T VAL S5
//SAND2014 053 >

National Nuclear Security Administration

and Confused™: he Evolution
of Phase Chemistry in Sol-gel NaSICON Synthesis

*

Erik D. Spoerke

% éi\ah ﬁell Cynthla Edney, Leo,,SmQII .Illl Wheeler and David Ingersoll

ok \,' ¥ Sandla National LaboraﬂmeS\ Albuquerque NM USA
R S1: Functlonal and Multifunctional Electroceramics for Commercialization
R By E‘Iectromc Materials and Applit:atmns 2014
- N, B L ER 0, January 23,2014 e g
T S TR N : B e VR )
’ . - ] .\-4 N s ;‘5’ " .;"ﬁi .y - ‘;_- g -":_f,-«‘ Orlando, FL “_, - 1 "

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.



v Sodium-based Batteries ()

Program Focus: Develop sodium-based battery chemistries for large

scale energy storage

e Sodium-air

e Sodium-ion

* Low temperature sodium-sulfur

* Sodium-bromine: Na + % Br, €=» Na* + Br

* Sodium-iodine: Na + % |, €=» Na* + I

* Sodium-copper iodide: Na + Cul,” €=» Na*+2I + Cu(s)

/ Discharge
\ Charge

Na discharge Na+ te CMI; +e discharge CM(S) + 21_

Current collector: Cu cathode

H. Zhu, S. Bhavaraju, and R. Kee. “Computational model of a sodium—copper-iodide rechargeable battery,” Electrochimica Acta (2013).



Na-Based Batteries Depend on @
Ceramic Solid State Electrolytes
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The ceramic separator is central to Na-battery performance!

‘é\ﬂ.c—h'alr;:;_/é:

Ceramic requirements:

Nasicon * High ionic conductivity

* High electrical resistivity

e Robust stability in extreme
chemical environments

* Facile, low cost synthesis

Current collector Cu cathode
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#NaSICON Ceramic Electrolytes @

What is NaSICON? (Sodium (Na) Super lonic Conductor)

Nag, ZrP,, 510, ——23 Na,Zr,PSi,0,,

3-x~"'x

Key NaSICON attributes:

* High ionic conductivity (up to 10?2 S/cm at RT) ?

* High electrical resistivity

* Robust stability in extreme chemical ?
environments

* Facile, low cost synthesis ?

These qualities all depend on the materials
chemistry of the ceramic!




Research Focus: NaSICON
Ceramic Solid State Electrolytes

eall

= Understanding the materials chemistry of the solid-state ion-
conductor NaSICON

= Correlating material chemistry to materials properties (e.g.,
chemical stability, ionic conductivity, ceramic integrity)

= Designing improvements to NaSICON through processing and
composition to optimize performance for Na-based batteries



'NaSICON Materials Chemistry @

NaSICON performance depends on phase chemistry!

Secondary phase formation can have a significant impact on:

* jonic conductivity e structural integrity * chemical stability
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NaSICON performance depends on phase chemistry!

Secondary phase formation can have a significant impact on:

* jonic conductivity e structural integrity

Sodium phosphates
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e chemical stability

High solubility of sodium phosphates in
acid and base can lead to mechanical
failure!
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Phase Dependence on Processing @

Phase composition of NaSICON depends on processing

— Solid state processing of NaSICON ceramics typically involves an
extended high temperature firing stage (>1200°C, >12 hours)

“Decomposition” of NaSICON
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High temperature processing leads to deleterious secondary phases!
Will a lower temperature process resolve phase impurity?



Sol-gel processing

Thermal analysis
identifies NaSICON
formation
temperature.

X-ray diffraction
shows evolution
of crystalline
phases.
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Sol-Gel NaSICON Phase Evolution @
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Sol-Gel NaSICON Phase Evolution @
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Sol-Gel NaSICON Phase Evolution @
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Sol-Gel NaSICON Phase Evolution @
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Sol-Gel NaSICON Phase Evolution @
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Lessons from Low @
Temperature Processing

el

* Phase evolution during heating is complex!

* Lower processing temperatures result in significant secondary
phase formation.

* Secondary phase are not formed just from high temperature
processes, but can be residual from incomplete low temperature
conversions.

 Higher temperatures appear to be needed for complete phase
conversion, but high T°C is expected to lead to secondary phases.

What Next?
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Excess Sodium Addition (i)

NaSICON with excess sodium fired at 1000°C shows dramatically cleaner phase
chemistry!
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Excess Sodium Addition (i)

NaSICON with excess sodium fired at 1000°C shows dramatically cleaner phase
chemistry!
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Excess Sodium Addition (i)

NaSICON with excess sodium fired at 1000°C shows dramatically cleaner phase
chemistry!
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Excess Sodium Reduces @
Effective Processing Temperature

Thermal Analysis and XRD show NaSICON formation at lower temperatures with

excess Na!
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Excess sodium addition appears to change the energetics of NaSICON conversion, likely by
affecting mass transport in liguid phase elements of sintering.
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Excess Sodium Reduces @
Effective Processing Temperature

Thermal Analysis and XRD show NaSICON formation at lower temperatures with

excess Na!
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Excess sodium addition appears to change the energetics of NaSICON conversion, likely by
affecting mass transport in liguid phase elements of sintering.
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Excess Sodium Reduces @
Effective Processing Temperature

Thermal Analysis and XRD show NaSICON formation at lower temperatures with

excess Na!
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Excess sodium addition appears to change the energetics of NaSICON conversion, likely by
affecting mass transport in liguid phase elements of sintering.
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Wrapping Up... (Fh)

et

What have we learned?

* NaSICON ceramics are promising solid state electrolytes for Na-
based batteries.

* Controlling secondary phase chemistry is critical to optimizing
NaSICON performance.

* Reducing processing temperatures does not improve NaSICON
phase purity.

* Addition of small amounts of excess sodium dramatically reduces
secondary phase formation at lower temperatures!
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Looking Forward @

Targeting synthesis of improved NaSICON stability to enable integration into next
generation Na-based batteries:

. Ceramic insulator

~—Metal case

* Explore alternative mechanisms to reduce N
processing temperatures with high phase
purity. & |\’ o

* Investigate alternative precursor pathways T
to control phase chemistry. rron i

* Evaluate effects of phase chemistry on
sodium ion transport/conductivity.

* Examine chemical stability of NaSICON as
affected by additives (such as sodium).

* Study the relationships between phase
chemistry and microstructure (e.g., grain
structure) with respect to NaSICON
performance.

Molten sodium (anode)
< Sl
‘_.\-’»‘ \2/ Porous wick (metal)
K_/ Separator (Na-conductor)
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