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At 10,000 feet (3000 m) ) .

We care about 304L laser welds: 304L laser welds are pervasive throughout the stockpile.
Understanding the performance of 304L laser welds enables designers to be better stewards
of the stockpile. 3300

We observe variability: The ductility of 304L 3000}
laser welds varies from specimen to specimen.
We observe both material and geometric
variability.
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We care about the impact of variability on |
performance: We need to develop methods that 1000
capture and propagate variability in a 300
mathematically rigorous manner. The tail of the
distribution matters. U001 02 03 04 05 06 07 08 09

Displacement (mm)

We seek the tail with limited computational resources: The only general approach to
determine the tails of the output distribution is through repeated random sampling, Monte Carlo
Simulation (MCS). We do not, however, have the computational resources to repeatedly sample
component or system level finite element models. We need to be smarter in how we apply MCS.

We need a framework that is flexible and extensible: We need to have the ability to
incorporate new experiments and consider new physics. The analyst, not the framework, should
dictate the path forward. 2




Go write a milestone ) i,

Description: Thousands of feet of 304L stainless steel laser welds reside in numerous
weapon components, including first-order nuclear safety systems, that serve a wide
variety of functions. These welds must remain structurally sound in both normal and
abnormal environments. Variability in weld geometry and material properties can have a
critical impact on performance margins and uncertainties in both current and future
designs. Historically, component analysis models have incorporated variability through
a statistically limited set of experimental data. This milestone will deliver a capability for
constructing component-scale models from a statistically significant population of the
weld response obtained from both experiments and higher fidelity simulations.

Completion Criteria: Demonstration of a framework that accounts for 304L weld

variability through the construction of component level models for quasi-static
mechanical environments.
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L2 framework that accounts for 304L weld variability
Committee chair: John Pott

Committee members: Jay Dike (Analysis), Frank Dempsy (Analysis), Sharlotte

Kramer (Experiments), Jake Ostien (Mechanics), Brian Adams
(Optimization/Uncertainty), Mike Maguire (Welding)




Executive summary ) .

Our work illustrates a framework for constructing stochastic reduced order models (SROMs) to capture
geometric/material variability in 304L laser welds.

Developed tools for calibration, enrichment, and the construction of SROMs

Applied “brute force” Monte Carlo with 5000 finite element (FE) calculations to obtain the
character of the output failure metric

SROM-based surrogate accurately computed the cumulative distribution function, capturing
the lower tail, at 0.8% of the computational cost (40 vs 5000 FEA)

On an equal computational footing, we compared the SROM surrogate to sets of “brute force”
Monte Carlo based on 40 FE calculations. The SROM-based surrogate is far more accurate.

constitutive FE model of models of  optimal reduced
model experiments distributions order model

L2 Tools L2 Tools L2 Tools

experimental stochastic calibrate enrich SROM on
basis parameters parameters parameters parameters

component
simulations

FE model of surface of  sampling failure CDF of
component failure metric metric failure metric
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Motivation — mechanics

Modeling the failure process is
beyond the scope of the L2
milestone. We attempt to capture
global necking through the
calibration of a rate and
temperature independent J,
plasticity model.

far—field force (N)

Because necking is the dominant
mechanism prior to failure, we can
employ unloading as a failure
metric.

experimental data, Boyce

| | | I |
0.1 0.2 0.3 0.4 0.5
extensometer gauge displacement (mm)




Motivation — QMU

We often deal with physical systems involving
multiple physics and spanning many length / time
scales

The FE models of such systems are very large and
complex

Uncertainty is always present; QMU analyses are
often desirable

Monte Carlo Simulation (MCS) is the only general
approach for uncertainty propagation and QMU
studies

How do we make MCS feasible with large complex
FE models?

Move to a Stochastic Reduced Order Model

= |dea — approximate random function on infinite
sample space with a new random function on a
finite sample space

= “Smart Monte Carlo”
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componen | del
(~12 elements in ligament)

~4 elements
through thickness

FE model of system (o(e7) DOF)
6




Calibration ﬁgggﬁal

\ 40 experimental | Choose: Laboratories
Experimental data ,  observations 1. FE discretization / element type
characterizing the } » | 2. material model / uncertain parameters
‘assumed mode(s) of failure ' 3. boundary conditions
4. objective function / weights

40 sets of parameterizations for the
40 experimental observations

Enrichment
Choose:
1. appropriate marginal probability distribution for
each parameter
2. physically realistic bounds for the parameters,
if available
3. appropriate correlation function for the
parameters

5000 sets of parameterizations
representing the material variability

Stochastic Reduced-order Model (SROM)
Choose:

1. size of SROM, m (e.g., m = 10)

2. objective function

10 sets of parameterizations
AND their probabilities

FE Analysis: SROM-based Surrogate Model
1. FE model discretization Choaose:
2. element types 1. order of Taylor approximation
3. material models 2. method for computing gradients in Taylor approximation
\ 4. boundary conditions (e.g., finite difference)

1\ Estimate component reliability
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Minimize variables, modify geometr{ .

DETAIL WELD REGION

DETAIL

base she_et: determin{stic P [H _ Rli] ép
weld region: stochastic H

K (€p) = R |1 —exp (—Rep)]

Simplifications

Explore BCJ_mem for flexibility (rate, temperature) Y initial yield stress
Assume weld is rate/temperature independent H  hardening (linear)

Assume the weld is homogeneous -
Transition from a sharp crack to a smooth notch R recovery coefficient

Current work: 3 material constants, dimensionality = 3




MatCal wraps Dakota
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Move calibration from Matlab to Dakota. Develop a robust tool for analysts.

= Developed a wrapper for Dakota — MatCal - https://snl-
wiki.sandia.gov/display/solids/MatCal+-
+Material+Model+Calibration+Tool

Initially, the simulation was calibrated to the upper bound,

approximate median and lower bound of the experimental
data sets using the global optimization routine ncsu_direct
from DAKOTA.

= The calibrations were weighted to favor data points
between the elastic region and peak load on the force
displacement curve.

= |arge parameter bounds chosen for the optimizations.

The results from these initial calibrations were further
improved using the least squares calibration algorithm n/2sol
from DAKOTA.

The calibration bounds were tightened using the results from
global optimizations and an initial point near the upper bound
was chosen for the remaining 37 calibrations employing
ni2sol.

_ o O S
proposed discretization ~ O s

. o I“illlli"“‘l_‘,:;a‘
component discretization IE'.'E" )

Experimental data

Upper Bound
Lower Bound

— Approximate Median

0.4 0.6 0.8
Displacement(mm)
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Reasonable fits to experiments
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Small changes under refinement @
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Although we are convoluting material and geometric variability, we are relatively
independent of the discretization. We have less to worry about — for far-field tension

3500

6,440 elements

]

6,440 Elements

413,440 Elements

Lower Bound NOTE: Finest case mirrors
Median intermediate case

—— Upper Bound

| !
0.6 0.8
Displacement(mm)

— — —51,520 Elements 413,440 elements




Results of calibration

Yield Stress

Recovery Constant

Hardening Constant

Norm of Error (To peak load)|

Data Set 5

6.740E+04

5.393E-01

1.202E+05

18.89

Data Set 10

5.988E+04

9.108E-01

1.444E+05

19.45

Data Set 9

6.153E+04

1.393E+00

1.634E+05

20.56

Data Set 8

6.089E+04

9.225E-01

1.460E+05

22.21

Data Set 25

5.455E+04

1.797E+00

2.005E+05

22.49

Data Set 31

5.650E+04

1.093E+00

1.681E+05

22.94

Data Set 19

6.327E+04

8.896E-01

1.467E+05

25.60

Data Set 30

5.026E+04

3.762E+00

2.789E+05

26.80

Data Set 32

5.955E+04

1.352E+00

1.738E+05

27.74

Data Set 7

6.984E+04

6.550E-01

1.225E+05

27.95

Data Set 21

6.125E+04

1.727E+00

1.776E+05

29.15

Data Set 1

6.650E+04

1.307E+00

1.451E+05

29.79

Data Set 23

6.763E+04

5.850E-01

1.262E+05

30.52

Data Set 18

6.598E+04

3.533E-01

1.252E+05

30.52

Data Set 22

6.156E+04

1.393E+00

1.680E+05

31.15

Data Set 26

6.220E+04

1.200E+00

1.604E+05

31.18

Data Set 6

6.977E+04

9.873E-02

1.095E+05

33.11

Data Set 27

5.984E+04

1.895E+00

1.742E+05

33.65

Data Set 38

6.310E+04

2.801E+00

2.029E+05

35.19

Data Set 33

6.324E+04

8.190E-01

1.543E+05

36.91

Data Set 11

6.680E+04

3.131E-02

1.185E+05

37.55

Data Set 34

6.750E+04

3.570E-01

1.254E+05

37.62

Data Set 15

6.565E+04

4.650E-05

1.209E+05

38.04

Data Set 4

7.142E+04

0.000E+00

1.023E+05

38.33

Data Set 36

6.298E+04

1.257E+00

1.602E+05

39.04

Data Set 28

7.133E+04

3.672E-01

1.130E+05

39.86

Data Set 13

6.854E+04

0.000E+00

1.147E+05

43.00

Data Set 24

6.603E+04

1.307E+00

1.447E+05

43.47

Data Set 29

6.718E+04

2.500E+00

1.765E+05

43.48

Data Set 39

6.236E+04

1.476E+00

1.775E+05

43.49

Data Set 16

6.609E+04

0.000E+00

1.231E+05

44.37

Data Set 40

7.375E+04

8.557E-03

9.537E+04

44.75

Data Set 17

6.682E+04

2.622E-02

1.208E+05

45.97

Data Set 20

5.415E+04

1.706E+00

2.071E+05

46.46

Data Set 37

5.933E+04

2.109E+00

2.009E+05

48.16

Data Set 12

6.782E+04

0.000E+00

1.191E+05

48.52

Data Set 14

6.643E+04

0.000E+00

1.187E+05

55.21

Data Set 2

7.283E+04

0.000E+00

1.036E+05

156

Data Set 35

7.046E+04

0.000E+00

1.095E+05

60.95

Data Set 3

7.475E+04

0.000E+00

1.090E+05

94.89

Average

6.467E+04

9.160E-01

1.467E+05

37.66

Median

6.600E+04

8.543E-01

1.446E+05

37.23

Standard Deviation

5.452E+03

9.055E-01

3.780E+04

13.97
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Data “Enrichment”

= Motivation
= For optimal results, SROM construction requires abundant data
= Experimental data is often very limited
= We need a method to enrich the existing experimental data set

= One approach —translation random vectors

= A probabilistic model with functional form based on physical
arguments, calibrated to available data

Able to match second-moment properties (mean, covariance) and
marginal distributions; these are quantities we can easily estimate
from data

Straightforward to produce large numbers of samples for SROM
construction

= This approach is widely used at Sandia and elsewhere
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How to choose probability distribution® =

= 20independent samples of X

" X Xy, e Xy

Normalized histogram

= Statistical considerations 1 Dat
N ala

= Method of moments lc =0.65 —— Gaussian
. ) ] v = 0.05 gntlform
= Method of maximum likelihood I = 0.3 =

= Physical considerations
= What are the underlying physics?

= |s X continuous or discrete?
= |s X bounded?

= |s PDF symmetric about mean?

= QOther considerations
= Conservatism / ease of use

= What are the consequences / tradeoffs
between the different models?
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Application to weld data

Available information
= 40 experimental measurements of weld geometry

= Mapped to 3 constitutive model parameters via detailed FE analysis
and optimization routine

= Yield stress (Y), recovery constant (R), hardening constant (H)
Lower and upper bounds on each model parameter

= Expert judgment, FE analysis to determine onset of unrealistic material
behavior

= Estimate covariance matrix based on 40 samples of model parameters

Modeling assumptions
= Yield stress and hardening constant follow a beta distribution
= Recovery constant follows an exponential distribution
= Consistent with bound information and some literature
= Alternative distributions can be studied at a later date




Results )

(1o~ Yield Stress Recovery Constant . s Hardening Constant 1o° Yield Stress Recovery Constant . Hardening Constant
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Uncertain input data

10 Yield Stress Recovery Constant . s Hardening Constant

1

0.9

0.8

0.7]

0.6

0.5

0.4

0.3

0.2

01

Uncertain data:
© € R? = vector describing weld constitutive
behavior (yield Y, recovery R, hardening H).

What are the some measures to quantify these
uncertain data?

Estimators of important properties

T

4 5 6 7 8 9

y (pSI) x 10*

0, i i
0 2 4 6 0 1 2 3 4 5

Samplfcovariance (samples)l_l (pSI) " moments: /:\LS (T) — Z(l/n) (9i,3>T7

cumulative distribution:

correlation function:

1 2 3

NOTE: If other properties are deemed important, include them.
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Reduced-order model for uncertainty

To develop a model that optimally represents the uncertainty in the input we
choose a discrete random variable ®. The SROM is then defined by the
collection (Hk,ﬁk> k=1, ..., mthat minimizes an objective function of the form:

nax max o pljis(r) = fs(r)l + max BilFs(x) = Fo(x)[+ Cop max|e(s,t) — (s, 1)
- NG ARG /

moments cumulative distribution correlation

SROM (solve for p; given a set of m _ _
randomly chosen samples from V) Estimates of uncertainty

T

fis(r) = Z(l/n) (6:,5)"

Fy(z) = Z(l/n) 1(0;s < x)

c(s,t) = Z(l/n) 05 0+

1=1

withm <<nand «, 3, ¢ >0 are weights and subject to probabilities p, >0 and ), pp = 1.
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Graphical representation of SROMs @

These figures compare the SROMs to the calibrated fits. NOTE: The SROMS
are derived from the enriched, 5000 samples. The calibrated fits are the dotted
lines and the SROMSs are painted from least probable (blue, thin) to most

probable (red, thick).

x10°

10-sample SROM

N
13)] N
T T

true stress (psi)

—_
T

%

true strain (in/in)

1.5

true stress (psi)

0

20-sample SROM

0

1
true strain (in/in)

NOTE: Exponential distribution (no upper bound) for R lowers plateau in response




Whoa! L2 finished. Consistent? ) &=,

We generated multiple
SROMs and established
a framework for the
stochastic, input
parameters.

Given the SROM input,
we seek to show
consistency by comparing
SROM output to all 5000
enriched samples.

constitutive FE model of models of  optimal reduced
mode/ experiments distributions order model

L2 Tools L2 Tools L2 Tools

stochastic calibrate enrich SROM on
parameters parameters parameters parameters

FE model of surface of  sampling failure CDF of
component failure metric metric failure metric

constitutive FE model of models of optimal reduced
model experiments distributions order model

L2 Tools L2 Tools L2 Tools

stochastic calibrate enrich SROM on
parameters parameters parameters parameters

FE model of surface of  sampling failure CDF of
experiments failure metric metric failure metric




SROM output to enriched data ) .

These figures compare the load versus displacement curves. The colored lines
are the FE-computed results using the 10- and 20-sample SROMSs (color indicates
probability). The fine gray lines are the FE-computed results using the 5000
enriched samples used to construct the SROMs.
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NOTE: SROM output lie within the 5000 samples used to construct the SROM




Construction of SROM surrogate @

SROM surrogate Simplicity of Voronoi

Probability-density

35 4 ttp://len.wikipedia.org/wiki/\Voronoi_diagra
m

A Voronoi tessellation is constructed around a set of seed
points (black dots). In our work, these seed points are
the SROM samples. In general, the seed point is not
located at the cell’s centroid. Instead, we determine an
expansion point that is consistent with our 5000 random
samples to minimize the error.

Assumption: The response surface is differentiable

response surface 29
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Results of surrogate

Using an expansion about the mean of the data within a cell leads to more
consistent sampling and increases the accuracy of the Taylor Series Expansion.

REMINDER: 10 SROM samples are being compared to 5000 FE simulations

0.0040 10-sample SROM 10-sample SROM, mean expansion

‘ . 0.0040 .
— Surrogate ) — Surrogate
0.0035f| — FE , s ] 0.0035f| — FE

0.0030 : s 1 0.0030}
0.0025} T 1 0.0025}

0.0020 0.0020

Load (MN)
Load (MN)

0.0015} 1 0.0015}
0.0010 1 0.0010
0.0005 1 0.0005
/

O.OO(&O0

0 L 1 L L L L L 1 I I 1 I I I
.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 .000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Normalized Applied Displacement (mm/mm) Normalized Applied Displacement (mm/mm)

0.00%

23




The mean error is nearly zero

Cifference from 10-sample SROM-based Surrogate
Expanded at the mean and the FEM Calculations

250
200 _
150 Histograms of the
100 error h(Y) — h(g(X))
30 with h(Y) =Y.

—CFDGGE —0.0006 —0.0004 —0.0002 0.0000 0.0002 0.0004 0.0006

Difference from 20-sample SROM-based Surrogate We note that

Expanded at the mean and the FEM Calculations E[Y - §(X)] ~ 0
250 as guaranteed by

200 :
150 slide 53.

100
50

o
—-0.0008 —0.0008 —0.0004 —-0.0002 00000 00002 00004 00006

Difference from 80-sample SROM-based Surrogate
S00 Expanded at the mean and the FEM Calculations
250
200
150
1000

50

—GQDEIEIE —I:_I'.-GDUE —0.0004 00002 0.0000 000072 00004 Q0006
FEM Peak Load - Surrogate Peak Load (MN)

NOTE: The error has a distribution and the mean is nearly zero.




SROM versus Monte Carlo =

Comparing the cumulative probability of failure between multiple SROM samples
and 100 sets of 40 FE simulations employing Monte Carlo. The piecewise linear 10
sample SROM has the same computational cost as 40 Monte Carlo samples.

FEA M5 vs. SROM-based Surrogate MCS 100 sets of 40 samples of FEA MCS
Cumulative Prabahility of Failure Curnulative Prabzhility of Failu-e

i

FEM

10 SROM

20 SROM

40 SROM

80 SROM

10 SROM at mean
20 SROM at mean
40 SROM at mean
B0 SROM at mean

o
]

b
Cumulative Probability

Curmulative Prebability

%'.%026 [ENalire:] 4.0030 00032 (¢RI ETH 0036 Q0035 D.Cod0 %'EGEG D.0028 G.0020 0.0032 0.o03d 0056 Q035
Peak Load [(MN] Peak Load [(MN]




SROM captures the tail in the CDF @)

For this particular geometry and loading, we may consider peak load to define
failure and derive margins from the tail of the distribution. If you can only afford 40
calculations, the SROM-based surrogate is superior.

FEA MCS vs. SROM-based Surrogate MCS 100 sets of 49 sarples of FEA MCS
Cumulative Probability of Failure Curnulative Probability of Failure

FEM

10 SROM

20 SROM

40 SROM

80 SROM

10 SROM at mean
20 SROM at mean
40 SROM at mean
B0 SROM at mean

Cumulative Probability
Cumulative Probahbility

O't?.%ﬂ@ﬁ COD2Y 40028 00023 00030 0031 Q0032 0.C033 O'[?.?JGEE: LOD2Y 0028 00029 D.O030 00031 00032 00033
Peak Lasd [(MN] Pesk Load [(MN]

NOTE: 10-sample SROM has the same computational cost as 40 Monte Carlo samples.
26




Reflecting again on experiments ) 5.

Although we have illustrated the framework with enriched data, we can always
reflect on the 40 sets of data that initiated this work. Encouraging.

Experimaat vs SROM-Lased Surmogate MCS
Curia ative Probabi ity of Mailure

Experiment

10 SROM

20 SROM

30 SHOM

30 SROM

12 SROM at mean
20 SROM at mean
40 SROM at mean
20 SROM at mean

"
=
™
-
4
Ta
=
E
=
L

[E".?JQEE T ¥ 20030 0.a032 0.C034 eCle 000zL C.oond0
Peak load (MM




Calibration ﬁgggﬁal

\ 40 experimental | Choose: Laboratories
Experimental data ,  observations 1. FE discretization / element type
characterizing the } » | 2. material model / uncertain parameters
‘assumed mode(s) of failure ' 3. boundary conditions
4. objective function / weights

40 sets of parameterizations for the
40 experimental observations

Enrichment
Choose:
1. appropriate marginal probability distribution for
each parameter
2. physically realistic bounds for the parameters,
if available
3. appropriate correlation function for the
parameters

5000 sets of parameterizations
representing the material variability

Stochastic Reduced-order Model (SROM)
Choose:

1. size of SROM, m (e.g., m = 10)

2. objective function

10 sets of parameterizations
AND their probabilities

FE Analysis: SROM-based Surrogate Model
1. FE model discretization Choaose:
2. element types 1. order of Taylor approximation
3. material models 2. method for computing gradients in Taylor approximation
\ 4. boundary conditions (e.g., finite difference)

1\ Estimate component reliability
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Summary e

Laser welds are pervasive and dictate issues of nuclear safety

Developed a stochastic framework that maps variability to performance

Constitutive, finite-element, and statistical models incorporate physics

lllustrated that the methodology is superior to standard MCS

constitutive FE model of models of  optimal reduced
model experiments distributions order model

L2 Tools L2 Tools L2 Tools

experimental stochastic calibrate enrich SROM on
basis parameters parameters parameters parameters

o i @

FE model of surface of  sampling failure CDF of
component failure metric metric failure metric




