

SAND2014-0898C

Unified Task + Data Parallelism
on Manycore Architectures

H. Carter Edwards and Stephen Olivier

SIAM Parallel Processing
February 21, 2014
SAND2014-###C

A,
Fusy U.5. DEPARTMENT OF i ¥ " ‘\Qa‘
= IF] ."
{(0)ENERGY VIS
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Maximize Parallelism for) e
Manycore Architectures; Portable & Performant

= Unified Task + Data Parallelism
= Task decomposition of heterogeneous computations
= Data decomposition of homogeneous computations
= Unify: tasks of data parallel computations

= [ntegrate and extend Sandia’s Kokkos + Qthreads libraries
= Kokkos: performance portable manycore data parallelism
= Multicore CPU, NVidia GPU, Intel Xeon Phi “devices”
= Parallel_for, parallel_reduce, parallel_scan
= Multidimensional arrays with device-polymorphic data layout
+ Interface for tasks with internally data parallel operations
= Qthreads: efficient scheduling of single-thread tasks
= Multicore CPU
+ Individual tasks that span multiple threads

+ Scheduling for tasks dispatched to GPU
1

National

Kokkos: C++ Library / Programming Model (&=

= Portable to Advanced Manycore Architectures

= Maximize amount of user (application/library) code that can be compiled
without modification and run on these architectures

= Minimize amount of architecture-specific knowledge that a user is
required to have

= Allow architecture-specific tuning to easily co-exist
= Only require C++1998 standard compliant

= Performant
= Portable user code performs as well as architecture-specific code
» Thread scalable — not just thread safety (no locking!)
» Multidimensional array layout compatible with vectorization

= Usable

= Small, straight-forward application programmer interface (API)
» Constraint: don’t compromise portability and performance

Qthreads: C Library / Programming Model) S,

= Efficient scheduling and execution of tasks
= Lightweight tasks (very little context in comparison to pthreads)

= NUMA- (non-uniform memory access) and cache-aware scheduling of
lightweight tasks onto pinned heavyweight worker threads

= Synchronization based on software-managed full/empty bits
= Scalability to many thousands of tasks

= Actively used
= Multithreaded graph library (MTGL)
= Cray Chapel tasking layer implementation
= OpenMP run time system using ROSE XOMP as the front-end
= Power-aware concurrency management (MAESTRO project with RENCI)

Kokkos + Qthreads: In-progress R&D) s,

Laboratories

(Sandia internal R&D “on a shoestring”)

= Three year project; four months elapsed
> Draft specification for unified programming model @ today

Unit testing on multicore CPU and Xeon Phi @ 12 months
Heterogeneous finite element miniapplication @ 15 months
Informatics (graph based) miniapplication @ 18 months

Sparse solver w/sparse LU miniapplication @ 18 months

Unit testing task-data parallelism on GPU @ 21 months
Heterogeneous finite element miniapplication on GPU @ 24 months

Informatics & Sparse solver/LU miniapplication on GPU @ 30 months

: : - -,
Task Parallelism: Fibonacci example Luf

class Fib : public task_serial<long,device> {

blic: i i i
public _ Walk through simple Fibonacci example
constlongn;

Fib(long arg) : n(arg) {} — Fib(N) = lf(N<2) then N else Fib(N-l) + Fib(N-Z)
void apply() { — Simple task parallel (not data parallel)
if(n<2){
task_result=n;
} else {
Future<long> child[2] = { task_dependence(0), task_dependence(1) };
if (child[0]) {
task_result = child[0].get() + child[1].get();
} else {
child[0] = spawn(Fib(n-1));
child[1] = spawn(Fib(n-2));
task_respawn(child, 2);
}
}
}
b

5
-~ ...

: : : o
Task Parallelism: Fibonacci example) =

int main() {
long N ; N << std::cin;
Future<long> f = spawn(Fib<long,device>(N));

:,::'ti:&t «<fgetl): |° How it all starts
}; — Spawn the root Fibonacci task from “Main” thread
@ — “Main” is not a task, can wait for a task to complete
e Future : a reference to a Task

e Simplistic example of a task parallel algorithm
(— There are more efficient algorithms without redundant tasks
— Presented to illustrate the programming model
— Do not interpret this example as a recommended pattern

<

' i : ic)
Task Parallelism; Fibonacci example Luf

class Fib : public task_serial<long,device> {
public:
constlong n;

Fib(longarg):n(arg){}

void apply() {
'ft("k< 2){ e A Task is a Functor derived from a parallel pattern
};Ze—{resu — “Fib” derived from “task_serial”
future<lo| — Data type of the task’s result: “long”
if (child[— Executes on “device”
task_res| ® Functor: C++ class with a required member function
}else { — User defined data members: “n”
child[0]9 _ Execution calls “apply”
) Yy
child[1] Fspovwrmrewr=rr

task_respawn(child, 2);

Task Parallelism; Fibonacci example

class Fib : public task_serial<long,device> {

public:
constlongn;
Fib(longarg):n(a
void apply() {
if(n<2){
task_result=n;
} else {
Future<long> chil
if (child[0]) {

e “Apply” function called from a single thread
e Task sets its “task_result”
— task_serial<...>::task_result

e Task will be complete when “apply” returns
— Except when ..., we will come back to this

task_result = child[0].get() + child[1].get();
} else {
child[0] = spawn(Fib(n-1));
child[1] = spawn(Fib(n-2));
task_respawn(child, 2);

Sandia
National
Laboratories

Task Parallelism; Fibonacci example

class Fib : public task_serial<long,device> {

Sandia
National
Laboratories

public:
const long
Fib(long al
void apply!
if(n<2)
task_res

} else {

e Future : a reference to a Task
* Query completed tasks Fib(N-1) and Fib(N-2)
— task_serial<...>::task_dependence(#)

— If these tasks exist ... ; where did they come from?
— task_result = Fib(N-1) + Fib(N-2)

Future<long> child[2] = { task_dependence(0), task_dependence(1) };

if (child[0]) {
task_result = child[0].get() + child[1].get();

} else {
child[0] = spawn(Fib(n-1));
child[1] = spawn(Fib(n-2));
task_respawn(child, 2);

: : : o
Task Parallelism; Fibonacci example) =

clay If tasks Fib(N-1) and Fib(N-2) don’t exist then spawn them

pul — Future<resu|t_type> spawn(FunctorType);
COI — Schedules a new task for parallel execution
Fi

,d * I'need to wait for these tasks to complete, but I cannot block
i{ — GPU: a thread cannot block and spin-waiting is very bad

— CPU: overhead of context-switch which is bad for performance

| * Solution: re-spawn myself

— “l cannot complete now, call me again after these other tasks complete”
— task_serial<...>::task_respawn(Future<> depend[], #);

— When “apply” returns | am not complete

' chiIdiO] = spawn(Fib(n-1));
child[1] = spawn(Fib(n-2));
task_respawn(child, 2);

Task Dependence Directed Acyclic Graph (DAG)) .

* Dependence not limited to spawner-spawnee (parent-child)
= E.g., Intel Cilk and OpenMP 3.x

= General task dependence DAG

National

Task-Data Parallelism: L2 norm example).

class Norm2 : public task_reduce<double,device> {

public: Walk through simple L2 norm example
const double * X ; g P i
) , N—1
const int N; — Task with data parallel pattern J Z 2
int work() const { return N ; }

void operator()(inti, double & v) const { v += X[i] * X[i] ; }

void init(double & v) const{v=0;}

void join(volatile double & v, volatile const double & w) const{v +=w ; }
void apply() { task_result = sgrt(task_result);

Norm2(const double * argx, const int argn) : x(argx), n(argn) {}

b

// elsewhere in the “main” thread:

Future<double> f = spawn(Norm2<double,device>(X,N));
wait(f);

double value = f.get();

e Spawn just like a simple task
— A future for waiting and querying result

12
-~ ...

National

Task-Data Parallelism: L2 norm example) =,

class Norm2 : public task_reduce<double,device> {

public:
const double * X ;
const int N;

int work() const { return N ; }
"% parallel pattern : “task_reduce”

VOoig . .
void — Data parallel with “N” units of work st{v+=w ;)
void — “work” function returns “N”

Norm2(const double * argx, const int argn) : x(argx), n(argn) {}

b

// elsewhere in the “main” thread:
Future<double> f = spawn(Norm2(x,n));
wait(f);

double value = f.get();

13

: e,
Task-Data Parallelism: L2 norm example)

class Norm2 : public task_reduce<double,device> {

public:
const double * X ;
const int N;

int work() const { return N ; }
void operator()(inti, double & v) const { v += X[i] * X[i] ; }

voldinity call “operator()” function N times

void joir) .
void ap i Work index: i € [0..N)

Norm2(| — Called in parallel from “P” threads; P <= N

|5 e Contribute to reduction value “v”

— Argument “v” is thread-private
// elsewlreremmtme—TmanmT—ureao:

Future<double> f = spawn(Norm2(x,n));
wait(f);
double value = f.get();

V+=w; }

14

Task-Data Parallelism: L2 norm example

class Norm2 : public task_reduce<double,device> {

public:

const double * X ;

const int N;

int work() const { return N ; }

void operator()(inti, double & v) const { v += X[i] * X[i] ; }
void init(double & v) const {v=0; }

void join(volatile double & v, volatile const double & w) const{v +=w ; }

Sandia
National
Laboratories

void ap
Norm2{

b

// elsew
Future<c
wait(f);
double \

* Thread-private values are partial contributions
— Values must be properly initialized (might not be zero)

— Values must be properly joined across threads (might not be sum)

 Why “volatile” ?
— For performance thread private values are joined in-place
— Implementation violates threads’ privacy 20
— “volatile” so that compiler is “in the know”

15

National

Task-Data Parallelism: L2 norm example) i

class Norm2 : public task_reduce<double,device> {

public:
const double * X ;
const int N;

int work() const { return N ; }

void operator()(inti, double & v) const { v += X[i] * X[i] ; }

void init(double & v) const{v=0; }

void join(volatile double & v, volatile const double & w) const{v+=w; }
void apply() { task_result = sqrt(task_result);

Norm2(cons - .
1. (* Task’s final serial step

— Opportunity to serially process the task’s result

// elsewhere

|90 9000000 | el paery

double value

| final serial “apply”

National

Task Groups: Tree Search example)

class Search : public task_serial<void,device> {

public: e Search an n-tree for a node with a given key

const KeyType
const NodeType| — SPawn a search task at each node

void apply() { — Until the “winning” task finds the matching node

Future<NOdETy'Fw_5l UUN = O _UCPpPCTTUCTICC(VUY),
if (node->key == key) {
group_complete(group, node);

} else §
for (il ® Create a task group, returns a Future

spay e Spawn search task on the tree’s root node
}} — Dependence on the task group

y e Wait for the group to complete

// elsewhere in the “main” thread

Future<NodeType*> group = group_create<NodeType*>(0);
spawn(Search(key, root_node), & group, 1);

wait(group);

NodeType * found_node = group.get();

17

Task Groups: Tree Search example h) i,

class Search : public task_serial<void,device> {
public:

const KeyType key;

const NodeType * node ;

void apply() {
Future<NodeType*> group = task_dependence(0);

if (node->key == key) {
group_complete(group, node);

|
}fi:? i{n * Query group’s future, is a dependence

spaw| ® If node matches complete the group
} — Set the group’s result value
} — An atomic operation: only one task can “win”

;/ elsewhl ® Completing the group cancels execution of all

Future<nd remaining tasks in that group

spawn(5S¢ — Prevents them from starting, removes them from schedule
wait(groupT;
NodeType * found_node = group.get();

18
-~ ...

National

Task Groups: Tree Search example) =,

class Search : public task_serial<void,device> {
public:
const KeyType key;
const NodeType * node ;
void apply() {
Future<NodeType*> group = task_dependence(0);
if (node->key == key) {
group_complete(group, node);
} else {
for (inti=0;i<node->num_child ; ++i)
spawn(Search(key, node->child|[i]) , & group, 1);

}} * |If node does not match then spawn tasks for child nodes
). — Spawn as member of the group
//elsd — If another task already “won” then spawned tasks will not execute

Future<NodeType*> group = group_create<NodeType*>(0);
spawn(Search(key, root_node), & group, 1);

wait(group);

NodeType * found_node = group.get();

19
-~ ...

Sandia
"1 National
Laboratories

Wrapping Up (conclusions pending, stay tuned)

= Unified Task + Data Parallelism
» Seamless integration of task and data parallel computations
= Task decomposition of heterogeneous computations
= Data decomposition of homogeneous computations
= |ntegrate and extend Sandia’s Kokkos + Qthreads libraries
= Kokkos: performance portable manycore data parallelism
= Qthreads: efficient scheduling of single-thread tasks
= Proof will be in the mini-applications
= Heterogeneous finite element
= |nformatics (graph based)
= Sparse solver with parallel sparse LU factorization & preconditioning
» Performance portable mini-application code to CPU, Xeon-Phi, GPU

20

	Unified Task + Data Parallelism�on Manycore Architectures
	Maximize Parallelism for �Manycore Architectures; Portable & Performant
	Kokkos: C++ Library / Programming Model
	Qthreads: C Library / Programming Model
	Kokkos + Qthreads: In-progress R&D�(Sandia internal R&D “on a shoestring”)
	Task Parallelism: Fibonacci example
	Task Parallelism: Fibonacci example
	Task Parallelism; Fibonacci example
	Task Parallelism; Fibonacci example
	Task Parallelism; Fibonacci example
	Task Parallelism; Fibonacci example
	Task Dependence Directed Acyclic Graph (DAG)
	Task-Data Parallelism: L2 norm example
	Task-Data Parallelism: L2 norm example
	Task-Data Parallelism: L2 norm example
	Task-Data Parallelism: L2 norm example
	Task-Data Parallelism: L2 norm example
	Task Groups: Tree Search example
	Task Groups: Tree Search example
	Task Groups: Tree Search example
	Wrapping Up (conclusions pending, stay tuned)

