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At 10,000 feet (3000 m) 
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We need a framework that is flexible and extensible: We need to have the ability to 
incorporate new experiments and consider new physics. The analyst, not the framework, should 
dictate the path forward. 

We care about 304L laser welds: 304L laser welds are pervasive throughout the stockpile. 
Understanding the performance of 304L laser welds enables designers to be better stewards 
of the stockpile. 

We observe variability: The ductility of 304L 
laser welds varies from specimen to specimen. 
We observe both material and geometric 
variability. 

We care about the impact of variability on 
performance: We need to develop methods that 
capture and propagate variability in a 
mathematically rigorous manner. The tail of the 
distribution matters.

We seek the tail with limited computational resources: The only general approach to 
determine the tails of the output distribution is through repeated random sampling, Monte Carlo 
Simulation (MCS). We do not, however, have the computational resources to repeatedly sample 
component or system level finite element models. We need to be smarter in how we apply MCS.



Go write a milestone 
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Description: Thousands of feet of 304L stainless steel laser welds reside in numerous 
weapon components, including first-order nuclear safety systems, that serve a wide 
variety of functions. These welds must remain structurally sound in both normal and 
abnormal environments. Variability in weld geometry and material properties can have a 
critical impact on performance margins and uncertainties in both current and future 
designs. Historically, component analysis models have incorporated variability through 
a statistically limited set of experimental data. This milestone will deliver a capability for 
constructing component-scale models from a statistically significant population of the 
weld response obtained from both experiments and higher fidelity simulations. 

Completion Criteria: Demonstration of a framework that accounts for 304L weld 
variability through the construction of component level models for quasi-static 
mechanical environments. 

Committee chair: John Pott

Committee members: Jay Dike (Analysis), Frank Dempsy (Analysis), Sharlotte
Kramer (Experiments), Jake Ostien (Mechanics), Brian Adams 
(Optimization/Uncertainty), Mike Maguire (Welding)



Executive summary
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Our work illustrates a framework for constructing stochastic reduced order models (SROMs) to capture 
geometric/material variability in 304L laser welds. 

 Developed tools for calibration, enrichment, and the construction of SROMs
 Applied “brute force” Monte Carlo with 5000 finite element (FE) calculations to obtain the 

character of the output failure metric
 SROM-based surrogate accurately computed the cumulative distribution function, capturing 

the lower tail, at 0.8% of the computational cost (40 vs 5000 FEA)
 On an equal computational footing, we compared the SROM surrogate to sets of “brute force” 

Monte Carlo based on 40 FE calculations. The SROM-based surrogate is far more accurate. 
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Motivation – mechanics
Modeling the failure process is 
beyond the scope of the L2 
milestone. We attempt to capture 
global necking through the 
calibration of a rate and 
temperature independent J2

plasticity model.   

500 m

Because necking is the dominant 
mechanism prior to failure, we can 
employ unloading as a failure 
metric. 
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Motivation – QMU
 We often deal with physical systems involving 

multiple physics and spanning many length / time 
scales

 The FE models of such systems are very large and 
complex

 Uncertainty is always present; QMU analyses are 
often desirable

 Monte Carlo Simulation (MCS) is the only general 
approach for uncertainty propagation and QMU 
studies

 How do we make MCS feasible with large complex 
FE models?

 Move to a Stochastic Reduced Order Model

 Idea – approximate random function on infinite 
sample space with a new random function on a 
finite sample space

 “Smart Monte Carlo”
FE model of system (o(e7) DOF)

~4 elements 
through thickness

component-scale model
(~12 elements in ligament)

weld



7



Minimize variables, modify geometry

Current work: 3 material constants, dimensionality = 3

Simplifications 

1. Explore BCJ_mem for flexibility (rate, temperature)
2. Assume weld is rate/temperature independent
3. Assume the weld is homogeneous
4. Transition from a sharp crack to a smooth notch

initial yield stress

hardening (linear)

recovery coefficient

DETAIL

WELD REGION

1.6 mm

0.76 mm

NOTCH
RADIUS

DETAIL

PLANES OF SYMMETRY

1.6 mm

3.175 mm

19.05 mm 1.6 mm

base sheet: deterministic
weld region: stochastic 
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MatCal wraps Dakota
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Move calibration from Matlab to Dakota. Develop a robust tool for analysts.

L2

PCAPP

Experimental data

 Developed a wrapper for Dakota – MatCal - https://snl-
wiki.sandia.gov/display/solids/MatCal+-
+Material+Model+Calibration+Tool

 Initially, the simulation was calibrated to the upper bound, 
approximate median and lower bound of the experimental 
data sets using the global optimization routine ncsu_direct
from DAKOTA.

 The calibrations were weighted to favor data points 
between the elastic region and peak load on the force 
displacement curve.

 Large parameter bounds chosen for the optimizations.

 The results from these initial calibrations were further 
improved using the least squares calibration algorithm nl2sol 
from DAKOTA.

 The calibration bounds were tightened using the results from 
global optimizations and an initial point near the upper bound 
was chosen for the remaining 37 calibrations employing 
nl2sol.

proposed discretization ~ 
component discretization



Reasonable fits to experiments
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weight function

focus on necking



Small changes under refinement
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6,440 elements

51,520 elements

413,440 elements

Although we are convoluting material and geometric variability, we are relatively 
independent of the discretization. We have less to worry about – for far-field tension

NOTE: Finest case mirrors 
intermediate case



Results of calibration
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Yield Stress Recovery Constant Hardening Constant Norm of Error (To peak load)
Data Set 5 6.740E+04 5.393E-01 1.202E+05 18.89
Data Set 10 5.988E+04 9.108E-01 1.444E+05 19.45
Data Set 9 6.153E+04 1.393E+00 1.634E+05 20.56
Data Set 8 6.089E+04 9.225E-01 1.460E+05 22.21
Data Set 25 5.455E+04 1.797E+00 2.005E+05 22.49
Data Set 31 5.650E+04 1.093E+00 1.681E+05 22.94
Data Set 19 6.327E+04 8.896E-01 1.467E+05 25.60
Data Set 30 5.026E+04 3.762E+00 2.789E+05 26.80
Data Set 32 5.955E+04 1.352E+00 1.738E+05 27.74
Data Set 7 6.984E+04 6.550E-01 1.225E+05 27.95
Data Set 21 6.125E+04 1.727E+00 1.776E+05 29.15
Data Set 1 6.650E+04 1.307E+00 1.451E+05 29.79
Data Set 23 6.763E+04 5.850E-01 1.262E+05 30.52
Data Set 18 6.598E+04 3.533E-01 1.252E+05 30.52
Data Set 22 6.156E+04 1.393E+00 1.680E+05 31.15
Data Set 26 6.220E+04 1.200E+00 1.604E+05 31.18
Data Set 6 6.977E+04 9.873E-02 1.095E+05 33.11
Data Set 27 5.984E+04 1.895E+00 1.742E+05 33.65
Data Set 38 6.310E+04 2.801E+00 2.029E+05 35.19
Data Set 33 6.324E+04 8.190E-01 1.543E+05 36.91
Data Set 11 6.680E+04 3.131E-02 1.185E+05 37.55
Data Set 34 6.750E+04 3.570E-01 1.254E+05 37.62
Data Set 15 6.565E+04 4.650E-05 1.209E+05 38.04
Data Set 4 7.142E+04 0.000E+00 1.023E+05 38.33
Data Set 36 6.298E+04 1.257E+00 1.602E+05 39.04
Data Set 28 7.133E+04 3.672E-01 1.130E+05 39.86
Data Set 13 6.854E+04 0.000E+00 1.147E+05 43.00
Data Set 24 6.603E+04 1.307E+00 1.447E+05 43.47
Data Set 29 6.718E+04 2.500E+00 1.765E+05 43.48
Data Set 39 6.236E+04 1.476E+00 1.775E+05 43.49
Data Set 16 6.609E+04 0.000E+00 1.231E+05 44.37
Data Set 40 7.375E+04 8.557E-03 9.537E+04 44.75
Data Set 17 6.682E+04 2.622E-02 1.208E+05 45.97
Data Set 20 5.415E+04 1.706E+00 2.071E+05 46.46
Data Set 37 5.933E+04 2.109E+00 2.009E+05 48.16
Data Set 12 6.782E+04 0.000E+00 1.191E+05 48.52
Data Set 14 6.643E+04 0.000E+00 1.187E+05 55.21
Data Set 2 7.283E+04 0.000E+00 1.036E+05 57.55
Data Set 35 7.046E+04 0.000E+00 1.095E+05 60.95
Data Set 3 7.475E+04 0.000E+00 1.090E+05 94.89

Average 6.467E+04 9.160E-01 1.467E+05 37.66
Median 6.600E+04 8.543E-01 1.446E+05 37.23
Standard Deviation 5.452E+03 9.055E-01 3.780E+04 13.97



Data “Enrichment”

 Motivation
 For optimal results, SROM construction requires abundant data

 Experimental data is often very limited

 We need a method to enrich the existing experimental data set

 One approach – translation random vectors
 A probabilistic model with functional form based on physical 

arguments, calibrated to available data

 Able to match second-moment properties (mean, covariance) and 
marginal distributions; these are quantities we can easily estimate 
from data

 Straightforward to produce large numbers of samples for SROM 
construction

 This approach is widely used at Sandia and elsewhere

13



How to choose probability distribution
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 20 independent samples of X
 x1, x2, …, x20

 Statistical considerations
 Method of moments

 Method of maximum likelihood

 Physical considerations
 What are the underlying physics?

 Is X continuous or discrete?

 Is X bounded?

 Is PDF symmetric about mean?

 Other considerations
 Conservatism / ease of use

 What are the consequences / tradeoffs 
between the different models?



Application to weld data

 Available information
 40 experimental measurements of weld geometry

 Mapped to 3 constitutive model parameters via detailed FE analysis 
and optimization routine

 Yield stress (Y), recovery constant (R), hardening constant (H)

 Lower and upper bounds on each model parameter

 Expert judgment, FE analysis to determine onset of unrealistic material 
behavior

 Estimate covariance matrix based on 40 samples of model parameters

 Modeling assumptions
 Yield stress and hardening constant follow a beta distribution

 Recovery constant follows an exponential distribution

 Consistent with bound information and some literature

 Alternative distributions can be studied at a later date
15



Results
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Experimental
Data

Translation
Model

Y R H

Y

R

H

Y R H

Y

R

H

Y (psi) R H (psi)

Yield Stress Recovery Constant Hardening Constant Yield Stress Recovery Constant Hardening Constant

Y (psi) R H (psi)



Uncertain input data
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Estimators of important properties

moments:

cumulative distribution:

correlation function: 

NOTE: If other properties are deemed important, include them.

Uncertain data: 
= vector describing weld constitutive 

behavior (yield Y, recovery R, hardening H).

What are the some measures to quantify these 
uncertain data? 

Yield Stress Recovery Constant Hardening Constant

Y (psi) R H (psi)



Reduced-order model for uncertainty
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with m << n and                  > 0 are weights and subject to probabilities                and                      .

moments cumulative distribution correlation

Estimates of uncertainty
SROM (solve for      given a set of m
randomly chosen samples from V )

To develop a model that optimally represents the uncertainty in the input we 
choose a discrete random variable      .  The SROM is then defined by the 
collection                 k = 1, …, m that minimizes an objective function of the form:



Graphical representation of SROMs
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10-sample SROM 20-sample SROM

These figures compare the SROMs to the calibrated fits.  NOTE: The SROMS 
are derived from the enriched, 5000 samples. The calibrated fits are the dotted 
lines and the SROMs are painted from least probable (blue, thin) to most 
probable (red, thick).

NOTE: Exponential distribution (no upper bound) for R lowers plateau in response



Whoa! L2 finished. Consistent?  
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We generated multiple 
SROMs and established 
a framework for the 
stochastic, input 
parameters.

Given the SROM input, 
we seek to show 
consistency by comparing 
SROM output to all 5000 
enriched samples.



SROM output to enriched data
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10-sample SROM 20-sample SROM

NOTE: SROM output lie within the 5000 samples used to construct the SROM

These figures compare the load versus displacement curves.  The colored lines 
are the FE-computed results using the 10- and 20-sample SROMs (color indicates 
probability).  The fine gray lines are the FE-computed results using the 5000 
enriched samples used to construct the SROMs.



Construction of SROM surrogate
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http://en.wikipedia.org/wiki/Voronoi_diagra
m

A Voronoi tessellation is constructed around a set of seed 
points (black dots).  In our work, these seed points are 
the SROM samples.  In general, the seed point is not 
located at the cell’s centroid. Instead, we determine an 
expansion point that is consistent with our 5000 random 
samples to minimize the error.

Probability density 

SROM surrogate Simplicity of Voronoi

Assumption: The response surface is differentiable
response surface



Results of surrogate
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Using an expansion about the mean of the data within a cell leads to more 
consistent sampling and increases the accuracy of the Taylor Series Expansion. 

REMINDER: 10 SROM samples are being compared to 5000 FE simulations



The mean error is nearly zero

24NOTE: The error has a distribution and the mean is nearly zero.

Histograms of the 
error                            
with                .

We note that

as guaranteed by 
slide 53.



SROM versus Monte Carlo
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Comparing the cumulative probability of failure between multiple SROM samples 
and 100 sets of 40 FE simulations employing Monte Carlo. The piecewise linear 10 
sample SROM has the same computational cost as 40 Monte Carlo samples.



SROM captures the tail in the CDF
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For this particular geometry and loading, we may consider peak load to define 
failure and derive margins from the tail of the distribution. If you can only afford 40 
calculations, the SROM-based surrogate is superior.

NOTE: 10-sample SROM has the same computational cost as 40 Monte Carlo samples.



Reflecting again on experiments
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Although we have illustrated the framework with enriched data, we can always 
reflect on the 40 sets of data that initiated this work. Encouraging.
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Summary
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 Laser welds are pervasive and dictate issues of nuclear safety

 Developed a stochastic framework that maps variability to performance

 Constitutive, finite-element, and statistical models incorporate physics

 Illustrated that the methodology is superior to standard MCS


