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A rectangular lattice of gold split-ring 
resonators on top of a GaAs half-space
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A single gold split-ring resonator on top of a 
thick GaAs half-space
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t

r= 10.89 (half-space)

The dimensions of the SRR are 2g=0.10 µm, L=0.66 µm, t=0.1 µm, w=0.12 µm. 
The relative permittivity of the substrate is εr= 10.89
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Outline

 Subcell Models
 capacitive corrections
 internal impedance correction

 Comparison of Subcell Models and Explicit-Mesh 
Simulations 

 Applications and HPC Subcell Calculations
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 Local descriptions
– Equivalent radius (Hallen)
– Equivalent radius on dielectric half space 
– Impedance per unit length expansion

(Cockcroft, Vainshstein, Zhurav, Warne, Holloway)
– Internal admittance per unit length (negligible effect for metals)
– Gap, fringe, and transition capacitance

Subcell Models
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discrete load.
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Subcell: Gap and Fringe Capacitance   
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Subcell Capacitance Corrections: 
Hallen and EIGER facet 4
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Electrostatic simulations for improvement of 
the analytical capacitances
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r= 10.89 (half-space)

Index Color Top y 
µm

Length 
µm

GaAs
q/ε0  
nCm/F

Air
q/ε0   
nCm/F

1 red 0.050 0.000 186.6973 168.0576
2 green 0.075 0.025 643.5120 139.8804
3 blue 0.150 0.075 844.6347 191.9064
4 white 0.375 0.225 1663.647 355.1039
5 magenta 1.050 0.675 3587.186 721.7294
6 orange 3.075 2.025 8260.145 1593.920
7 cyan 9.150 6.075 20000.92 3754.312
8 pink 27.375 18.225 50244.16 9255.789
9 light blue 82.050 54.675 129717.3 23578.98
10 black 246.075 164.025 342439.5 61636.23
11 gold 738.150 492.075 925501.6 165389.4
12 grey blue 2214.37 1476.225 2672127. 476384.1

Charge calculations for 1V across the gap and the SRRs arms extended 
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Subcell: impedance per unit length 
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Near square cross-section: Gold properties at the first resonances of the 
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Comparison of EIGER and Subcell Simulations
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1000 to 1 reduction in unknowns and runtime!
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HPC Simulations Subcell Simulations
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Subcell Models Can be Used For Various 
Metal Designs

SRR Design B (IR): 5-layers, period=2.82 µm
Comparing Subcell and Full-Mesh Simualations
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Snake Dipole Design: 5 layers, period=2.82 um 
Comparing Subcell and Full-Mesh Simulations
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SRR-Snake Design: 1 layer, period=2.82 um
Comparing Subcell and Full-Mesh Simulations
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SRR-Snake Design (IR): 5-layers, period=2.82 um
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Subcell Models Can Be Used to Model 
Negative-Index Prisms (3D)

SRR generating magnetic response around 3.2 GHz

Z dipole generating electric response around 3.2 GHz

SRR/Snake RF Design (sigma) : Isolated Particle Run in Air
H PWs Add (Cancel): Theta=90, Phi=90 (0)
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We assemble a 3D prism of subcells to 
realize a negative-refractive index

SRR-Snake RF Design (Air Matrix)
Claussius Mossatti Effective Refractive Index 

(period=24.2 mm)
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SRR-Snake RF Design (Air Matrix)
Claussius Mossatti Effective Refractive Index 

(period=24.2 mm)
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SRR-Snake RF Design (Air Matrix)
Claussius Mossatti Effective Refractive Index 

(period=24.2 mm)

-15

-10

-5

0

5

10

15

20

3 3.05 3.1 3.15 3.2 3.25 3.3 3.35 3.4 3.45 3.5
freq, GHz

re_neff
im_neff

Refractive Index
(Zoomed View)

Phi=90 Plane

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180
thetaprime (degrees)

Fa
r-

Fi
el

d 
A

m
pl

it
|Etheta|: 3.5 GHz
|Etheta|: 3.4 GHz
|Etheta|: 3.3 GHz

Scattered Pattern

r=90

Scattered Pattern
Phi=90 Plane

y

z 10x10x10 Prism

kz
nrIncident 

wave

Refracted 
wave



17

0

45

90

135

18
0 0

600

600

1200

1200

|Etheta|: 3.3 GHz 

SRR-Snake RF Design (Air Matrix)
Claussius Mossatti Effective Refractive Index 

(period=24.2 mm)
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A dual-plane wave excitation of a single resonator 
simplifies interpretation of effective-media results

 separate electric and magnetic 
responses

 far-field amplitudes yield 
spectral positions of resonances

 far-field patterns yield 
polarizabilites and type of response 

 electric vs. magnetic 

 dipole vs. quadrapole

 effective media parameters (with 
removal of radiation damping)= + +

Dipole Quadrupole

Far Zone Pattern
Electrically Small Object
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Design Procedure: Isolated Particle 
Simulation and Moments
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