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Rotational Seismic – Shear SelectivityRotational Seismic – Shear Selectivity

There IS ROTATION 
in the S wave

The  Rotation Signal is 
purely from the S wave

There is NO ROTATION 
in the P Wave



Measure Rotation

around 3 axes - 3θ
θ-x
θ-y
θ-z

Vector Curl
of displacement

Record 3-θ Rotation in 
addition to 3-C or 4-C

Measure Rotation

around 3 axes - 3θ
θ-x
θ-y
θ-z

Vector Curl
of displacement

Record 3-θ Rotation in 
addition to 3-C or 4-C
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“Theta Data”
is comprised of

“Curl Traces”
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To Fully Specify Motion

for a finite body (“elemental cube”)
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Six Degrees-Of-Freedom (6-DOF) Seismic Six Degrees-Of-Freedom (6-DOF) Seismic 

Y rotation   =

Z gradient of X linear

- X gradient of Z linear
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Typically flat spectral response for 
angular velocity.
Typically flat spectral response for 
angular velocity.

Rotational SensorsRotational Sensors



• Simple Concept:

• Ionic fluid in container is an inertial mass.
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electrodes when there is motion.

• Electrical current due to ionic fluid flow is a 
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• Fluid in cylinder for linear motion
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Electrokinetic Rotational SensorElectrokinetic Rotational Sensor

Rotational 
Fluid flow 
through 
screen 
electrodes
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Transverse Rotational – TR ModeTransverse Rotational – TR Mode

6 Components:
3 Linear, 3 Theta



Transverse Linear     – TL ModeTransverse Linear     – TL Mode

6 Components:
3 Linear, 3 Theta



PSV - 3C-Vert.,    3C-Radial,    3θ-Trans.PSV - 3C-Vert.,    3C-Radial,    3θ-Trans.



SH - 3C-Trans.,    3θ-Vert.,    3θ-RadialSH - 3C-Trans.,    3θ-Vert.,    3θ-Radial
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Ordinate and Slope Sampling

DOUBLE the Effective Spatial Nyquist
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For Z linear component:
Rotational yields the Spatial Slopes

For Z linear component:
Rotational yields the Spatial Slopes

At Free Surface, or Water 
Bottom, have zero 
traction/stress component, 
and thus zero strain 
component:

Thus we have the y spatial gradient 
of the vertical linear component of 
displacement, w, given by the x 
component of rotational Theta Data:



Rotational Spatial Sampling –
Horizontal Gradients of Linear Z

Everhard Muyzert, Schlumberger, EAGE, 2012
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Frac’ing / Micro-Seismic   – Double CoupleFrac’ing / Micro-Seismic   – Double Couple

P and S body waves

Motion Amplitude
And

Motion Direction

S is STRONGER

S

P



Micro-Seismic / Double Couple –
Shear Detection

Micro-Seismic / Double Couple –
Shear Detection

Rotational phones 
below the free 

surface, away from 
strong interfaces,

and the associated P 
& S conversions.

Shear Selectivity of 
Theta Data possibly 

may enhance 
extraction of shear 

body wave data



Induced Seismicity:
Frac Rotational Monitoring ?

Induced Seismicity:
Frac Rotational Monitoring ?

From earthquake seismology:

“Observations . . . showed that the amplitudes of 
rotations can be one to two orders of magnitude 
greater than expected from the classical 
elasticity theory”

Lee, Igel, & Trifunac, 2009, “Recent Advances in Rotational 
Seismology”, Seis. Res. Ltrs., vol. 80,no. 3, May/June



Frac Rotational Monitoring ?Frac Rotational Monitoring ?

Vertical axis 
dynamic rotation.

Release pre-
existing tectonic 

stress.

Shear bond 
strength of 

cement-casing is 
comparatively 

weak.
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Pressure (P wave only) + TR-Theta (S wave only)
AVO for gas sandstone 

No Free Surface, buried phones
David Aldridge, et al., Sandia National Laboratories, 2007-2009

Pressure (P wave only) + TR-Theta (S wave only)
AVO for gas sandstone 

No Free Surface, buried phones
David Aldridge, et al., Sandia National Laboratories, 2007-2009

PP
SP

PS
SS



Pressure (P wave only) + TR-Theta (S wave only)
Free Surface, AVO for brine saturated sandstone

David Aldridge, et. al., Sandia National Lab, 2007-2009
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Pressure (P wave only) + TR-Theta (S wave only)
Delta AVO for   25% CO2 saturated sandstone
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Pressure (P wave only) + TR-Theta (S wave only)
Delta AVO for   75% CO2 saturated sandstone

David Aldridge, et. al., Sandia National Lab, 2007-2009
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Pressure (P wave only) + TR-Theta (S wave only)
Delta AVO for 100% CO2 saturated sandstone

David Aldridge, et. al., Sandia National Lab, 2007-2009
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Igel / Aldridge Point ArrayIgel / Aldridge Point Array

At a single 3-C / 3-Ɵ sensor:

transverse linear acceleration
S VELOCITY   =    -----------------------------------------------------------

orthogonal transverse rotational velocity

Potential use for shear statics: 
get shear velocity around each 6-C phone.

From 3-C and 3-Ɵ data can determine direction AND 

velocity of shear wave propagation.



• Great effort in the 1980’s pursuing shear 
sources, but always with 3-C linear phones that 
didn’t differentiate P from S.

• Now we can use Rotational Phones to get pure 
shear 3-Ɵ data as a 3-component vector.

• Related concept:  use Pressure Gradients to get 
pure compressional 3- P data as a 3-
component vector.

• Processing issues:  

3 components with mode purity (gain, decon).   
Direction and propagation velocity.
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Tilt Correction of Linear using RotationTilt Correction of Linear using Rotation

If a Horizontal Linear Phone tilts 
by angle α, then it picks up error:

Gravity * sin(α)

Micro- or milli-radians of tilt give 
a potentially significant error 
compared to weak seismic 
reflections (C-waves).

Consider a worse case:  
weak C-wave data on horizontal phone at 
same time as strong ground roll in 
uncorrelated vibroseis data



Some precedent: Lg Scattering measurements in 
earthquake seismology & use of vertical rotation

Perhaps we can use rotation measurements to map 
scattering / fracture density:

- Use time, offset windows to target shales in 
Resource Plays.  Compare Polarization modes.
- Azimuthal Anisotropy of 6-C (3-C and 3-Θ):

Amplitude Anisotropy
Velocity Anisotropy
Shear splitting
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Ground Roll – Rayleigh WavesGround Roll – Rayleigh Waves

Classic Rayleigh Retrograde 
Elliptical motion:

only for Poisson Solid (0.25)

For Poisson Ratio above 
0.265, have 3 modes of 

polarization.

Hodograph of point is not 
actually ‘true’ rotation.

Rayleigh wave / Rotational 
Seismic:  not simple.



Rayleigh Modes:
Hodographs
High Poisson Ratio

Near Surface

Mode 1 – Retrograde
Modes 2 & 3 – Prograde

Smith, et. al., JASA 1998
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• Failure in Market Research

• Confuse technical enthusiasm vs.

willingness for expenditures / investment

• Not Backward Compatible

• No incremental path / no retrofit

• Not Market Driven – no user requests

• Not Proven –

• Wavefield Scale in multiple locations

• Meaningful Geological Scale
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• Limited data - no geological scale data

• Many Applications possible:

Spatial Sampling

Shear Selectivity – micro-seismic & C- wave

“Other” – AVO, Point Array, Tilt correction, Frac 
density, Rayleigh wave(?), etc.

• Technically attractive for multiple purposes

• BUT, commercially ‘challenged’

ROAD AHEAD  ?

• Rotational sensor prototypes

• Limited data - no geological scale data

• Many Applications possible:

Spatial Sampling

Shear Selectivity – micro-seismic & C- wave

“Other” – AVO, Point Array, Tilt correction, Frac 
density, Rayleigh wave(?), etc.

• Technically attractive for multiple purposes

• BUT, commercially ‘challenged’

ROAD AHEAD  ?

Thank you for your attention !Thank you for your attention !
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