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Materials With Large Surface Area

+ FF: Surface and
nanomaterials for catalysis
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Materials With Large Surface Area

+ FF: Surface and
nanomaterials for catalysis

+ Nanoporous materials for
hydrogen i1sotope storage
+ High surface area can ,
improve surface-limited 20 nm
reaction rates
+ Provides an escape path for
helium decay product

4+ He bubbles can cause
stiffening of bulk Pd
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Nanoporous Pd/Rh alloys for H Storage

+ Nanoporous Pd shows
reduced capacity

+ Bulk Pd/Rh alloys show
promise for H storage

+ No reduced capacity
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Nanoporous Pd/Rh alloys for H Storage

+ Nanoporous Pd shows
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+ Bulk Pd/Rh alloys show
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+ Nanoporous Pd has poor
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Nanoporous Pd/Rh alloys for H Storage

+ Nanoporous Pd shows
reduced capacity

+ Bulk Pd/Rh alloys show
promise for H storage

Pressure, P (mmHg)

+ No reduced capacity
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+ Nanoporous Pd has poor
elevated temperature stability
+ il Pd=1555°C
+ T ,peping R1=1963°C

+ 200°C is 0.26T,, Pd and
0.21T,_Rh

+ Is the pore structure uniform?

+ Is the Rh uniformly distributed?
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Surfactant Template Fabrication

+ Long organic molecule looks
like a pipe cleaner Brij 56

+ Hydrophobic center

4+ Solution of metal salts

Robinson, D. et al., IJHE, 35 (2010).




Surfactant Template Fabrication

+ Long organic molecule looks
like a pipe cleaner Brij 56

+ Hydrophobic center
+ Solution of metal salts

4+ Reduce the metal salts in
flowing gas

+ (NH,),PdCl, +H, — Pd+NH,CIl+2HCI
+ 2Na,RhCl, +3H, — 2Rh+6NaCl+6HCI

Robinson, D. et al., IJHE, 35 (2010).




Surfactant Template Fabrication

+ Long organic molecule looks
like a pipe cleaner Brij 56

+ Hydrophobic center

+ Solution of metal salts Nanopores

4+ Reduce the metal salts in
flowing gas
+ (NH,),PdCl,+H, — Pd+NH ,CI+2HCI

+ 2Na,RhCl, +3H, — 2Rh+6NaCl+6HCI

+ Rinse off organic residue
+ Nanoporous material

4+ Did it work?




Non-uniformity in 5 at. % Rh-Pd Pore Structure
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+ Small particles (<100 nm)
appear to have regular pore
structure
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+ Cross-sectioned to see inner- oy
structure 200 11

+ Embedded in epoxy
+ Dimple and ion milled
+ Larger pores in core
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Non-uniformity in 5 at. % Rh-Pd Pore Structure

+ Small particles (<100 nm)

appear to have regular pore ey
structure -

+ Larger particles (>100 nm)
have irregular pore structure

4+ Cross-sectioned to see inner-
structure

Temperature, °C

+ Embedded in epoxy
+ Dimple and ion milled

Pd-Rh Phase Diagram (1959 Raub E. )

ASM International 20
. [ASM Alloy Phase Diagr: amsC nter, P. Villars, editor-in-chief; H. Okamoto dK Cenzual, section editors; osende
+ Larger pores ln Core http://www.asminternational.org/AsmEnter, p /APD ASM International, Materials P, k OH, USA, 2006, 2007, 2008, 2009, 2010

+ Compositional uniformity?

. . Raub, E. Z. Metallk. 50 1959
+ Analytical microscopy




STEM-EDS Quantification

+ EDS spectrum imaging

+ Spectrum at every pixel
+ Overlap of PdL and RhL




STEM-EDS Quantification

+ EDS spectrum imaging
+ Spectrum at every pixel
+ Overlap Of PdL and RhL AXSIA Reconstructed Spectrum

+ Multivariate Statistical Analysis Pd Component

+ Decomposition of data matrix
+ D=C*ST
+ C s matrix of spectral weight
at each pixel

+ Sisa “pure” component
spectrum

+ Weighted for Poisson Statistics
+ Rotated for spectral simplicity

Kotula PG, et al. Microsc
Miroanal 2003;9:1.

Keenan MR. Surf Interface Anal ' Energy (keV)
2009;41:79.

Reconstruct the denoised data
matrix D




Core/Shell Compositional Distribution

+ EDS spectrum imaging 40 P e 150
+ Spectrum at every pixel 35 L o R
+ Overlap of PdL and RhL

230
~

3
+ Multivariate Statistical Analysis 2 2

0 . Y 30
+ Decomposition of data matrix Z 15
+ =S
+ C s matrix of spectral weight 10
at each pixel 5

+ Sisa “pure” component 0
spectrum

+ Weighted for Poisson Statistics
+ Rotated for spectral simplicity

Kotula PG, et al. Microsc
Miroanal 2003;9:1.

4+ Keenan MR. Surf Interface Anal
2009;41:79.

+ Reconstruct the denoised data
matrix D

o
o
Pd Counts

N
o

+ Multiple Least Squares Fit and
Cliff-Lorimer Ratio

Rh Concentration (at. fraction)

+ Cliff G, Lorimer GW. J Microsc-
Oxford 1975;103:203.




Core/Shell Compositional Distribution
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Core/Shell Compositional Distribution
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Smaller Particles: More Gradual Rh
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More Gradual Rh distribution = More Uniform Pore Size Distribution




Higher Rh Content: More Ordered Pores
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Diffusion-Limited vs. Reaction-Limited Processes

+ Auverages all seem high (particles
~100 nm)
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Diffusion-Limited vs. Reaction-Limited Processes

+ Auverages all seem high (particles
~100 nm)

(Rh,Pd)
+ Phase diagram suggests Pd-Pd and S
Rh-Rh bonds preferred
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Pd-Rh Phase Diagram (1959 Raub E. )
ASM Alloy Phas DgamsC nter, P. Villars, editor-in-chief; H. Okamoto dKC n editors;
http://www.asminternatio g/A smEnter p /APD ASM International, M terials Pa k OH USA 2006 2007, 2008, 2009, 2010




Diffusion-Limited vs. Reaction-Limited Processes

+ Auverages all seem high (particles
~100 nm)
Jellt Solttiog)
+ Phase diagram suggests Pd-Pd and
Rh-Rh bonds preferred

+ Competition between diffusion and

reaction rates in salt solution @
+ Nucleation of Pd-rich particles

+ Formation of Pd-depleted zone

Pdion depletion

Dpg>Dgy,

Rate Pd reduction>Rate Rh reduction
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+ Auverages all seem high (particles
~100 nm)
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+ Phase diagram suggests Pd-Pd and
Rh-Rh bonds preferred Rh shell

+ Competition between diffusion and \
reaction rates in salt solution

Pd
+ Nucleation of Pd-rich particles U
+ Formation of Pd-depleted zone

+ Rh reaction dominates
+ Not enough Rh for larger particles

Pdion depletion

Dpg>Dgy,

Rate Pd reduction>Rate Rh reduction




Diffusion-Limited vs. Reaction-Limited Processes

+ Auverages all seem high (particles

+

~100 nm)

Phase diagram suggests Pd-Pd and
Rh-Rh bonds preferred

Competition between diffusion and
reaction rates in salt solution

+ Nucleation of Pd-rich particles
+ Formation of Pd-depleted zone
+ Rh reaction dominates
+ Not enough Rh for larger particles
+ Diffusion-limited regime

+ Small particle incorporates Rh more
readily

+ Large particle alloys at low levels
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Rate Pd reduction>Rate Rh reduction




Diffusion-Limited vs. Reaction-Limited Processes

+ Auverages all seem high (particles
~100 nm)

Jellt Solttiog) Rh Shell
+ Phase diagram suggests Pd-Pd and

Rh-Rh bonds preferred

Pd/Rh shell
Competition between diffusion and

reaction rates in salt solution
Nucleation of Pd-rich particles
Formation of Pd-depleted zone
Rh reaction dominates
+ Not enough Rh for larger particles

Diffusion-limited regime

+ Small particle incorporates Rh more ~/J
readily
d

Je| Jc
+ Large particle alloys at low levels P ion

Pd 1s consumed so last Rh reduces

Rate Pd reduction>Rate Rh reduction




Diffusion-Limited vs. Reaction-Limited Processes

+ Auverages all seem high (particles
~100 nm)
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+ Phase diagram suggests Pd-Pd and
Rh-Rh bonds preferred

+ Competition between diffusion and
reaction rates in salt solution

Rh Concentration

Nucleation of Pd-rich particles

Formation of Pd-depleted zone
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Rh reaction dominates
+ Not enough Rh for larger particles
Diffusion-limited processes
+ Shell of small particle alloys
+ Core of large particle alloys
+ Pd is consumed so last Rh reduces

4+ Particle size effects overall Rh
distribution

Rh Concentration (at. fraction)




Pd/Rh Surface Rearrangement at High Temperature

After Reduction (H,) at 300°C After Oxidation (air) at 300°C

—

1

0.4

~
c
@)
-
©)
4°]
| S
(G
)
4v]
7
c
2
)
(4°]
| S
)
=
)
©)
=
o
o
L=
o

=
N

o

Rh Concentration (at. fraction)

50 rirn)




Pd/Rh Surface Rearrangement at High Temperature
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4+ EDS data shows more
enriched Rh surface after

oxidation

+ This 1s supported by iz situ

XPS data

Tao et al., Science 322, 2008. 300°C in 100 mtorr O
Tao et al. J Am Chem Soc, 132, 8697, 2010. 2




Summary

+ Surfactant template fabrication
of nanoporous Pd/Rh alloys




Summary

+ Surfactant template fabrication
of nanoporous Pd/Rh alloys

+ Non-uniformity in pore size for
larger particles

+ More Rh helps
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Summary

+ Surfactant template fabrication
of nanoporous Pd/Rh alloys

+ Non-uniformity in pore size for
larger particles

+ More Rh helps

+ Non-uniformity in composition
at all sizes
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Summary

Surfactant template fabrication
of nanoporous Pd/Rh alloys

. et i Szt Solutior)
Non-uniformity in pore size for

larger particles
+ More Rh helps Pd/Rh shell

Non-uniformity in composition
at all sizes

Diffusion-limited processes
cause size dependency in
composition profile

P ion

Rh Shell




Summary

Surfactant template fabrication
of nanoporous Pd/Rh alloys

Non-uniformity in pore size for
larger particles

+ More Rh helps

Rh Concentration (at. fraction)

Non-uniformity in composition
at all sizes

Diffusion-limited processes
cause size dependency in
composition profile

Distance (nm)

Rh/Pd flipping at 300°C in
+ Supported by XPS data




Conclusions

+ Nanoporous Pd/Rh alloys are a functional material that
show promise as hydrogen 1sotope storage materials

+ Pore structure and composition is not well controlled

+ Advanced characterization techniques provide insight into
the mechanisms active during formation so that we can
attempt to tune the processing parameters for better control

+ More uniform particle sizes could lead to better overall
compositional control
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