
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP 

Reliability	
  calcula,ons	
  for	
  
duc,le	
  laser	
  welds	
  with	
  
stochas,c	
  reduced-­‐order	
  

models	
  
TMS	
  2014	
  Annual	
  Mee/ng	
  

February	
  19,	
  2014	
  

J.	
  Emery1,	
  R.	
  Field1,	
  M.	
  Grigoriu2,	
  K.	
  Karlson1,	
  J.	
  
Foulk1	
  
1	
  Sandia	
  Na:onal	
  Laboratories	
  
2	
  Cornell	
  University	
  	
  

	
  

2800 3000 3200 3400 3600 3800 4000
Peak Load (N), ⇧max

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

FEM
10 SROM at mean
Experiment

SAND2014-1132C



(stellite.co.uk)	
  

(Miyamoto	
  &	
  
Knorovsky	
  
2008)	
  

(Miyamoto	
  &	
  Knorovsky	
  2008)	
  

(Boyce)	
  

what?	
  /	
  why?	
  
§  a	
  variety	
  of	
  tools/methods:	
  fiber	
  

lasers;	
  pulsed	
  waves;	
  etc.	
  
§  low	
  heat	
  input	
  (a	
  benefit	
  for	
  	
  

nearby	
  heat-­‐sensi:ve,	
  parts)	
  
§  high	
  automa:on	
  
§  high	
  quality	
  
but:	
  
§  beam	
  power	
  &	
  quality	
  affect	
  

solidifica:on	
  (upper	
  right)	
  
§  can	
  develop	
  porosity	
  due	
  to	
  off-­‐

gassing	
  or	
  key-­‐hole	
  collapse	
  	
  	
  
consequences:	
  
§  wide	
  range	
  of	
  variability	
  in	
  

geometry	
  
§  wide	
  range	
  in	
  response	
  under	
  

mechanical	
  loading	
  (peak	
  load	
  /	
  
“strain”	
  at	
  peak	
  load)	
  	
  

A304L	
  laser	
  buZ	
  weld	
  in	
  tension	
  

Laser	
  welding	
  –	
  very	
  briefly	
  	
  

2	
  

Experimental	
  load	
  vs.	
  
displacement	
  data	
  

strain �



Mo/va/on	
  –	
  mechanics	
  
§  A304L	
  hardens	
  to	
  high	
  plas:c	
  strains	
  

§  We	
  observe	
  geometric	
  instability	
  
(necking)	
  prior	
  to	
  crack	
  nuclea:on	
  
and	
  propaga:on	
  

3	
  

500 µm 

Thin	
  tubes	
  in	
  torsion	
  (W.	
  Kawahara,	
  ~1980)	
  

s:ll	
  hardening	
  at	
  
400	
  %	
  shear	
  strain!	
  

sh
ea
r	
  s
tr
es
s	
  (
M
Pa
)	
  

shear	
  strain	
  

A304L	
  SS	
  laser-­‐welded	
  tensile	
  coupon	
  



Mo/va/on	
  –	
  variability	
  

§  Randomness	
  in	
  weld	
  microstructure	
  manifests	
  itself	
  as	
  
randomness	
  in	
  weld	
  response.	
  	
  

§  Our	
  goal	
  is	
  to	
  propagate	
  this	
  uncertainty	
  through	
  simula:on	
  
of	
  welded	
  components	
  to	
  make	
  reliability	
  predic:ons.	
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(a)














 



(b)

Figure 1. A laser butt weld (a) under applied tension show-
ing partial penetration and the unwelded ligament and (b)
with etching showing the laser weld and various dimensions
describing the uncertain geometry (photos courtesy B.L.
Boyce).
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Outline	
  for	
  the	
  rest	
  of	
  the	
  talk	
  	
  
How	
  to	
  propagate	
  the	
  observed	
  uncertainty	
  through	
  component	
  analysis?	
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










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– Example of Voronoi tessellation for

Z = (Z1, Z2) = bivariate Beta variable with

– Γ = [1, 4]2 and shape parameters p = 1; q = 3

– Zk = F−1
Zk

◦ Φ(Gk), k = 1, 2

– {Gk} ∼ N(0, 1) with E[G1G2] = 0.2

Density of Z (left panel) and Voronoi cells with centers {z̃k}, m = 20, and
density contour lines (right panel)
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SOLUTION FORM

• Quantity of interest h(U), where h : R → R is a Borel measurable function

– Notations: {Γk, k = 1, . . . ,m} = a measurable partition of Γ = Z(Ω);
{Ωk} = {Z−1(Γk)} = a measurable partition of Ω; and G = σ(Ω1, . . . ,Ωm)

– Solution:

E[h(U(x, Z))] = E
{
E
[
h(U(x, Z)) | G

]}
=
∑m

k=1E
[
h(U(x, Z)) | Ωk

]
P (Ωk)

E
[
h(U(x, Z)) | Ωk

]
=

1

P (Ωk)

∫

Ωk

h(U(x, Z(ω)))P (dω), k = 1, . . . ,m,

• How to approximate E
[
h(U(x, Z)) | Ωk

]
:

z̃k

ũk(x) + ∇ũk(x).(z − z̃k)
U(x, Z)

Γk

Γ = Z(Ω)

22
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Calibra/on	
  –	
  stochas/c	
  dimension	
  &	
  FE	
  model	
  

Model:	
  	
  
1.  Idealize	
  weld	
  geometry	
  for	
  smooth	
  evolu/on	
  of	
  fields	
  

through	
  very	
  large	
  plas/c	
  strains	
  
2.  Assume	
  weld	
  is	
  rate/temperature	
  independent	
  
3.  Assume	
  the	
  weld	
  is	
  homogeneous	
  
4.  Assume	
  elas/c	
  proper/es	
  are	
  determinis/c	
  	
  
5.  Use	
  BCJ_MEM	
  material	
  model	
  w/	
  3	
  uncertain	
  parameters	
  	
  












base sheet: deterministic 
weld region: stochastic  

�y = Y +  ̇ = [H �R] ✏̇p

 (✏p) =
H

R
[1� exp (�R✏p)]

7	
  

3D	
  FE	
  model	
  –	
  idealized	
  weld	
  geometry	
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Notch Radius = 50.8 µm
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Calibra/on	
  –	
  stochas/c	
  dimension	
  &	
  FE	
  model	
  

Model:	
  	
  
1.  Idealize	
  weld	
  geometry	
  for	
  smooth	
  evolu/on	
  of	
  fields	
  

through	
  very	
  large	
  plas/c	
  strains	
  
2.  Assume	
  weld	
  is	
  rate/temperature	
  independent	
  
3.  Assume	
  the	
  weld	
  is	
  homogeneous	
  
4.  Assume	
  elas/c	
  proper/es	
  are	
  determinis/c	
  	
  
5.  Use	
  BCJ_MEM	
  material	
  model	
  w/	
  3	
  uncertain	
  parameters	
  	
  

ini:al	
  yield	
  stress	
  

hardening	
  (linear)	
  

recovery	
  coefficient	
  R












base sheet: deterministic 
weld region: stochastic  
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3D	
  FE	
  model	
  –	
  idealized	
  weld	
  geometry	
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6,440 Elements
51,520 Elements
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  convergence	
  

stochas7c	
  dimension	
  =	
  3	
  	
  	
  Θ	
  =	
  

smooth	
  pressure	
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  no	
  locking	
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Calibrated Simulations

Experimental Data

Calibra/on	
  through	
  op/miza/on	
  –	
  
MatCal	
  wraps	
  DAKOTA	
  

9	
  

experimental	
  data	
  
(truncated	
  post	
  peak)	
  

§  First	
  calibrated	
  to	
  the	
  upper/lower	
  bound	
  &	
  median	
  
of	
  the	
  experimental	
  data	
  using	
  the	
  global	
  
op:miza:on	
  rou:ne	
  ncsu_direct	
  from	
  DAKOTA.	
  
§  weighted	
  to	
  favor	
  data	
  points	
  between	
  the	
  elas:c	
  

region	
  and	
  peak	
  load.	
  
§  large	
  parameter	
  bounds	
  chosen	
  for	
  the	
  

op:miza:ons.	
  
§  With	
  parameters	
  bounds	
  from	
  the	
  global	
  

op:miza:ons,	
  the	
  remaining	
  37	
  data	
  were	
  calibrated	
  
with	
  the	
  least-­‐squares	
  algorithm	
  nl2sol.	
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Enrichment	
  
§  Transla:on	
  random	
  vectors	
  (S.	
  Arwade.	
  Probabilis/c	
  Engineering	
  Mechanics	
  2005)	
  

§  A	
  probabilis:c	
  model	
  with	
  func:onal	
  form	
  based	
  on	
  physical	
  arguments,	
  
calibrated	
  to	
  available	
  data	
  

§  Able	
  to	
  match	
  second-­‐moment	
  proper:es	
  (mean,	
  covariance)	
  and	
  marginal	
  
distribu:ons;	
  these	
  are	
  quan::es	
  we	
  can	
  easily	
  es:mate	
  from	
  data	
  

§  Available	
  informa:on	
  
§  40	
  sets	
  of	
  model	
  parameters	
  calibrated	
  to	
  experimental	
  measurements	
  

§  Yield	
  stress	
  (Y),	
  recovery	
  constant	
  (R),	
  hardening	
  constant	
  (H)	
  
§  Lower	
  and	
  upper	
  bounds	
  on	
  each	
  model	
  parameter	
  

§  Expert	
  judgment,	
  FE	
  analysis	
  to	
  determine	
  onset	
  of	
  unrealis:c	
  material	
  
behavior	
  

§  Es:mate	
  covariance	
  matrix	
  based	
  on	
  40	
  samples	
  of	
  model	
  parameters	
  
§  Modeling	
  assump:ons	
  

§  Yield	
  stress	
  and	
  hardening	
  constant	
  follow	
  a	
  beta	
  distribu:on	
  
§  Recovery	
  constant	
  follows	
  an	
  exponen:al	
  distribu:on	
  
§  Consistent	
  with	
  bound	
  informa:on	
  and	
  some	
  literature	
  
§  Alterna:ve	
  distribu:ons	
  can	
  be	
  studied	
  at	
  a	
  later	
  date	
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Experimental	
  
Data	
  

Transla:on	
  
Model	
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Model
Data

y (MPa)

r

h (MPa)

Y (MPa) R H (MPa) 

Yield	
  Stress	
   Recovery	
  Constant	
   Hardening	
  Constant	
   Yield	
  Stress	
   Recovery	
  Constant	
   Hardening	
  Constant	
  

3D	
  scaZer	
  plot	
  of	
  the	
  data	
  (red	
  
dots)	
  and	
  5,000	
  samples	
  from	
  
the	
  transla:on	
  model	
  (blue	
  dots)	
  	
  

sample	
  covariance	
  (data)	
   sample	
  covariance	
  (model)	
  



Stochas/c	
  reduced-­‐order	
  model	
  (SROM)	
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with	
  m	
  <<	
  n and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  > 0	
  are	
  weights	
  and	
  subject	
  to	
  probabili:es	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  . ↵, �, ⇣ p̃k � 0
P

k p̃k = 1

moments	
   cumula:ve	
  distribu:on	
   correla:on	
  

Estimates of uncertainty 
SROM (solve for      given a set of m 
randomly chosen samples from V ) 

p̃k

µ̂s(r) =
nX

i=1

(1/n) (✓i,s)
r
,

F̂s(x) =
nX

i=1

(1/n) 1(✓i,s  x)

ĉ(s, t) =
nX

i=1

(1/n) ✓i,s ✓i,t

µ̃s(r) = E[⇥̃r
s] =

mX

k=1

pk (✓̃k,s)
r

F̃s(x) = Pr(⇥̃s  x) =
mX

k=1

pk 1(✓̃k,s  x)

c̃(s, t) = E[⇥̃s ⇥̃t] =
mX

k=1

pk ✓̃k,s ✓̃k,t

To	
  develop	
  a	
  model	
  that	
  op:mally	
  represents	
  the	
  uncertainty	
  in	
  the	
  input	
  we	
  
choose	
  a	
  discrete	
  random	
  variable	
  	
  	
  	
  	
  	
  .	
  	
  The	
  SROM	
  is	
  then	
  defined	
  by	
  the	
  
collec:on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  k	
  =	
  1,	
  …,	
  m	
  that	
  minimizes	
  an	
  objec:ve	
  func:on	
  of	
  the	
  form:	
  

⇥̃⇣
✓̃k, p̃k

⌘

max

1rr̄
max

1sd
↵s,r|µ̃s(r)� µ̂s(r)|+ max

1sd
�s| ˜Fs(x)� ˆ

Fs(x)|+ ⇣s,t max

s,t
|c̃(s, t)� ĉ(s, t)|



0.2 0.4 0.6 0.8 1.0
Displacement (mm)

0

1000

2000

3000

4000

Fo
rc

e
(N

)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Pr
ob

ab
ili

ty
,p

k

Graphical	
  representa/on	
  of	
  SROMs	
  

13	
  

20-­‐sample	
  SROM	
  

This	
  figure	
  compares	
  the	
  SROMs	
  (solid	
  lines)	
  
to	
  the	
  calibrated	
  fits	
  (fine	
  doZed	
  lines).	
  The	
  
SROMS	
  are	
  derived	
  from	
  the	
  enriched	
  
samples.	
  The	
  SROMs	
  are	
  painted	
  from	
  least	
  
probable	
  (blue,	
  thin)	
  to	
  most	
  probable	
  (red,	
  
thick).	
  

20-­‐sample	
  SROM	
  

This	
  figure	
  compares	
  the	
  load	
  versus	
  
displacement	
  curves.	
  	
  The	
  colored	
  lines	
  are	
  
the	
  FE-­‐computed	
  results	
  using	
  the	
  20-­‐sample	
  
SROMs	
  (color	
  indicates	
  probability).	
  	
  The	
  fine	
  
gray	
  lines	
  are	
  FE-­‐computed	
  results	
  using	
  
5,000	
  samples	
  from	
  the	
  enrichment	
  process.	
  

Tr
ue

 st
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) 

True strain (in/in) 
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– Example of Voronoi tessellation for

Z = (Z1, Z2) = bivariate Beta variable with

– Γ = [1, 4]2 and shape parameters p = 1; q = 3

– Zk = F−1
Zk

◦ Φ(Gk), k = 1, 2

– {Gk} ∼ N(0, 1) with E[G1G2] = 0.2

Density of Z (left panel) and Voronoi cells with centers {z̃k}, m = 20, and
density contour lines (right panel)
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SOLUTION FORM

• Quantity of interest h(U), where h : R → R is a Borel measurable function

– Notations: {Γk, k = 1, . . . ,m} = a measurable partition of Γ = Z(Ω);
{Ωk} = {Z−1(Γk)} = a measurable partition of Ω; and G = σ(Ω1, . . . ,Ωm)

– Solution:

E[h(U(x, Z))] = E
{
E
[
h(U(x, Z)) | G

]}
=
∑m

k=1E
[
h(U(x, Z)) | Ωk

]
P (Ωk)

E
[
h(U(x, Z)) | Ωk

]
=

1

P (Ωk)

∫

Ωk

h(U(x, Z(ω)))P (dω), k = 1, . . . ,m,

• How to approximate E
[
h(U(x, Z)) | Ωk

]
:

z̃k

ũk(x) + ∇ũk(x).(z − z̃k)
U(x, Z)

Γk

Γ = Z(Ω)
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Up	
  to	
  now,	
  we	
  have	
  
only	
  discussed	
  
models	
  for	
  uncertain	
  
inputs	
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– Example of Voronoi tessellation for

Z = (Z1, Z2) = bivariate Beta variable with

– Γ = [1, 4]2 and shape parameters p = 1; q = 3

– Zk = F−1
Zk

◦ Φ(Gk), k = 1, 2

– {Gk} ∼ N(0, 1) with E[G1G2] = 0.2

Density of Z (left panel) and Voronoi cells with centers {z̃k}, m = 20, and
density contour lines (right panel)
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SOLUTION FORM

• Quantity of interest h(U), where h : R → R is a Borel measurable function

– Notations: {Γk, k = 1, . . . ,m} = a measurable partition of Γ = Z(Ω);
{Ωk} = {Z−1(Γk)} = a measurable partition of Ω; and G = σ(Ω1, . . . ,Ωm)

– Solution:

E[h(U(x, Z))] = E
{
E
[
h(U(x, Z)) | G

]}
=
∑m

k=1E
[
h(U(x, Z)) | Ωk

]
P (Ωk)

E
[
h(U(x, Z)) | Ωk

]
=

1

P (Ωk)

∫

Ωk

h(U(x, Z(ω)))P (dω), k = 1, . . . ,m,

• How to approximate E
[
h(U(x, Z)) | Ωk

]
:

z̃k

ũk(x) + ∇ũk(x).(z − z̃k)
U(x, Z)

Γk

Γ = Z(Ω)
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Now,	
  propaga:on	
  through	
  
“component”	
  analysis	
  



– Example of Voronoi tessellation for

Z = (Z1, Z2) = bivariate Beta variable with

– Γ = [1, 4]2 and shape parameters p = 1; q = 3

– Zk = F−1
Zk

◦ Φ(Gk), k = 1, 2

– {Gk} ∼ N(0, 1) with E[G1G2] = 0.2

Density of Z (left panel) and Voronoi cells with centers {z̃k}, m = 20, and
density contour lines (right panel)
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§  A	
  response	
  surface	
  is	
  constructed	
  for	
  the	
  structural	
  response	
  of	
  the	
  component,	
  Π(u;Θ)	
  	
  
§  The	
  surface	
  is	
  a	
  series	
  of	
  hyper-­‐planes	
  described	
  with	
  a	
  first-­‐order	
  Taylor	
  approximate	
  of	
  

the	
  structural	
  response	
  

§  The	
  SROM	
  samples	
  are	
  used	
  as	
  the	
  expansion	
  points	
  θk
*	
  and	
  the	
  domain	
  Γk	
  are	
  

determined	
  by	
  the	
  Voronoi	
  tessella:on	
  of	
  the	
  uncertain	
  parameters	
  	
  

– Example of Voronoi tessellation for

Z = (Z1, Z2) = bivariate Beta variable with

– Γ = [1, 4]2 and shape parameters p = 1; q = 3

– Zk = F−1
Zk

◦ Φ(Gk), k = 1, 2

– {Gk} ∼ N(0, 1) with E[G1G2] = 0.2

Density of Z (left panel) and Voronoi cells with centers {z̃k}, m = 20, and
density contour lines (right panel)
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Example	
  2D	
  probability	
  density	
  	
   *	
  SROM	
  points	
  

Assump/on:	
  The	
  structural	
  response	
  is	
  differen/able	
  

Response	
  surface	
  

Let {✓̃
k

, �
k

}, k = 1, . . . , m, be the defining parameters of a SROM ⇥̃ for ⇥. Two surro-
gate models are developed for the weld response ⇧(u;⇥). For a fixed u, they approximate
the response surface of ⇧(u;⇥) with support equal to the range � of ⇥ by piecewise con-
stant and piecewise linear functions over the cells {�

k

} of the Voronoi tessellation in �. The
models are denoted by ⇧̃(u;⇥) and ⇧̃

L

(u;⇥), respectively, and have the expressions

⇧̃(u;⇥) =
mX

k=1

1(⇥ 2 �
k

) ⇡̃
k

(u) and (11a)

⇧̃
L

(u;⇥) =
mX

k=1

1(⇥ 2 �
k

) [⇡̃
k

(u) + r⇡̃
k

(u) · (⇥ � ✓⇤
k

)] , (11b)

where ⇡̃
k

(u) = ⇧(u;✓⇤
k

) and r⇡̃
k

(u) =
�
@⇧(u;⇥)/@⇥1, . . . , @⇧(u;⇥)/@⇥

d

�0 |(⇥=✓⇤
k)

are the
gradients of ⇧(u;⇥) at ⇥ = ✓⇤

k

, k = 1, . . . , m. Options for the choice of ✓⇤
k

include

✓⇤
k

= ✓̃
k

or (12a)

✓⇤
k

= ✓̄
k

= E[⇥|⇥ 2 �
k

]. (12b)

By Equation (11b), the piecewise linear surrogate ⇧̃
L

(u;⇥) approximates the weld re-
sponse ⇧(u;⇥) by hyperplanes tangent to it at

�
✓⇤
k

, ⇡̃
k

(u)
�

over the Voronoi cells {�
k

} for a
fixed u as illustrated in Figure 13. The error in this approximation grows as the sample point
moves further away from the expansion point. For Voronoi cells that are not equi-axed and
whose contents are not evenly distributed, the Voronoi seed ✓̃

k

may lie far away from other
points within the cell. As an alternative to minimize the distance between the expansion
point and the samples in a cell, the expansion could be performed about the local mean of
the data within a cell as in Equation 12b. It can be shown that ⇧̃

L

(u;⇥) converges almost
surely to ⇧(u;⇥) provided the diameters of the cells {�

k

} vanish as m increases indefinitely
and ⇧(u;⇥) is di↵erentiable with respect to the components of ⇥ [6]. Higher-order surro-
gates can be imagined and are limited only by the di↵erentiability of the quantity of interest
and the available compute power.

In summary, once an SROM ⇥̃ has been obtained for ⇥, the implementation of the
surrogate weld response ⇧̃

L

(u;⇥) requires m(d + 1) deterministic finite element (FE) calcu-
lations where d denotes the dimension of ⇥ and m denotes the size of ⇥̃, the SROM for ⇥.
The size m of ⇥̃ is chosen such that the number of required FE calculations is manageable.
Statistics of ⇧̃(u;⇥) are known by the partitioning {�

k

} and the statistics of ⇧̃
L

(u;⇥) can
be obtained e�ciently by Monte Carlo simulation since these models are available in closed
form. The algorithm for constructing the models in Equation (11), generating samples, and
calculating statistics involves the following three steps.

1. Construct an SROM ⇥̃ for ⇥. Denote by {✓̃
k

, �
k

}, k = 1, . . . , m, the defining param-
eters of the model.

2. Calculate the stress-strain curves {⇡̃
k

(u)} and the gradients {r⇡̃
k

(u)} for ⇧̃
L

(u;⇥).
3. Generate samples of ⇥, calculate corresponding samples of ⇧̃

L

(u;⇥), and estimate
properties of the surrogate for ⇧(u;⇥). Note that the Voronoi partition does not have
to be constructed explicitly. A sample of ⇥ is allocated to a particular cell depending
on its distance to cell centers.

20
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§  For	
  verifica:on,	
  we	
  perform	
  Monte	
  Carlo	
  
simula:on	
  for	
  the	
  response	
  of	
  the	
  laser	
  welded	
  
tensile	
  coupon.	
  

§  We	
  generate	
  5,000	
  samples	
  of	
  Θ.	
  	
  We	
  do	
  5,000	
  
FE	
  calcula:ons	
  for	
  the	
  response	
  of	
  the	
  coupon	
  
(solid	
  black	
  line	
  in	
  plots).	
  	
  	
  

§  We	
  compare	
  to	
  the	
  SROM-­‐based	
  surrogate	
  (top).	
  
§  The	
  10	
  sample	
  SROM-­‐based	
  surrogate	
  model	
  

requires	
  40	
  FE	
  calcula:ons	
  to	
  construct	
  (10	
  for	
  
each	
  sample,	
  30	
  for	
  the	
  gradients).	
  

§  The	
  CDF	
  on	
  the	
  boZom	
  was	
  constructed	
  with	
  
100	
  sets	
  of	
  40	
  FE	
  calcula:ons,	
  no	
  surrogate.	
  	
  It	
  
shows	
  the	
  wide	
  confidence	
  and	
  large	
  error…	
  	
  	
  	
  

Our	
  “component”	
  

100	
  sets	
  of	
  40	
  
Monte	
  Carlo	
  
samples	
  

5,000	
  Monte	
  
Carlo	
  
samples	
  and	
  
experiments	
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§  For	
  verifica:on,	
  we	
  perform	
  Monte	
  Carlo	
  
simula:on	
  for	
  the	
  response	
  of	
  the	
  laser	
  welded	
  
tensile	
  coupon.	
  

§  We	
  generate	
  5,000	
  samples	
  of	
  Θ.	
  	
  We	
  do	
  5,000	
  
FE	
  calcula:ons	
  for	
  the	
  response	
  of	
  the	
  coupon	
  
(solid	
  black	
  line	
  in	
  plots).	
  	
  	
  

§  We	
  compare	
  to	
  the	
  SROM-­‐based	
  surrogate	
  (top).	
  
§  The	
  10	
  sample	
  SROM-­‐based	
  surrogate	
  model	
  

requires	
  40	
  FE	
  calcula:ons	
  to	
  construct	
  (10	
  for	
  
each	
  sample,	
  30	
  for	
  the	
  gradients).	
  

§  The	
  CDF	
  on	
  the	
  boZom	
  was	
  constructed	
  with	
  
100	
  sets	
  of	
  40	
  FE	
  calcula:ons,	
  no	
  surrogate.	
  	
  It	
  
shows	
  the	
  wide	
  confidence	
  and	
  large	
  error…	
  	
  

§  …	
  and	
  when	
  we	
  zoom	
  in,	
  it	
  can’t	
  capture	
  
probability	
  below	
  1/40.	
  	
  

Our	
  “component”	
  

100	
  sets	
  of	
  40	
  
Monte	
  Carlo	
  
samples	
  

5,000	
  Monte	
  
Carlo	
  samples	
  



Cost	
  savings	
  with	
  SROM-­‐based	
  surrogates	
  

§  SROM-­‐based	
  surrogate	
  models	
  replace	
  
component	
  level	
  FE	
  models	
  expedi:ng	
  
Monte	
  Carlo	
  simula:on	
  while	
  
providing	
  comparable	
  accuracy.	
  	
  	
  	
  

§  In	
  prac:ce,	
  component	
  level	
  FE	
  models	
  
cannot	
  be	
  run	
  thousands	
  of	
  :mes.	
  	
  The	
  
SROM-­‐based	
  surrogate	
  can.	
  	
  	
  

§  CPU	
  :me	
  results	
  are	
  for	
  the	
  example	
  
shown	
  here	
  and	
  compared	
  with	
  5,000	
  
FE	
  calcula:ons.	
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construct the surrogate. For the illustration in this paper, the cost of brute force MCS is
65 times greater than the surrogate model at 33,444,036 CPU seconds. For components of
practical interest, the cost of brute force MCS is intractable.

(a) (b)

Figure 18: The cumulative distribution of peak load ⇧
max

predicted by 100 sets of 40 samples
of FE-calculations (colored lines) and compared to 5,000 FE calculations (black line). (a)
Shows the full range of the cumulative distribution while (b) focuses on the lower tail of the
distribution with logarithmic scale.

Table 2: Computational expense in CPU seconds.

Construct FE Evaluate Total
SROM* calculations ** surrogate*

Brute force MCS n.a. 33,400,000 n.a. 33,400,000
(5,000 FE calculations)

10 SROM at mean 948 511,000 6.69 512,000
(40 FE calculations)

* Intel R� Xeon R� x5675 CPU @ 3.07 GHz w/ 48GiB RAM

** Intel R� Nehalem R� x5570 CPU @ 2.93 GHz w/ 1.5GiB RAM

7. Discussion

With a set of 40 tensile test data available that characterized the behavior and variability
of the coupon, the first step in the methodology calibrated a carefully designed finite element
model to the data. Under the controlled environment in the laboratory, we made the safe
assumption that all variability was the consequence of fine scale geometric uncertainty and
material heterogeneity. We thus accounted for the various sub-scale variability by lumping it
all into the constitutive model chosen in the finite element model. In this sense, we account
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Conclusions	
  
§  Issues	
  involving	
  nuclear	
  safety	
  require	
  high	
  confidence	
  
§  We	
  cannot	
  afford	
  “brute	
  force”	
  MCS.	
  SROMs	
  provide	
  a	
  path	
  

forward.	
  
§  Developed	
  tools	
  for	
  calibra:on,	
  enrichment,	
  and	
  the	
  

construc:on	
  of	
  SROMs	
  
§  Applied	
  “brute	
  force”	
  Monte	
  Carlo	
  with	
  5000	
  finite	
  element	
  

(FE)	
  calcula:ons	
  to	
  obtain	
  the	
  “truth”	
  	
  
§  SROM-­‐based	
  surrogate	
  accurately	
  computed	
  the	
  cumula:ve	
  

distribu:on	
  func:on,	
  capturing	
  the	
  lower	
  tail,	
  at	
  0.8%	
  of	
  the	
  
computa:onal	
  cost	
  (40	
  vs	
  5000	
  FEA)	
  

§  On	
  an	
  equal	
  computa:onal	
  foo:ng,	
  the	
  SROM-­‐based	
  
surrogate	
  is	
  far	
  more	
  accurate.	
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