
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Unified Task + Data Parallelism
on Manycore Architectures

H. Carter Edwards and Stephen Olivier

SIAM Parallel Processing
February 21, 2014
SAND2014-###C

SAND2014-0898C

Maximize Parallelism for
Manycore Architectures; Portable & Performant
 Unified Task + Data Parallelism

 Task decomposition of heterogeneous computations
 Data decomposition of homogeneous computations
 Unify: tasks of data parallel computations

 Integrate and extend Sandia’s Kokkos + Qthreads libraries
 Kokkos: performance portable manycore data parallelism

 Multicore CPU, NVidia GPU, Intel Xeon Phi “devices”
 Parallel_for, parallel_reduce, parallel_scan
 Multidimensional arrays with device-polymorphic data layout
+ Interface for tasks with internally data parallel operations

 Qthreads: efficient scheduling of single-thread tasks
 Multicore CPU
+ Individual tasks that span multiple threads
+ Scheduling for tasks dispatched to GPU

1

2

Kokkos: C++ Library / Programming Model
 Portable to Advanced Manycore Architectures

 Maximize amount of user (application/library) code that can be compiled
without modification and run on these architectures

 Minimize amount of architecture-specific knowledge that a user is
required to have

 Allow architecture-specific tuning to easily co-exist
 Only require C++1998 standard compliant

 Performant
 Portable user code performs as well as architecture-specific code
 Thread scalable – not just thread safety (no locking!)
 Multidimensional array layout compatible with vectorization

 Usable
 Small, straight-forward application programmer interface (API)
 Constraint: don’t compromise portability and performance

3

Qthreads: C Library / Programming Model

 Efficient scheduling and execution of tasks
 Lightweight tasks (very little context in comparison to pthreads)
 NUMA- (non-uniform memory access) and cache-aware scheduling of

lightweight tasks onto pinned heavyweight worker threads
 Synchronization based on software-managed full/empty bits
 Scalability to many thousands of tasks

 Actively used
 Multithreaded graph library (MTGL)
 Cray Chapel tasking layer implementation
 OpenMP run time system using ROSE XOMP as the front-end
 Power-aware concurrency management (MAESTRO project with RENCI)

4

Kokkos + Qthreads: In-progress R&D
(Sandia internal R&D “on a shoestring”)

 Three year project; four months elapsed
 Draft specification for unified programming model @ today
 Unit testing on multicore CPU and Xeon Phi @ 12 months
 Heterogeneous finite element miniapplication @ 15 months
 Informatics (graph based) miniapplication @ 18 months
 Sparse solver w/sparse LU miniapplication @ 18 months
 Unit testing task-data parallelism on GPU @ 21 months
 Heterogeneous finite element miniapplication on GPU @ 24 months
 Informatics & Sparse solver/LU miniapplication on GPU @ 30 months

5

Task Parallelism: Fibonacci example
class Fib : public task_serial<long,device> {
public:
 const long n ;
 Fib(long arg) : n(arg) {}
 void apply() {
 if (n < 2) {
 task_result = n ;
 } else {
 Future<long> child[2] = { task_dependence(0) , task_dependence(1) };
 if (child[0]) {
 task_result = child[0].get() + child[1].get();
 } else {
 child[0] = spawn(Fib(n-1));
 child[1] = spawn(Fib(n-2));
 task_respawn(child , 2);
 }
 }
 }
};

• Walk through simple Fibonacci example
– Fib(N) = if (N < 2) then N else Fib(N-1) + Fib(N-2)
– Simple task parallel (not data parallel)

6

Task Parallelism: Fibonacci example
int main() {
 long N ; N << std::cin ;
 Future<long> f = spawn(Fib<long,device>(N));
 wait(f);
 std::cout << f.get();
};

• How it all starts
– Spawn the root Fibonacci task from “Main” thread
– “Main” is not a task, can wait for a task to complete

• Future : a reference to a Task
Fib(N)

Fib(N-1)
Fib(N-2)

Fib(N-3)

Fib(N-4)
Fib(N-5)

Fib(N-2)

Fib(N-3)

Fib(N-3)

Fib(N-4)

Fib(N-4)

Fib(N-4) Fib(N-5)

Fib(N-6) Fib(N-5)

• Simplistic example of a task parallel algorithm
– There are more efficient algorithms without redundant tasks
– Presented to illustrate the programming model
– Do not interpret this example as a recommended pattern

7

Task Parallelism; Fibonacci example
class Fib : public task_serial<long,device> {
public:
 const long n ;
 Fib(long arg) : n(arg) {}
 void apply() {
 if (n < 2) {
 task_result = n ;
 } else {
 Future<long> child[2] = { task_dependence(0) , task_dependence(1) };
 if (child[0]) {
 task_result = child[0].get() + child[1].get();
 } else {
 child[0] = spawn(Fib(n-1));
 child[1] = spawn(Fib(n-2));
 task_respawn(child , 2);
 }
 }
 }
};

• A Task is a Functor derived from a parallel pattern
– “Fib” derived from “task_serial”
– Data type of the task’s result: “long”
– Executes on “device”

• Functor: C++ class with a required member function
– User defined data members: “n”
– Execution calls “apply”

8

Task Parallelism; Fibonacci example
class Fib : public task_serial<long,device> {
public:
 const long n ;
 Fib(long arg) : n(arg) {}
 void apply() {
 if (n < 2) {
 task_result = n ;
 } else {
 Future<long> child[2] = { task_dependence(0) , task_dependence(1) };
 if (child[0]) {
 task_result = child[0].get() + child[1].get();
 } else {
 child[0] = spawn(Fib(n-1));
 child[1] = spawn(Fib(n-2));
 task_respawn(child , 2);
 }
 }
 }
};

• “Apply” function called from a single thread
• Task sets its “task_result”

– task_serial<...>::task_result
• Task will be complete when “apply” returns

– Except when ... , we will come back to this

9

Task Parallelism; Fibonacci example
class Fib : public task_serial<long,device> {
public:
 const long n ;
 Fib(long arg) : n(arg) {}
 void apply() {
 if (n < 2) {
 task_result = n ;
 } else {
 Future<long> child[2] = { task_dependence(0) , task_dependence(1) };
 if (child[0]) {
 task_result = child[0].get() + child[1].get();
 } else {
 child[0] = spawn(Fib(n-1));
 child[1] = spawn(Fib(n-2));
 task_respawn(child , 2);
 }
 }
 }
};

• Future : a reference to a Task
• Query completed tasks Fib(N-1) and Fib(N-2)

– task_serial<...>::task_dependence(#)
– If these tasks exist ... ; where did they come from?
– task_result = Fib(N-1) + Fib(N-2)

10

Task Parallelism; Fibonacci example
class Fib : public task_serial<long,device> {
public:
 const long n ;
 Fib(long arg) : n(arg) {}
 void apply() {
 if (n < 2) {
 task_result = n ;
 } else {
 Future<long> child[2] = { task_dependence(0) , task_dependence(1) };
 if (child[0]) {
 task_result = child[0].get() + child[1].get();
 } else {
 child[0] = spawn(Fib(n-1));
 child[1] = spawn(Fib(n-2));
 task_respawn(child , 2);
 }
 }
 }
};

• If tasks Fib(N-1) and Fib(N-2) don’t exist then spawn them
– Future<result_type> spawn(FunctorType);
– Schedules a new task for parallel execution

• I need to wait for these tasks to complete, but I cannot block
– GPU: a thread cannot block and spin-waiting is very bad
– CPU: overhead of context-switch which is bad for performance

• Solution: re-spawn myself
– “I cannot complete now, call me again after these other tasks complete”
– task_serial<...>::task_respawn(Future<> depend[] , #);
– When “apply” returns I am not complete

11

Task Dependence Directed Acyclic Graph (DAG)

 Dependence not limited to spawner-spawnee (parent-child)
 E.g., Intel Cilk and OpenMP 3.x

 General task dependence DAG

12

Task-Data Parallelism: L2 norm example
class Norm2 : public task_reduce<double,device> {
public:
 const double * X ;
 const int N ;
 int work() const { return N ; }
 void operator()(int i , double & v) const { v += X[i] * X[i] ; }
 void init(double & v) const { v = 0 ; }
 void join(volatile double & v , volatile const double & w) const { v += w ; }
 void apply() { task_result = sqrt(task_result);
 Norm2(const double * argx , const int argn) : x(argx), n(argn) {}
};

// elsewhere in the “main” thread:
Future<double> f = spawn(Norm2<double,device>(X,N));
wait(f);
double value = f.get();

• Walk through simple L2 norm example

– Task with data parallel pattern � 𝑥𝑖2
N−1
𝑖=0

• Spawn just like a simple task
– A future for waiting and querying result

13

Task-Data Parallelism: L2 norm example
class Norm2 : public task_reduce<double,device> {
public:
 const double * X ;
 const int N ;
 int work() const { return N ; }
 void operator()(int i , double & v) const { v += X[i] * X[i] ; }
 void init(double & v) const { v = 0 ; }
 void join(volatile double & v , volatile const double & w) const { v += w ; }
 void apply() { task_result = sqrt(task_result);
 Norm2(const double * argx , const int argn) : x(argx), n(argn) {}
};

// elsewhere in the “main” thread:
Future<double> f = spawn(Norm2(x,n));
wait(f);
double value = f.get();

• Parallel pattern : “task_reduce”
– Data parallel with “N” units of work
– “work” function returns “N”

14

Task-Data Parallelism: L2 norm example
class Norm2 : public task_reduce<double,device> {
public:
 const double * X ;
 const int N ;
 int work() const { return N ; }
 void operator()(int i , double & v) const { v += X[i] * X[i] ; }
 void init(double & v) const { v = 0 ; }
 void join(volatile double & v , volatile const double & w) const { v += w ; }
 void apply() { task_result = sqrt(task_result);
 Norm2(const double * argx , const int argn) : x(argx), n(argn) {}
};

// elsewhere in the “main” thread:
Future<double> f = spawn(Norm2(x,n));
wait(f);
double value = f.get();

• Call “operator()” function N times
– Work index: 𝒊 ∈ [𝟎. . 𝑵)
– Called in parallel from “P” threads; P <= N

• Contribute to reduction value “v”
– Argument “v” is thread-private

15

Task-Data Parallelism: L2 norm example
class Norm2 : public task_reduce<double,device> {
public:
 const double * X ;
 const int N ;
 int work() const { return N ; }
 void operator()(int i , double & v) const { v += X[i] * X[i] ; }
 void init(double & v) const { v = 0 ; }
 void join(volatile double & v , volatile const double & w) const { v += w ; }
 void apply() { task_result = sqrt(task_result);
 Norm2(const double * argx , const int argn) : x(argx), n(argn) {}
};

// elsewhere in the “main” thread:
Future<double> f = spawn(Norm2(x,n));
wait(f);
double value = f.get();

• Thread-private values are partial contributions
– Values must be properly initialized (might not be zero)
– Values must be properly joined across threads (might not be sum)

• Why “volatile” ?
– For performance thread private values are joined in-place
– Implementation violates threads’ privacy
– “volatile” so that compiler is “in the know”

16

Task-Data Parallelism: L2 norm example
class Norm2 : public task_reduce<double,device> {
public:
 const double * X ;
 const int N ;
 int work() const { return N ; }
 void operator()(int i , double & v) const { v += X[i] * X[i] ; }
 void init(double & v) const { v = 0 ; }
 void join(volatile double & v , volatile const double & w) const { v += w ; }
 void apply() { task_result = sqrt(task_result);
 Norm2(const double * argx , const int argn) : x(argx), n(argn) {}
};

// elsewhere in the “main” thread:
Future<double> f = spawn(Norm2(x,n));
wait(f);
double value = f.get();

• Task’s final serial step
– Opportunity to serially process the task’s result

data parallel “operator()”

final serial “apply”

17

Task Groups: Tree Search example
class Search : public task_serial<void,device> {
public:
 const KeyType key ;
 const NodeType * node ;
 void apply() {
 Future<NodeType*> group = task_dependence(0);
 if (node->key == key) {
 group_complete(group , node);
 } else {
 for (int i = 0 ; i < node->num_child ; ++i)
 spawn(Search(key, node->child[i]) , & group , 1);
 }
 }
};
// elsewhere in the “main” thread
Future<NodeType*> group = group_create<NodeType*>(0);
spawn(Search(key , root_node) , & group , 1);
wait(group);
NodeType * found_node = group.get();

• Search an n-tree for a node with a given key
– Spawn a search task at each node
– Until the “winning” task finds the matching node

• Create a task group, returns a Future
• Spawn search task on the tree’s root node

– Dependence on the task group
• Wait for the group to complete

18

Task Groups: Tree Search example
class Search : public task_serial<void,device> {
public:
 const KeyType key ;
 const NodeType * node ;
 void apply() {
 Future<NodeType*> group = task_dependence(0);
 if (node->key == key) {
 group_complete(group , node);
 } else {
 for (int i = 0 ; i < node->num_child ; ++i)
 spawn(Search(key, node->child[i]) , & group , 1);
 }
 }
};
// elsewhere in the “main” thread
Future<NodeType*> group = group_create<NodeType*>(0);
spawn(Search(key , root_node) , & group , 1);
wait(group);
NodeType * found_node = group.get();

• Query group’s future, is a dependence
• If node matches complete the group

– Set the group’s result value
– An atomic operation: only one task can “win”

• Completing the group cancels execution of all
remaining tasks in that group
– Prevents them from starting, removes them from schedule

19

Task Groups: Tree Search example
class Search : public task_serial<void,device> {
public:
 const KeyType key ;
 const NodeType * node ;
 void apply() {
 Future<NodeType*> group = task_dependence(0);
 if (node->key == key) {
 group_complete(group , node);
 } else {
 for (int i = 0 ; i < node->num_child ; ++i)
 spawn(Search(key, node->child[i]) , & group , 1);
 }
 }
};
// elsewhere in the “main” thread
Future<NodeType*> group = group_create<NodeType*>(0);
spawn(Search(key , root_node) , & group , 1);
wait(group);
NodeType * found_node = group.get();

• If node does not match then spawn tasks for child nodes
– Spawn as member of the group
– If another task already “won” then spawned tasks will not execute

Wrapping Up (conclusions pending, stay tuned)

 Unified Task + Data Parallelism
 Seamless integration of task and data parallel computations
 Task decomposition of heterogeneous computations
 Data decomposition of homogeneous computations

 Integrate and extend Sandia’s Kokkos + Qthreads libraries
 Kokkos: performance portable manycore data parallelism
 Qthreads: efficient scheduling of single-thread tasks

 Proof will be in the mini-applications
 Heterogeneous finite element
 Informatics (graph based)
 Sparse solver with parallel sparse LU factorization & preconditioning
 Performance portable mini-application code to CPU, Xeon-Phi, GPU

20

	Unified Task + Data Parallelism�on Manycore Architectures
	Maximize Parallelism for �Manycore Architectures; Portable & Performant
	Kokkos: C++ Library / Programming Model
	Qthreads: C Library / Programming Model
	Kokkos + Qthreads: In-progress R&D�(Sandia internal R&D “on a shoestring”)
	Task Parallelism: Fibonacci example
	Task Parallelism: Fibonacci example
	Task Parallelism; Fibonacci example
	Task Parallelism; Fibonacci example
	Task Parallelism; Fibonacci example
	Task Parallelism; Fibonacci example
	Task Dependence Directed Acyclic Graph (DAG)
	Task-Data Parallelism: L2 norm example
	Task-Data Parallelism: L2 norm example
	Task-Data Parallelism: L2 norm example
	Task-Data Parallelism: L2 norm example
	Task-Data Parallelism: L2 norm example
	Task Groups: Tree Search example
	Task Groups: Tree Search example
	Task Groups: Tree Search example
	Wrapping Up (conclusions pending, stay tuned)

