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Outline:

• Force computation/design in optomechanics.

• Introduce the response theory of optical 
forces (RTOF) [1].

 Yields simple analytical framework for 
optical forces.

• Describe conceptual basis of RTOF.

• Illustrate simplified design with RTOF.

[1] Peter T. Rakich, Miloš A. Popovic, and Zheng Wang, "General treatment of optical 
forces and potentials in mechanically variable photonic systems," Opt. Express 17, 
18116-18135 (2009) 



Eichenfield, M. et al. Nature Photon. 1, 416–422 (2007).
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Optomechanics: Recent Work

• Variety of optomechanical systems studied.
• For applications: Goal is to enhance/tailor the optical forces.
• Topic of this presentation: How to understand and model such systems?
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Dual microring geometry:



Q: What is the status of force computation & 
design in optomechanics today?

Pros of MST:

• Straight forward recipe.

• Proven.

Cons of MST:

• Computationally costly 

 requires full field calculation.

• Offers little intuition/insight.

• Difficult to design/synthesize forces with 
MST.

• No simplifications apparent with MST.

• No way to identify similarities/patterns 
between various systems

Ex

Procedure for MST

Ex

(1) Compute Fields

(2) Evaluate MST

(3) Integrate MST 
to evaluate force

• Maxwell Stress Tensor is widely used method for force computation.
but there’s no well established method for force design.  this is the 
problem that we address.



Response theory of optical forces (RTOF)
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• Optical force can be computed from the mechanically variable optical response. 
• How is the mechanically variable optical response defined?



Forces from optical response:

Fabry-Perot: Two-port system
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Generalized Mech. variable two-port:

Two-port system response
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Fabry Perot is a simple example, but concept is very broadly applicable…
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Optical forces on Mirror: Forces computed from response:

Optical force expressed on 
mechanical degree of 
freedom, q, given by:



Generality of the response theory of optical forces:

Waveguide segment under dielectric perturbation:Generalized Mech. variable two-port:
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Force and potential are 
computed from RTOF.



Link behavior of similar optical systems:

Radiation Pressure

(b)

M1 M2

Pi,1

Po,1

q

Po,2

)(q

,i rP P
tP

)(q

q

iP tP

(a)

(b)

rP

q

• Systems look quite different, but their 
response can be identical.

- All are two-port resonant systems 
(o)
- o(q)
- H(o(q))

• Despite similarities, Maxwell stress 
tensor requires complete reformulation 
of problem electromagnetically. 



Design of new functionalities
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Conclusion: Light-intensity-dependent 
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(2) Conceptual basis for RTOF



What is the basis for RTOF? First must consider conservation 
of energy in optomechanically variable systems:

Ex

F
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For simplicity, we assume:

• Device = Reflectionless one-port

• No Losses  Coordinate, q, effects phase.

(System =optomechanical phase modulator)

For time-varying q, frequency & power modified. 
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Energy conservation:

Simple example of reflectionless one-port:Smoothly time-varying optomechanical system:
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How do we formulate Uem more rigorously?
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In varying q:

• Response changes.

• Work is done against F opt.
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A closer look at energetics of time-varying system:
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Thought experiment Illustrating Energetics

Work done against optical 
forces:
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(Lossless one port) = (Optomechanical phase modulator)
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If q(t) evolves slowly, it is reasonable to assume:
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(Photon flux, conserved)
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Trans. frequency

How to compute the change in EM energy?
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(1) Relate the incident power to photon energy and photon flux.
(2) Assume that q(t) evolves slowly.
(3) Assume that photons are conserved.

Great simplification through use of the photon construct:
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How to compute the change in EM energy?

Great simplification through use of the photon construct:
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Result:

Given              we can compute the optical force on 
coordinate, q.
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Extension to multi-port systems.

[1] Madsen, C. K. & Zhao, J. H. Optical flter design and analysis  (Wiley, New York, 1999).

Lossless single-port, with a single mechanical degree of freedom, q.
(Input flux () and frequencies () are assumed to be fixed).

Lossless multi-port, with a single mechanical degree of freedom, q.
(Input fluxes (i’s) and frequencies (i’s) are assumed to be fixed).
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• Allows direct potential synthesis!

• Phase synthesis already known [1].
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(3) Comparison of RTOF with 
Maxwell Stress Tensor methods.



Comparison of MST with RTOF: Numerical Example
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Analytical expression for Force (RTOF):

RTOF-method



Comparison of MST with RTOF: Analytical Example

RTOF method MST method



(4) Simplified design via RTOF.



Example: All-pass filter.
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Through-port

C.M.T. Model of microring: 

Independent of cavity Q! 

Potential makes “jump” of 



Bistable microring switch.
• Q: Why is the equilibrium state of the bistable 

optomechanically variable system so sensitive to the 

intensity of the incident light ?
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Conclusion: Light-intensity-dependent 
equilibrium state (   ) in total (sum) potential

Eichenfield, M. et al. Nature Photon. 1, 416–422 (2007).

• A: Because half of the potential-well is 
produced by light, while the other half of the 
potential well is created by the mechanical 
restoring force (i.e. a spring of some sort.) 

• As a result, the equilibrium position of the 
system is highly intensity dependent.



Design of optical potential wells with RTOF:

Alignment of resonance occurs at 
different positions for each modeF
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For more details see Nat photonics paper.

Monochromatic 
excitation at 
frequency 



Analyze any system representable by CMT!
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Povinelli, et. al. Opt. Lett. 30,3042 (2005).
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Suh et al, Opt. Lett., vol. 28, p1763 (2003) M. Notomi, et. al.PRL  97(2), 023903 (2006).Rakich et. al. Opt. Lett. 31, 1241-1243 (2006).



Conclusions:

New formalism, “Response theory of optical forces” or 
RTOF enables:

Derivation of the force and potential from mech variable 
optical response.
 Synthesize potentials.
 Unify the behaviour of systems.
 Simple conceptualization of forces & tractable 
analytical models.

Can apply this theory provided that:
 Response can be written simply (ideally finite number 
of ports).
 System is lossless.

Further possibilities:
Can treat systems with losses in many cases provided the 

source of the losses is known and can be assigned to an 
output port.



Backup slides follow:









Design of new functionalities

• Design for maximum force
• Design for function

 potential well
 Optical bistability

Ultra-precise control of bodies

Stabilize to ~1pm in space
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F




Ex

F


Ex

qkFrestore 
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For example:

Position 1: repulsive force

Position 2: attractive force
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Synthesis of optical force profiles for 
sophisticated functionality
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Amplitude-Invariant Equilibrium States: Frequency Control

• Q: Why is the equilibrium state of the bistable 

optomechanically variable system so sensitive to the 

intensity of the incident light ?
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Conclusion: Light-intensity-dependent 
equilibrium state (   ) in total (sum) potential

Eichenfield, M. et al. Nature Photon. 1, 416–422 (2007).

• A: Because half of the potential-well is 
produced by light, while the other half of the 
potential well is created by the mechanical 
restoring force (i.e. a spring of some sort.) 

• As a result, the equilibrium position of the 
system is highly intensity dependent.



Amplitude-Invariant Equilibrium States: Frequency Control

Q: Why is the equilibrium state of an all-optical 
potential-well independent of the intensity of the 
driving optical signal?
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All significant 
potential terms 

due to light forces
(all scale linearly 
with intensity so 

shape is intensity 
independent).

NO significant potential 
term due to mechanical 
restoring forces (weakly 
supported membrane)

Conclusion: Light-intensity-INDEPENDENT 
equilibrium state (   ) in total (sum) potential

Optical 
resonance 2

A: Because both sides of the potential well are 
created by the same incident optical signal.  
Therefore, as the intensity of the light 
changes, both sides of the potential-well 
change in the same way. 

• As a result, the equilibrium position of the 
system has no intensity dependence.



Example: Multi-port ring resonator system.
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Outline:

• Discuss direction of optomechanics.

• Describe the response theory of optical 
forces (RTOF)*.

 Yields simple analytical framework for 
optical forces.

• Illustrate simplified design with RTOF.

[*] Peter T. Rakich, Miloš A. Popovic, and Zheng Wang, "General treatment of optical forces and 
potentials in mechanically variable photonic systems," Opt. Express 17, 18116-18135 (2009) 



Abstract: Engineering optical forces in 
waveguides and cavities based on optical 

response

• Paper 7579-52 of Conference 7579Date: Sunday, 24 January 2010 Time: 
2:00 PM – 2:30 PM 

• Author(s): Peter T. Rakich, Sandia National Labs. (United States); Zheng H. 
Wang, Milos A. Popovic, Massachusetts Institute of Technology (United 
States) 

• We present a new treatment of optical forces, revealing that the forces in 
virtually all optomechanically variable systems can be computed exactly and 
simply from only the optical phase and amplitude response of the system. 
This treatment, termed the response theory of optical forces (or RTOF), 
provides conceptual clarity to the essential physics of optomechanical 
systems, which computationally intensive Maxwell stress-tensor analyses 
leave obscured, enabling the construction simple models with which optical 
forces and trapping potentials can be synthesized based on the optical 
response of optomechanical systems. Furthermore, we discuss novel signal 
processing applications developed through use of this formalism. 

http://spie.org//app/program/index.cfm?fuseaction=conferencedetail&conference=7579






Various lossless reflectionless one-port systems to consider:
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Response theory of optical forces (RTOF)
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Assumptions:
1) Photons conserved
2) Energy conserved
 Lossless

S-matrix

Single port eqn Here Multi-port eqn Here



Can we extend to arbitrary optomechanically variable systems?
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Energy in optomechanically variable systems:

inU

q
qq 

Constant flow of photons passes through an OM variable device.
Work done against the optical forces.  Q: Where does energy go?

A: imparted to the transmitted optical wave.

Dielectric
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F
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Conservation of energy in optomechanically variable systems:
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For simplicity, we assume:

• Device = Reflectionless one-port

• No Losses  Coordinate, q, effects phase.

(System =optomechanical phase modulator)

For time-varying q, frequency & power modified. 
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( )optW F q dq 

EMU W 

Energy conservation:

Work done must equal 
the change in 
electromagnetic energy!

Simple example of reflectionless one-port:Smoothly time-varying optomechanical system:
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Various lossless reflectionless one-port systems to consider:
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A closer look at energetics of time-varying system:
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Thought experiment Illustrating Energetics

Work done against optical 
forces:

( )optW F q dq 
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 'EMU P P dt   

(Lossless one port) = (Optomechanical phase modulator)

Change in energy 
carried by EM wave:

50 / 50
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If q(t) evolves slowly, it is reasonable to assume:

iP
tP

Incident photon flux

Incident power

Incident frequency

Transmitted power

(Photon flux, conserved)

Trans. photon flux

Trans. frequency

How to compute the change in EM energy?

 )()(' tqt  

(1) Relate the incident power to photon energy and photon flux.
(2) Assume that q(t) evolves slowly.
(3) Assume that photons are conserved.

Great simplification through use of the photon construct:
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How to compute the change in EM energy?

Great simplification through use of the photon construct:
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Result:

Given              we can compute the 
optical force on coordinate, q.
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Extension to multi-port systems.

[1] Madsen, C. K. & Zhao, J. H. Optical flter design and analysis  (Wiley, New York, 1999).

Lossless single-port, with a single mechanical degree of freedom, q.
(Input flux () and frequencies () are assumed to be fixed).

Lossless multi-port, with a single mechanical degree of freedom, q.
(Input fluxes (i’s) and frequencies (i’s) are assumed to be fixed).
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• Allows direct potential synthesis!

• Phase synthesis already known [1].
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Background: Optical forces

• How do we define an optical force?
-Forces that are a direct consequence of an applied 
electromagnetic field.

• Many different forms:

– Gradient forces,

– Trapping,

– Radiation pressure

• All can be understood from energetics.
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How to compute the change in EM energy?

Great simplification through use of the photon construct:

 ' ( ) ( )EM f iU P P dt t dt               

EMU W Since Since

iP
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( )F q ( )F q q W  q
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( )F q
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How to compute the change in EM energy?

Great simplification through use of the photon construct:

 ' ( ) ( )EM f iU P P dt t dt               

EMU W Since

iP

q

( ( ))q t

( )F qq
q q

( ) ( )effU q q  

( )F q
q
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Result:

Given              we can compute the 
optical force on coordinate, q.

)(q



tP

How to compute the change in EM energy?

Great simplification through use of the photon construct:
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Enhanced optical forces via guided modes

Nanometer-scale optical waveguides. How are forces produced between waveguides?

F


Mode Ex-field Induced dipoles (p)

Ex

Energy: U = -p*E

Ex

Energy of interaction: U = -p*E

For symmetric mode:

• Since p || E, U = low energy state

• Attractive forces produced.

p

p

p

F


Symmetric (+) 

Attractive Force

Attractive Force

Force: exponential roll-off

Separation (q)

O
p

ti
c
a
l 
F

o
rc

e

Effect of strong confinement:

• Large Field Enhancements

• Large Field Gradients

Result:

• Optical forces Greatly enhanced!!

Coupled optical waveguides

Forces ~ 1 uN (P = 1 mW)



Results: The response theory of optical forces (RTOF)

Fabry-Perot: Two-port system

M1 M2

q

1b

2a

2b

Fabry-Perot: Two-port system

1a

Generalized Mech. variable Two-port system

Fabry-Perot: Two-port system

1 1

2 2

( )
( )

( )

b q a
S q

b q a

   
      

   



dq

qd
qbqF ko

k kq

)(
)(

1
)( ,2 


 

, ( ) arg ( )o k kq b q    


Optical force expressed on mechanical 
degree of freedom, q, given by:

q

( )ijS q

( )F qq
q q

1b

2a

2b

1a

Ex

F


q

Optomechanically variable waveguide segment:



Trajectory of optomechanics

• How to Synthesize forces?

• How to deal with complexity?

• MST methods Very complex and offer 
little physical insight



Conventional means of computing 
forces: Maxwell Stress Tensor

• Requires full field computation.

• Small variations in design require 
complete re-computation. Show systems 
of identical optical response… will show 
that they generate identical forces. (no 
need to compute again)

• Offers Little intuition



Conventional means of computing forces: 
Maxwell Stress Tensor (MST)

Ex

Procedure for MST

Ex

Compute Fields

Evaluate MST

Integrate MST to 
evaluate force • Requires full field computation.

• Small variations in design require complete re-computation. Show 
systems of identical optical response… will show that they generate 
identical forces. (no need to compute again)

• Offers Little intuition



Similarity of optical systems

Radiation Pressure

(b)

M1 M2

Pi,1

Po,1

q

Po,2

)(q

,i rP P
tP

)(q

q

iP tP

(a)

(b)

rP

q

• Systems look quite different, but their 
response can be identical.

- All are two-port resonant systems 
(o)
- o(q)
- H(o(q))

• Despite similarities, Maxwell stress 
tensor requires complete reformulation 
of problem electromagnetically. 



q

iP tP

(a)

(b)

rP
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1P

Det (2)

Det (1)

1 'P

2 '( )P t

Path I

Path II

Conceptual Basis for RTOF

iP
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inU

q
qq 

1 2P P
1E

2E

1 'P

2 '( )P t

( )q t

t

t
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inU

q
qq 

Thought experiment Illustrating Energetics

,P  ))(( tq

Since lossless:

', 'P 



Results: The response theory of optical forces (RTOF)

Fabry-Perot: Two-port system

M1 M2
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Fabry-Perot: Two-port system Fabry-Perot: Two-port systemFabry-Perot: Two-port system
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Optomechanically variable Two-port system Fabry-Perot: Two-port system
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Response of a 
static two port 
system

Response of an 
Optomechanically 
variable two-port 
system
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Optical force expressed on mechanical 
degree of freedom, q, given by:



Conventional Force Calculations: Maxwell 
Stress Tensor (MST) Method

tPiP

q

( )ijS q

( )F qq
q q





Relation between optical forces &  Energy

• If we can compute the dE for a given dq, 
we can generally compute the optical 
forces.

• Capacitor + plates (electrostatics)

• Change in length of waveguide/cavity.

• How to treat an Open system and all of 
degrees of freedom associated with it?

• Will just give a conceptual outline



Basis for a formulation of forces which treats forces in open systems:
Thought experiment

Photon momentum:

kp 

kp  2

Imparted momentum 
per photon:

Virtual work:

?EMU 
While mirror is moving:

2
p

F k
t


   




qFor:

q

Force on Mirror:

iP

rP

While mirror static:

i rP P

i rP P

EM r i k k
k

U P P dt N       2EMU
F k

q


    






Basis for a formulation of forces which treats forces in open systems:

Virtual work:

While mirror is moving:

qFor:

q

iP

rP

While mirror static:

i rP P  

'i rP P  

EM r iU P P dt   

2EMU
F k

q


    




k    

 2 c q  

 2 q c   

 r iP P     EMU    

Correct: Is there a more fundamental relationship between the phase and the 
Energy of the system? Can we extend this concept into a well developed theory?

k k
k

N  

?EMU 



Can we extend to arbitrary optomechanically variable systems?

q

iP
tP

( )o q

Rakich et. al. Opt. Lett. 31, 1241-1243 (2006).

iP oPinU

q
qq 
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Det (II)

Det (I)
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Path I

Path II

Can we (more generally) formulate forces in a simpler manner?

Thought experiment

q(t)

t

Along open path

P1(t)

t

P1(t)

t



Can we (more generally) formulate forces in a simpler manner?

Thought experiment

q(t)

t

Along open path

P1(t)

t

P1(t)

t







How to treat more complex systems?

ITuC6: Tuesday July 15 IPNRA 2008 – Rakich

Complex optomechanical system:

• Lagrangian approach is far more general (and better with complexity).

- Analyze stability & equilibrium states of system 

• Problem: no general way to formulate optically-induced potential U(q).

iP
tP

N-coupled
elements

(1)
(2)

(3)

(N)

tP

)(
2

),(
2

qU
m

q
qqL 







N

k
kFxm

1




Lagrangian formulation:Newtonian mechanics:



Mechanical equilibrium

Potentials useful for new applications: 

Position (x)

P
ot

en
ti

al Optical 

Signal

“On” • To do this, we need to look at 
things in a very different manner…

• Manipulation of state possible by 
simply tuning laser-frequency.

• Larger range & higher stability.

• Intuition was our guide here.  

All-optical potential-well

Peter T. Rakich, Milos A. Popovic, Marin Soljacic, Erich P. Ippen, Nature Photonics 1, 658-65 (2007) 

U(q)

Position (q)
P
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Q: How to design arbitrary potential?

All-optical potential-well:

Mech. equilibrium dictated by light:

Position 1: repulsive force
Position 2: attractive force

In absence of light:
• Ring free to move
• All states: equal energy

Optical signal present:
• Potentail-well created
• New stable equilibrium
• System is trapped!
• How does this happen?

Position 1: repulsive forcePosition 2: attractive force • Design states of stable equilibrium



Open system and closed system energetics:

opt EMF dU dq 

iP tP( )H q

Open System:Closed System:

• Number of photons (N) is fixed.

• Only frequency () can change.

• Mech. variable (q) changes state.

• Photons constantly entering and exiting.

• Response (H) is a function of (q)

cavity frequency

Number of photons

( ) ( )EMU q N q 

q q

( )q

Q: How to compute UEM of open-system?

• Only option: assume time variation and 
apply power conservation

 EM t i indU dt P P dU dt  

Transmitted power

Incident power

Stored energy

[1] Povinelli, et. al. Opt. Lett. 30,3042 (2005).

• Can yield useful exact model (e.g. [1])



Open-system energetics: Static case
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Assumptions: (1) system is lossless (2) spatial coordinate, q, effects response.

Since lossless:

= 0     (Static Case) EM t i indU dt P P dU dt   

Static case: system is at steady-state

q

( )q
iP tP

Incident photon flux

Incident power

Incident frequency

Transmitted power

(Photon flux, conserved)

(Photon frequency, unchanged)

Must examine energetics of open system in time-varying case to say anything.

Trans. photon flux

Trans. frequency



Open-system energetics: Dynamic case

ITuC6: Tuesday July 15 IPNRA 2008 – Rakich

q(t)

t

Quasi-static limit:

( ) ( ( ))t q t 

General approach:

• Express power (dUEM/dt) in terms of optical response of system

• We assume:          varies in quasi-static manner (i.e. very slowly).( )q t

'' ''in iU N


 


 
    

 
  …Given this, what can we say about dUEM/dt? 

iP

q

( )q

Along open path



Open-system energetics: dynamic case
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Expressing all quantities in terms of the phase-response of the system: 

 EM t i indU dt P P dU dt  

2( )       

'' ''in iU N


 


 
    

 
 

.
d dq

dq dt


  Here Thus, in the static limit, (i.e. as dq/dt  0) we have:

One can show:

Optically-induced potential: Optically-induced force: 

optF



Extension to multi-port systems.

[1] Madsen, C. K. & Zhao, J. H. Optical flter design and analysis  (Wiley, New York, 1999).

Lossless single-port, with a single mechanical degree of freedom, q.
(Input flux () and frequencies () are assumed to be fixed).

Lossless multi-port, with a single mechanical degree of freedom, q.
(Input fluxes (i’s) and frequencies (i’s) are assumed to be fixed).

iP
tP

q

( )q

,1iP
,1tP

,2iP

,i NP

,2tP

,t NP
Photon flux (kth output port) 

Phase response 

q

• Allows direct potential synthesis!

• Phase synthesis already known [1].

U(q)

Position (q)

P
o

te
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Example: All-pass filter.
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( )o q

iP tP

( )o q

iP tP
Through-port

C.M.T. Model of microring: 

Independent of cavity Q! 

Potential makes “jump” of 



Example: Multi-port ring resonator system.
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( )o q

iP tP

dP

drop-port

Multi-port system:

Single-port system:

Nt  11111 21  Same relation for N-ports:

Through-port
2 2

t

 







Analyze any system representable by CMT!
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Povinelli, et. al. Opt. Lett. 30,3042 (2005).

Attractive force

Symmetric

Repulsive force

Asymmetric

q

iP
tP

( )o q

Suh et al, Opt. Lett., vol. 28, p1763 (2003) M. Notomi, et. al.PRL  97(2), 023903 (2006).Rakich et. al. Opt. Lett. 31, 1241-1243 (2006).



• Developed unique and simple treatment of forces and potentials from 

elementary energetics considerations, showing:

– Minimum information to compute potential: phase and amplitude 

response multi-port system.

• This theory produces “Exact” agreement with similar analyses using 

close-system energetics. 

• This is an important step toward a synthesis theory for forces and 

potentials in the context of optomechanics

Conclusions:
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Acknowledge Zheng Wang for helpful technical discussions.

Special thanks to Marin Soljacic, Erich P. Ippen and Yoel Fink for 
generous support and encouragement



Closed System Energetics:
Dual-ring microcavity: How to analyze?

cavity frequency

Number of photons

NU EM 

 

Lossless Fabry-Perot Cavity

Δq





• Cavity frequency is tuned.

• Photon energy adiabatically shifted.

• Virtual work reveals sign of force.

Peter T. Rakich, Milos A. Popovic, Marin Soljacic, Erich P. Ippen, Nature Photonics 1, 658-65 (2007)

• Mechanical degree of freedom: ring-separation

• Dual-rings will have two cavity modes to consider

• How will photon-energy change as q is varied?

dq

d
N

dq

dU
F EM

q


 









dq

d
N


,



Junk Slides Follow…





Mechanical equilibrium

Potentials useful for new applications: 

Position (x)

P
ot

en
ti

al Optical 

Signal

“On” • To do this, we need to look at 
things in a very different manner…

• Potential-well tailored by two optical 
resonances (attractive & repulsive).

• Larger range & higher stability.

• Yields (1) self-aligning cavity and      
(2) wavelength-to-position converter

• Intuition was our guide here.  

All-optical potential-well

Peter T. Rakich, Milos A. Popovic, Marin Soljacic, Erich P. Ippen, Nature Photonics 1, 658-65 (2007) 

U(q)

Position (q)
P
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Q: How to design arbitrary potential?

All-optical potential-well:

Mech. equilibrium dictated by light:

Position 1: repulsive force
Position 2: attractive force

In absence of light:
• Ring free to move
• All states: equal energy

Optical signal present:
• Potentail-well created
• New stable equilibrium
• System is trapped!
• How does this happen?

Position 1: repulsive forcePosition 2: attractive force



Analyze any system representable by CMT!
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Eichenfield, M. et al. Nature Photon. 1, 416–422 (2007).

Optical microdisk Optomechanical system:

Povinelli, et. al. Opt. Lett. 30,3042 (2005).

Attractive force

Symmetric

Repulsive force

Asymmetric

q

iP
tP

( )o q

Suh et al, Opt. Lett., vol. 28, p1763 (2003) M. Notomi, et. al.PRL  97(2), 023903 (2006).Rakich et. al. Opt. Lett. 31, 1241-1243 (2006).

Vahala Group: Caltech

Scale complexity: i.e. multiple resonances etc.



• We present new treatment of optically-induced forces and potentials in 

optomechanically variable systems.

• Q: What does a new treatment of forces and potentials give us?

(1) Greatly simplified computation optically-induced optical forces & 

potentials based only on optical response of system. 

(2) Since forces & potentials are computed from optical response alone    

 potential synthesis is possible.

• Illustrative examples: resonant single-port and multi-port systems.

• Conclude

What’s this talk about?
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State of optomechanics: so far.. simple

Optical forces

Mechanical motion

New equilibrium: yields 
change of optical state

Simple optomechanical system: 

Single driving force & spring

iP tP

Optical 
Driving force

Resonant [1] Non-Resonant [2]

ring
resonator

=
Dual-waveguides

• Simple optomechanical systems require only force-based calculations.

• Problem: with increasing complexity, force-based treatments aren’t practical!

[2] Povinelli, et. al. Opt. Lett. 30,3042 (2005).[1] Eichenfield, M. et al. Nature Photon. 1, 416–422 (2007).



• Timeline for Radiation Pressure: 

(1619) Kepler: Speculated solar repulsion 

(1873) Maxwell: Theoretical basis for pressure

(1901) Lebedew, Nichols: Experimental evidence

• Optical Forces Very small:
(60 Watts  Force ≈ 400nN)

• Thermal lamp, Torsion balance 

History of Radiation Pressure

Photon momentum:

kp  kp  2

1. Nichols, E. F. & Hull, G. F. Phys. Rev. 13, 307–320 (1901).
2. Maxwell, J. C. A Treatise on Electricity and Magnetism 1st edn,Vol. 2, 391 (Oxford Clarendon, USA, 1873).
3. Lebedev, P. Ann. Phys. (Leipz.) 6, 433–458 (1901).

Imparted momentum:

Idea that light can induce motion has been around for a long time:

Lincoln Labs, LEOS, January 2008



• Optical tweezers: Trapping small of particles              
(Power = 50 mW, Force ≈ 50 pN)

• Laser Trapping and Cooling: Atoms

• Free-space Interferometers: Optical Bistability           
(Power = 100 mW, Force ≈ 650 pN)

• Forces are small: difficult to create useful motion.

Useful Mechanical Motion from 
Radiation Pressure?

5. Ashkin, A. Phys. Rev. Lett. 24, 156–159 (1970).

Lincoln Labs, LEOS, January 2008



New Opportunities: Integrated photonics

Computed Mode Profile

Compelling case for utility of optical forces in integrated photonics:

• Nanometer scale modes  forces scale to large values (F = 1-10 uN, P = 1mW)

• MEMS-like components can be tethered to surface

 Enhanced forces strong at these scales

 Small mass, little inertia

 Rapid response to optical forces

Micron-scale optical components:

w

t

Core: Silicon
w = 450 nm
t = 200 nm

Lincoln Labs, LEOS, January 2008



Similarity of optical systems

Radiation Pressure

(b)

M1 M2
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q
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)(q

,i rP P
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q

iP tP
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(b)

rP

q

• Systems look quite different, but their 
response can be identical.

- All are two-port resonant systems 
(o)
- o(q)
- H(o(q))

• Despite similarities, Maxwell stress 
tensor requires complete reformulation 
of problem electromagnetically. 



Similarity of optical systems

Radiation Pressure
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• Systems look quite different, but their 
response can be identical.

- All are two-port resonant systems 
(o)
- o(q)
- H(o(q))

• Despite similarities, Maxwell stress 
tensor requires complete reformulation 
of problem electromagnetically. 


