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Abstract—The metrics used for evaluating energy saving
techniques for future HPC systems are critical to the correct
assessment of proposed methods. Current predictions forecast
that overcoming reduced system reliability, increased power
requirements and energy consumption will be a major design
challenge for future systems. Modern runtime energy-saving
research efforts do not take into account the energy spent
providing reliability. They also do not account for the increase
in the probability of failure during application execution due
to runtime overhead from energy saving methods. While this is
very reasonable for current systems, it is insufficient for future
generation systems. By taking into account the energy consump-
tion ramifications of increased runtimes on system reliability,
better energy saving techniques can be developed. This paper
demonstrates how to determine the impact of runtime energy
conservation methods within the context of failure-prone large
scale systems. In addition, a survey of several energy savings
methodologies is conducted and an analysis is performed with
respect to their effectiveness in an environment in which failures
occur.

Keywords—energy saving, HPC, reliability, power, DVFS, fre-
quency scaling, voltage scaling

I. INTRODUCTION

The ever increasing size of large computational systems
has corresponded to increases in power/energy consumption
and decreases in the overall reliability of computing platforms.
Current energy consumption metrics are insufficient to describe
the potential of proposed energy saving techniques. This paper
demonstrates new methods of determining the energy savings
of proposed techniques on large systems in the context of
unreliable hardware.

Reliability has been a concern for a long time, and systems
that had poor Mean Time Between Failure (MTBF) have
existed in the past. For example, in 2001, ASCI white had
a MTBF of 5 hours [1] (later improved to 50 hours). Future
systems are forecast to have a much lower system MTBF than
current hardware. Therefore a MTBF of less than 5 hours is
possible. As application runs of several hours or longer are
common for HPC, even runtime increases of 10% or less
(a reasonable but not desirable, upper bound on performance
degradation for energy saving) could be expected to impact
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the probability that a failure occurs during an application’s
runtime.

Energy saving techniques can increase MTBF by providing
lower temperatures during runtime. However, the increases that
can be obtained by using lower power approaches must be
greater than the performance impact on runtime in order to
offset the likelihood that a failure occurs during the additional
runtime imposed by the energy saving technique overhead.

The lack of an easy to use model for quantifying the effect
of energy saving techniques on system failure, as well as
a history that includes relatively good MTBFs for deployed
systems has prevented the adoption of reliability concerns
into the metrics used to assess runtime energy saving tech-
niques. It has been shown that the number of system failures
increases linearly with socket count [2], and consequently,
the probability that a failure occurs at any given point in
time also scales with node count. Unfortunately, the runtime
of an application does not scale perfectly with increasing
node counts. Therefore, when determining the energy savings
potential of a new runtime system, one simply cannot obtain
a runtime, divide by a number of nodes/sockets greater than
those tested and calculate an energy efficiency given a linear
scaling of failure events. However, a calculation based on the
slope of the scaling curve for a limited number of sockets can
provide a best case energy-reliability number that can be used
to assess different techniques.

A comparison between energy savings techniques that takes
into account reliability mechanisms is a more accurate way
to evaluate existing energy saving schemes for future large-
scale systems. The trade-offs between increased runtime and
reduced energy consumption are not always clearly observable.
An energy-reliability metric provides an easier way to compare
between proposed techniques. Energy-reliability imposes a
quantifiable penalty to energy savings techniques for increased
runtime, instead of relying on “user acceptance” arguments.
For example, given two techniques, one of which provides an
average energy savings of 5% and a runtime increase of 2%
and one that provides savings of 7% and runtime increase of
4%, which is the better technique? If we consider the “user
acceptance” model, then both could be acceptable solutions
to a user, as their runtime increases are not excessively large.
Therefore, one could reasonably assume that the second tech-
nique is superior. However, if the second technique is applied
to a long application run on a large system, the increased
runtime of +2% over the first technique may correspond to



it encountering an additional system failure and subsequent
restore that may completely mitigate any energy savings and
in fact use more energy than the first technique.

This paper seeks to provide a new metric for energy-
saving research which will allow comparison of energy saving
methods in unreliable systems and provides the tools to come
to quantifiable conclusions as to usefulness of energy saving
techniques for varying system sizes. This will help to identify
techniques that may have otherwise been discarded due to low
average energy savings but that have very little overhead. Such
techniques may be useful in large supercomputers.

These new metrics are also of use to reliability researchers
as they can directly compare their reliability methods in an
energy consumption context. For example, if a method can
increase the speed of a reliability mechanism (e.g. a faster
checkpointing mechanism), without increasing the energy con-
sumed by that mechanism, then the net result is not just the
same energy per application run, but an improved energy as the
likelihood of a failure during program execution will decrease
(due to a lower runtime).

II. BACKGROUND

Researchers have been concerned with the reliability of
systems for many years. Large scale studies of failure rates [2]
and the causes of these failures have been performed. Energy
consumption is also a well studied area, with several energy
saving runtime techniques [3]-[8] having been proposed and
implemented. Energy saving techniques such as DVFES [9] and
clock throttling [10] have been used to provide power state
governors for operating systems. While most studies concen-
trate on symmetric multiprocessor systems, it is probable that
future systems will be more heterogeneous in their processor
clock rates if not core architectures. Such systems have been
studied [11] and the energy consumption of such systems have
been examined [12].

While many energy saving techniques have concentrated
on mobile devices, the energy consumption of supercomputers
is of great concern. There are two areas in which energy
and power for supercomputing is an issue. The first is energy
consumption, which directly equates to the cost of running the
system. The second is peak power usage, which can constrain a
system from running in certain high power states due to limits
on the rate at which energy can be consumed.

This proposal concentrates on providing metrics for energy
consumption of supercomputers in the presence of failures.
While peak power is a concern, the metrics for determining it
are well laid out and can be easily leveraged by researchers.
The current state of the art in energy consumption is the use
of the total number of Joules (J) of energy used for a given
test. This can be directly compared to the number of Joules
used for a baseline run without energy saving techniques.
Typically, this is contrasted by an accounting of the overhead
imposed by using the energy saving technique. By definition,
the energy saving technique should have some overhead as it
is compared to the system running at full speed. These are
typically combined in an energy delay (ED) product, or an
ED? product.

Unfortunately, many power/energy researchers do not have
access to large scale power instrumented systems, and there-
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Fig. 1. Energy overhead due to reliability for future systems, assuming no
recovery overhead

fore cannot easily account for the real world behavior of sys-
tem failures. Even if such failures did occur during application
runs, there would be no practical way to compare them to other
results unless a very large number of results were gathered
over a long time period, or artificial failures were injected
during runtime. To the authors’ knowledge, there is no existing
standard framework for estimating the impact of failures on the
energy consumption of a system for energy saving techniques.

III. MOTIVATION

Until recently, the reliability of HPC systems has not been a
major component in the overall energy usage of an application
as errors are relatively infrequent. In future environments
where errors may be more frequent, the effect of these re-
liability events on systems must be taken into account when
examining any technique with associated runtime overhead.
Figure 1, illustrates the impact that reliability may have on
runtime overheads in terms of additional energy usage due
to failures. Figure 1 does not take into account any overhead
associated with the actual recovery (real methods should take
some amount of time, unless they are completely redundant
methods like Double Modular Redundancy (DMR) and Triple
Modular Redundancy (TMR)). This assumes an amount of lost
work based on current checkpoint/recovery schemes and there-
fore one could expect that the results would be more favorable
with more frequent checkpointing intervals. However, real
reliability methods will also incur some overhead, lessening
any improvements seen by more frequent checkpointing. It
should also be noted that more frequent checkpointing will
also incur runtime overhead which in turn will increase energy
consumption.

IV. THEORY

This section outlines the building blocks used to create an
energy-reliability metric for use in comparing energy saving
techniques for large systems. It derives the equations used for
determining energy reliability from common equations used in
the field.

A. Energy costs of Reliability

When considering the overall energy savings of a proposal,
the energy consumed in order to provide a reliable computing



system must be taken into account. For many systems, this
mechanism is a checkpoint/restart. Others may provide reliabil-
ity through duplicate functional units, or alternative advanced
methods, and this must also be taken into account.

Energy saving methods typically result in a reduction in
overall system performance, and have a corresponding increase
in wall-clock runtime. This increase in runtime will impact
the probability that a system failure occurs during the overall
runtime of the application.

for P power, « activity factor, C' capacitance, V' voltage
and f frequency,
P =aCVf? (1)

and E energy,
finish
E= P(t)dt (2)
start
for a system with reliability mechanisms, where E,.; is the
energy required by additional elements or techniques in order
to provide reliable operation, E,; is the energy needed for an

error free run of the application, the total energy FEiy¢q; iS:
Etotal = Ert + Erel (3)

and failure probability p(fail) is the sum of the probability
of failure during the original runtime p(failorig r+) and the
probability of failure during the additional runtime imposed
by the energy saving method p(failadd_rt):

p(fazl) = p(.failom'g_rt) + p(failadd_rt) (4)

using the energy required for failure recovery Eqii_recov the
total energy for a given test is,

Etotal == Ert + Erel +p(fa7'l) X Efail_recov (5)

where the energy for failure recovery is the energy required for
the recovery operations E;.cco,_ops combined with the energy
from the lost work and the energy required to redo said lost
work Elost_work:

Efail_recov - Erecov_ops + (2 X Elost_work) (6)

As failures are not typically temporally dependent (over a sin-
gle application run), the amount of lost work will be distributed
evenly over the time between the last recoverable point in the
computation. Therefore, this time period can be modeled as the
simple 1/2 period of the time between recoverable points in
the computation. For a system that uses redundancy techniques
like DMR and TMR, the amount of lost work is nil, and the
amount of time to recover is very low or zero. However, for
techniques such as DMR and TMR, the energy required for
reliable operation, E.;, is a multiple of the runtime, E,;. For
systems such as traditional checkpoint/restore, the amount of
lost work, in terms of time, will on average be equal to 1/2 of
the checkpoint period, and the recovery energy, Frecou_ops, 15
equal to equation 7.

t=recov

Erecov_ops :/ P(t) dt (7)
t=fail

The instantaneous power measurements over the recovery

period may differ substantially from those during normal

computation, as a given system may be using third level or

greater storage systems to retrieve recovery data. If a node-
level restart must be performed, but this does not impact the
other nodes in the system, there will also be synchronization
issues in typical HPC applications, such that the unaffected
nodes must wait until the failed node catches up to the next
barrier in the computation.

Alternative solutions such as migration via failure predic-
tion can also be used, but the energy consumed by the spare
systems required to migrate the running processes away from
the failing system must be taken into account as well. Migra-
tion also incurs the penalty of creating a runtime synchronicity
issue, where the migrated node processes may be significantly
behind the other processes running in a massively parallel job,
thereby causing stalling of many processes waiting for the
migrated processes to catch up.

V. POWER-RELIABILITY AS A METRIC

In order to represent the result of these calculations and
provide a common point of reference for researchers, we
propose a new metric for energy saving techniques, Energy-
Reliability (E),¢ Re;). This metric illustrates the energy required
to run an application in a system where a failure is possible.
It adjusts the energy consumed to run an application up by
an amount that equals what energy would be consumed when
running the application over a long period of time on a real
system. It is primarily intended for use with large systems, as
individual nodes/sockets typically have MTBFs greater than a
realistic application wall clock runtime. E,.R.; imposes en-
ergy overhead on energy saving methods that increase runtime.
It can also be used to determine the possible usefulness of per-
formance enhancing techniques, by quantifying the increased
energy consumption vs. the performance enhancement. As it
is simply an adjusted value of total energy, E,.R.; can be
directly used in the most popular and common metrics, energy-
delay and energy-delay?. The authors suggest that such metrics
can be denoted as reliability-aware by the use of a subscript
1, for example E,.D and E.D? At a very high level, E,.Re;
can be thought of as:

EneRel = Ert + (Efail_recov * (p(fall) + p(failadd_rt)xg)

It is important to keep in mind that the Ey,; for an energy
saving technique under test will vary from the Ey,; of the
baseline implementation. This is due to the baseline technique
having a p(failsqq_+) that is equal to zero. Figures 2a, 2b
and 2c show the impact that failures can have on energy
consumption given different failure rates and increases in
runtime for evenly distributed failures over the runtime. For
large node/socket counts the amount of energy that can be
lost due to failures in the increased runtime period is not
insignificant.

It is important to note that with smaller socket counts that
were prevalent in the past, the additional energy required to
ensure reliable operation and the amount of lost energy due to
failures for a given system was relatively insignificant. How-
ever, component counts keep rising and will continue to rise for
Exascale computing and beyond. It is well known that reliabil-
ity will need to improve along with rising component counts
in order to make future systems viable. Despite improvements
in component reliability, reductions in whole system reliability
are still likely to occur. The forecasts in Figure 2, show that
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Fig. 2.

reliability mechanisms will no longer play a minor role in
energy consumption. E, . R.; proves useful for illustrating that
sometimes spending slightly more energy to finish a job faster,
thereby reducing the probability that a failure occurs during
the job’s runtime, may in some cases actually result in lower
energy consumption. The exploration of the effect of reliability
on energy consumption is made all the more important by the
fact that reliability can be reduced when using energy saving
techniques due to thermal cycling [13] and lowered operating
voltages result in an increase in soft faults [14].

A. Determining failure rate

Modern commodity systems typically have a 3-5 year
MTBF per socket, although dependent on the particular tech-
nology used, this can vary significantly. By computing the
Energy-Reliability of a given system for both 3 year and 5
year MTBFs a graph can be produced that provides reasonable
upper and lower bounds for commodity components. It is
important to note that the reliability of an Exascale machine
(and most large scale capability class systems) will be required
to have a higher MTBF of individual components, or a very
fast recovery time, to make such a system viable. As was
shown in Figure 2c, even with increased reliability, the energy
consumption overhead due to reliability will still be significant
enough to account for. It is unclear whether reliability will
suffer with increased core count per socket, as it does for
sockets per node [2]. If reliability does suffer with increased
core count, a 1,000,000 socket equivalent system is possible.

Operating processors at reduced frequency results in lower
temperatures and reduced rates of failure [3]; therefore DVFS
energy saving schemes may result in higher MTBFs. However,
it has been shown that for real-time systems, the rate of soft
failures caused by radiation increases exponentially as voltage
decreases [15]. Energy-saving techniques using DVFS will
therefore result in a higher rate of failures due to lowered
voltages. The impact of these increased soft failures is difficult
to predict. They depend on a variety of factors, one of which
is the energy and frequency with which memory and logic
gates are hit by energizing radiation. This will vary depending
on altitude, geographic location and solar activity. To make
accurate predictions as to the increase in soft failure rate as
well as the reliability increase due to lowered frequency would
be difficult. The methods of determining the effect of voltage
scaling on increased failure rates and the increase in reliability
due to reduced frequency are outside of the scope of this paper.

3 4 5 6 7 8 9 10

% Increase in Runtime

(b) 5 Year MTBF

o

IS

~

% Energy Overhead due to reliability
°

sadddddaiy

1

% Increase in Runtime

(c) 25 Year MTBF

Energy overhead due to reliability for varying percentage increases in runtime for 3 year, 5 year and 25 year MTBFs

B. Estimating recovery times and energy

The authors in [16] show that checkpointing and recovery
times can be approximated as equal (not assuming incremental
checkpointing is occurring). Checkpoint/recovery times are
related directly to the I/O times required to write or read the
machine’s memory to storage. In the case of migration tech-
niques, this is still applicable, but the target is another node’s
memory, therefore making it network bandwidth dependent.
For the purposes of this paper, we will use checkpoint/restore
as a baseline for determining energy-reliability. Migration can
easily be substituted with appropriate times if the additional
spare node energy consumption is taken into account.

When estimating the recovery time for a given system, it
is desirable to find an upper bound to the possible energy
consumption. Theoretically, the upper bound is the entire
memory space of the recovery node(s). This is the most amount
of data that could be written during a recovery operation. In
practice, the whole memory space rarely needs to be re-written,
and should be below 80% of available system memory. Re-
writing the entire memory space implies that either all of the
contents of memory have changed since the last checkpoint,
or that the checkpointing methodology is inefficient.

C. Best Practices and Actual Practice

Ideally, all systems and their users would use optimized
methods for determining how and when to use reliability
techniques. When using duplication techniques like DMR
and TMR, much of this complexity is hidden from the
user/application developer. However, when using explicit re-
liability methods like checkpointing or failure prediction and
migration, the inputs chosen for the reliability methodology
are important to overall efficiency. In reality, application de-
velopers and users are not experts in computing reliability
and will lack either the skill, time or information required to
optimize an application’s reliability mechanism efficiency. It is
common practice for the users of supercomputers at the U.S.
Department of Energy to use a reasonable and familiar time
period for checkpointing, most typically one hour. Ideally, the
checkpointing interval would be determined as in [17].

D. Recommended Practice for Energy-Reliability Estimates

In order to estimate energy-reliability, one must first deter-
mine a reasonable number of sockets for a current large scale
system by looking at core count and cores per processor. Such



information is available at top500.org [18]. This number can
then be scaled up and down by half of its value to give a range
for current and future systems. One must then calculate the
energy-reliability for the systems with appropriate per socket
MTBF. Current commodity systems provide a 3-5 year MTBF,
but the MTBF for some specialized HPC hardware may be
higher.

Using a normalizing the runtime to 10 hours, calculate
the additional time that is required due to overhead using
equation 9. Using this overhead runtime number, calculate the
probability that a failure will happen during the additional
runtime with equation 10 and then calculate the energy re-
quired for recovery in case of a failure. The probability of
a failure must be multiplied by the number of components,
this will give the expected number of components that will
fail during the additional runtime. The number of failures
predicted (hopefully under 1), must then be multiplied by the
energy required for recovery. The energy lost due to the failure
can be determined by taking the time lost and integrating the
average power consumption over the lost time period. The
time for the recovery operations themselves may not have a
power consumption level that is equal to the average power
consumption for the application, it will normally be lower
than average calculation power, but this is dependent on the
methods being used.

tadd_rt = %overhead X byt (9)

p(failaaq ri) = 1 — eltadire/MTBE) (10)

E. Energy-Reliability Example

For the November 2012 top500.org list, the system with
the largest number of sockets is actually #2 on the list and has
98304 sockets (16 cores per socket). The system happens to
be a Blue Gene system, and therefore would have MTBFs of
higher than typical values, but for the purposes of this example
we will use typical commodity MTBFs. Socket counts for
Exascale systems could be as high as 500,000 to 1,000,000
(although unlikely), so a 100,000 socket count is reasonable
for estimates on contemporary and near future systems. For
simplicity, we round the number of sockets up to 100,000, and
therefore we will use 50K, 100K and 150K as our node/socket
counts. Runtimes for a given application need to be normalized
as well. In this example we have normalized values to use
a 10 hour application runtime. Given the phenomenological
evidence for checkpointing intervals, we use a 30 minute time
period to represent the average “lost” energy due to a failure.
To determine the worst case length of the recovery period, one
can determine the time period required to read data to system
memory from secondary storage.

If a local storage scheme is adopted, with SSDs running
at 500 MB/s, for each of the 98,304 sockets, a recovery time
would be 32 seconds. More realistically, having 96 total racks,
and 42 U of space per rack, with 1 drive per U of space,
and 16,384 GB of memory per rack, the recovery time would
be 780 seconds or 13 minutes. This number equates with
predictions in existing literature [16] for future systems. Using
the established socket count range, recovery and lost work
periods with a 5 year MTBF we obtain Figure 3.

5 Year MTBF Example
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Fig. 3. Energy overhead due to reliability for varying percentage increases
in runtime for the example given in section V-E

VI. MODEL-BASED EVALUATION OF ENERGY SAVING
METHODS

In order to understand the current state of the art with
respect to energy-reliability, this section will examine the
publicly available energy saving and overhead numbers for
several popular runtime energy saving methods. The original
data used to calculate the estimated energy-reliability of the
approaches are taken directly from the original publications.
References to these publications will be provided along with a
summary of the methods in this section. The original published
energy savings for each method are adjusted using the model in
Section IV to account for reliability, with ideal checkpointing
intervals based on the local SSD checkpoint method described
in Section V-E.

A. CPUSPEED

CPUSPEED [19] is the default power management sys-
tem for most Linux distributions. It uses basic power-state
governors to dynamically determine when to change power
states on a system. CPUSPEED was not designed with HPC in
mind and therefore is more aggressive than HPC energy saving
techniques in terms of potential energy savings. It provides a
baseline for other techniques as it is the default power state
adjustment mechanism in Linux.

B. CPU MISER

CPU MISER [3], is a solution that examines execution
phases during runtime and makes decisions to lower CPU
clock frequencies based on observed phase states. It provides
the ability for a user to specify a maximum acceptable slow-
down and attempts to adjust the power states such that the
total runtime does not fall below the cutoff. As is the case with
many runtime energy saving methods, the best energy savings
occur for communication bound applications, with limited
opportunities to save energy for CPU bound applications.

C. PART

PART [4] was an early entrant into the energy-saving HPC
arena. It provided an algorithm for bounding the slowdown
of applications while attempting to save energy using the
runtime history of an application. It should be noted that
the results for PART are only those for the CPU energy



consumption, not total system energy. Therefore, the overall
energy savings reported for this method will be higher than
those for system level energy measurements, as only the CPU
energy consumption is reduced using PART.

D. ECOD

ECOD [5] is another performance-bounding and workload
predicting algorithm for energy saving. It is more accurate
that past methods [3], [4], and provides tighter performance-
bounding variance. Unlike PART, this algorithm does not
consider the entire workload runtime history when making
power state decisions. The energy numbers for ECOD are for
a whole system, not CPU-only energy savings like those for
PART.

E. NCSU

The method presented in [6] that was developed at North
Carolina State University, was not named like many of the
other methods surveyed here, so it will be referred to as
NCSU. This method concentrates on communication periods
and opportunities to reduce CPU power consumption during
blocking MPI communication. The NCSU method can operate
in two modes, one is on-the-fly and the other uses a priori
information about the profile of an application. Although the
profiling method is more slightly more efficient, the on-the-fly
method is used for comparison here, as the NCSU authors did
not provide results for the energy used for profiling.

F. Jitter

Jitter [7] provides a method similar to that of NCSU, in that
it attempts to exploit slack in MPI programs. Unlike NCSU,
it does not exploit communication slack, but that caused by
inter-node load imbalance. It requires manual changes to the
application source code, and only works for iterative programs.

G. Green Queue

Green Queue [8] is a new (2012) energy savings ap-
proach for HPC designed for scalability. It utilizes an intra-
node methodology using phase detection through profiling
and offline simulation analysis of applications. It uses an
SQL database to store profiles on past application runs and
simulation analysis. This makes it somewhat different from the
other approaches examined as it requires energy consumption
to generate the profiling and simulation data. Such overhead
is not accounted for in the energy consumption reported for
Green Queue.

H. Adagio

Adagio [20] is an integration of multiple methods, includ-
ing Jitter, that exploits slack in MPI programs for both load im-
balance and communication slack. It exploits advanced DVFS
techniques to provide improved energy savings by allowing
a “task” (a slice of execution between two MPI blocking
operations) to be run over multiple frequencies, thereby better
approximating the ideal frequency for which that code should
be run. It is designed to minimize the performance impact of
energy-saving, rather than finding a trade-off between energy
consumption and performance loss.
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Comparison of energy saving techniques when accounting for

1. Comparison of Methods

In order to compare the sampling of runtime energy-
savings methods, the slowdown and energy saving percentages
were collected using the published data for each method. As
the implementation of the majority of the methods are not
available, the published results are the only results that can
be used for a comparison. It should be noted that in this
comparison it is assumed that all of the runtime methods scale
perfectly, with no additional overhead for large systems. This
is very unlikely in practice, so the adjusted energy-reliability
of the systems should be considered as a best-case scenario.

Accounting for the extra energy incurred due to failures and
subsequent recovery with a 50K socket 3 year MTBF system
using ideal checkpointing times, the energy-reliability numbers
shown in Figure 4 were determined. It should be noted that
the EP and FT benchmark results for Jitter are unavailable, as
are the results for the IS benchmark for Adagio. All of the
results are shown only for the NAS parallel benchmark suite
[21], as they are the only benchmark results common to all of
the energy saving methods.

Figure 4 shows the adjusted energy-saving results for
six of the seven methods. The results for Green Queue
are not included as only the average and best case results
are available. Examining the results, we can see that the
results for PART, ECOD and NCSU show the best overall
energy savings. However, Figure 4 only shows the adjusted
energy savings, and does not show the resulting slowdown.
Examining the methods using their average performance across
the benchmarks, and comparing with the average runtime in
Figure 5, one can observe that PART and ECOD sacrifice
a higher average runtime than NCSU for approximately the
same energy savings. In fairness to PART and ECOD, they
are applicable to a larger number of applications than the MPI
application only NCSU. The best average runtime slowdown
results are those for Adagio. Examining Figure 4 we can
see that the energy savings for Adagio are due primarily to
excellent energy savings for FT, with little savings for the
other benchmarks. Adagio manages good runtime averages
by aggressively avoiding slowdown. Due to their runtime
overhead impacts, some of the methods see more of an impact
when accounting for reliability than others. The percentage
increase in overall energy consumption due only to reliability



Average and Best Case Energy-Reliability

N Average W Best Average Runtime

N\
100 § ; X S

N - — N [ ———
B EE IS S SEERE = 08
i~ & 8 5 1111
pe: (= = = = = = =
% T\ \ \ \ \ \ \ \
40 N\ § \ \ \ \ N \\
30 — — ) —
20 — — —\ — -
10 — — \ — — -
)

CPUSPEEDCPUMISER PART ~ ECOD  NCSU  litter  Adaigo  Green

Queue

Fig. 5.
methods

Average and best case Energy-Reliability with slowdown for all 8

Increase in Energy due to Reliability

WBT #CG “EP WFT WIS “LU SMG “SP

10

% Increase in Energy
B o

iazzz&?&Ts%sssii

//////////////j/[///////////////////////////////////////

° N
%:‘:‘:‘E!«
|

A

Adagio

o)
°
c
2
@
m
£

PART ECOD NCsU Jitter \

Fig. 6. The percentage increase in energy consumption caused by the
probability of failure during the overhead runtime

concerns is presented in Figure 6. CPUSPEED is omitted
from this figure for clarity, as it has some increases in energy
nearing 40%. By examining Figure 6 it can be observed that
the impact of reliability on energy saving methods can be
significant enough to warrant consideration. In some cases,
the energy consumption results are improved by faster run
times. This occurs when slowing down the system results in a
favorable reduction in resource contention. It is worth noting
that the most recent energy saving methodologies are better at
minimizing runtime overhead and therefore have the smallest
increases in energy due to reliability.

By adjusting the parameters used in the calculation of
energy-reliability, one can observe the conditions under which
energy-reliability would not be a significant enough concern in
future systems to warrant taking it into account. We will define
significant as an impact of more than 1%. With a 25 Year
MTBF of individual sockets, the impact of energy-reliability
for a million socket system can be reduced to less than 1%
for any increase in runtime under 10% with a recovery time
of 2 seconds, using ideal checkpointing intervals. For smaller
socket counts, we can have longer recovery times and more lost
work, for the 500,000 socket case, a 5 second recovery time or
less could render energy-reliability as potentially insignificant.
For a much smaller system, recovery times can be as long as
45 seconds.

Alternatively, if recovery times stay within the estimates
in section V-E and individual component reliability increases,
for the million socket system, an MTBF of 1250 years is
required. For the 500,000 socket system an MTBF of 625
years is needed, and for the 50,000 socket system, an MTBF
of approximately 63 years is needed. Of course, a combination
of increased MTBF and smaller recovery times is also a possi-
bility. For example, for a 500K socket system, with an MTBF
of 250 years, and recovery time of 45 seconds using ideal
checkpointing times to determine lost work; energy-reliability
would be rendered insignificant according to the rules outlined
previously. These estimates serve to demonstrate that energy-
reliability for future systems will likely be a significant enough
factor to consider when analyzing any energy-saving methods
that cause an increase in runtime.

VII. SHORT CASE STUDY

To better illustrate how the power-reliability concept can
be applied, experiments were conducted using the MAESTRO
approach to improving energy-efficiency through concurrency
throttling. MAESTRO uses memory concurrency and RAPL-
based energy measurements collected by its Resource-Centric
Reflection (RCR) daemon to dynamically adjust the number
of active worker threads deployed for OpenMP applications
running over the Qthreads run time system [22]. When memory
bandwidth is saturated, running an active thread on every core
is unprofitable, so some threads are throttled by CPU clock
modulation and given no more work until and unless reduced
memory pressure is detected later in the execution.

A study of single-node OpenMP executions of the
LULESH mini-application [23] saw a decrease in energy
usage with a very slight increase in execution time [22]. The
experiments in [22] were only conducted on a single node.
The results shown here extended the experiments to multi-
node executions of LULESH using OpenMP+MPI, both the
execution time and the energy decreased. In these executions,
each 16-core dual-SandyBridge node ran an indepdendent
instance of the Qthreads-MAESTRO run time system, but due
to the regular structure of LULESH, all nodes throttled at the
the same point in the execution. As shown in Figure 7, the
energy-reliability model predicts that such a scheme would
see an additional 2.9% improvement in energy consumption
when large scale system reliability is considered, assuming the
method continues to scale well at higher node counts. While
further studies are needed, the early results show promise not
only for energy savings due to reduction in the number of
cores used, but also faster execution times that compound
those savings by reducing the time in which the application is
exposed to failures.

VIII. CONCLUSION

This work has detailed a new metric for energy saving
methodologies used in large scale systems and shown how
this metric can be applied using a straightforward model.
It has demonstrated that for large scale systems, additional
runtime overhead imposed by energy saving techniques can
have significant impact on overall energy savings due to the
possibility of reliability events occurring during the runtime
overhead period. As power and reliability are both major
concerns for current and future large scale capability class
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systems, the assessment of proposed energy saving techniques
must be done in the context of unreliable systems.

In this paper, a survey of several energy saving techniques
for HPC was performed, and each techniques published exper-
imental results were adjusted using the model presented. It was
demonstrated that the predicted impact that reliability events
will have on energy saving methods should be accounted for,
even when perfect scaling of the energy saving techniques
is assumed. In addition, the conditions under which energy-
reliability would be insignificant were explored. This leads
to the conclusion that energy-reliability must be taken into
account when exploring runtime energy-saving methods for
large-scale capability HPC.

IX. FUTURE WORK

We will utilize the concepts presented in this work to
analyze the energy efficiency of future runtime energy saving
methods. The energy-reliability metric is best applied to very
large capability class computing systems. As such we will
utilize the metric to aid in studies of energy saving method-
ologies for Exascale class machines. We are also exploring
soft failure rates at lowered voltages and examining methods
of collecting and analyzing soft failure rate increases for use
in future runtime energy saving research.
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