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iy -W}A rectangular lattice of gold split-ring
s -
resonators on top of a GaAs half-space




—

'angle &Id split-ring resonator on top of a
thick GaAs half-space

The dimensions of the SRR are 2g=0.10 um, L=0.66 um, t=0.1 um, w=0.12 um.

The relative permittivity of the substrate is ¢,= 10.89
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Outline

J Subcell Models
= capacitive corrections
* Internal iImpedance correction

d Comparison of Subcell Models and Explicit-Mesh
Simulations

 Applications and HPC Subcell Calculations
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e Subcell Models

% Local descriptions
— Equivalent radius (Hallen)
— Equivalent radius on dielectric half space
— Impedance per unit length expansion
(Cockcroft, Vainshstein, Zhurav, Warne, Holloway)
— Internal admittance per unit length (negligible effect for metals)
— Gap, fringe, and transition capacitance

o= e
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Rectangular SRR Example

Bar elements

The gap is
modeled with a
discrete load.

Surface elements
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| Subcell: Gap and Fringe Capacitance

Capacitance Correction of thin wire:

AC ~ i(3 +&,)(W+1) {In(Zae /g)—.5772 —i)}
T 15

d, = 0.036um (GaAs half-space)
d, =a = 0.065 um (air)

AC +C,, =(-2.5206+1. 0625) aF = -1.4581 aF (GaAs half-space)

AC +C,, =(0.3011+1.0625) aF = 1.3636 aF (air)
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™ Subcell Capacitance Corrections:
Hallen and EIGER facet 4

Q" (y') C™(y')= » 2Q"(y")
_ ] - -
+ y' C"(y')= 63.727aF, 12.960 aF
s(y)Vv |
QF(y) Ce =QE(y‘)zlzllQ'E
i Y & QF(Yy') = 61.321aF 13.960 aF
4
Ct — -0.947214 aF , -0.36345 aF
C,=Cy-C"-(AC+C,)
t E pp AC ¢ = 9.875aF, 2.7308 aF
1
AC, :2ae(g+go){ln(4(3.4)ae/SO)—J/—E} Cmagned _ oo oc 400
Load - = v

Cloaa =AC+C  +C, —AC,
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ﬂectrostatic simulations for improvement of
| the analytical capacitances

=

g=10.89 (half-space) i
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Charge calculations for 1V across the gap and the SRRs arms extended

Index | Color

red
green
blue
white
magenta
orange
cyan
pink

light blue
black
gold
grey blue

Top vy

um

0.050
0.075
0.150
0.375
1.050
3.075
9.150
27.375
82.050
246.075
738.150
2214.37

0.000
0.025
0.075
0.225
0.675
2.025
6.075
18.225
54.675
164.025
492.075
1476.225

186.6973
643.5120
844.6347
1663.647
3587.186
8260.145
20000.92
50244.16
129717.3
342439.5
925501.6
2672127.

168.0576
139.8804
191.9064
355.1039
721.7294
1593.920
3754.312
9255.789
23578.98
61636.23
165389.4
476384.1




Subcell: impedance per unit length

3 1.18(w+1)

~.065um
Z. = “’E‘O (W,t > 45)

Near square cross-section:

f (THz) €, kK (um?1)| & (nm) | Z (/um)
3753.8 | 6.6197 3.667

3L | 12427 | sjarose | 2*3 | +j19.40
10515 | 3.7648 3.829

031 | 18533 | -j43.04 | 237 | +j37.62

Gold properties at the first resonances of the
SRRs above the GaAs half-space and in air

<25 |1 ga0p| ) |- 2%
m(w+t) K(w+t) | aw (W+t)
AZ, =7 +32% n(a, /a) d N
27 Es(ae,s)+AZC@Is(s)—AZLIS(s):—ES (s)
AZ.=0
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" .Comparison of EIGER and Subcell Simulations
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HPC Simulations Subcell Simulations
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"!“Subcell Models Can be Used For Various
Designs

Metal

SRR Design B (IR): 5-layers, period=2.82 um Snake Dipole Design: 5 layers, period=2.82 um
. Comparing Subcell and Full-Mesh Simualations 1. Comparing Subcell and Full-Mesh Simulations
: . ‘ ‘ B . —]
0.9 ¢ /\\ // — Subcell 097 7 vl
08 ™\ : = Full Mesh [ 0.8 ¢ ' ewcel |
0.7 / : \ / 0.7 : ll \\ // = Full Mesh | |
0.6 / .\ ﬁ 0.6 l . \ /
= 05 / . \ / :B: E 05
=/ | 0a || [
03’ . g 03 | \ a
2 e L e
1 =HE i 01 :
O:) i L L \I.U\ o 0 g T L L ‘\H J I L
7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15
Wavelength (um) Wavelength (um)
SRR-Snake Design: 1 layer, period=2.82 um SRR-Snake Design (IR): 5-layers, period=2.82 um
1 Comparing Subcell and Full-Mesh Simulations 1 .
09 alialiai. = N __— — 09 ~—
g ﬂ \\ = 08 ™ /
Zj TI \ f, / — Subcell | 0.7 ; / \ / —Subcell | |
06 ] \ ’/ —= Full Mesh . ; I \ /
E 05 \- \ " / F 05 l \ /
o Ly o | /
0.3 x f\ / 0.3 ] \
0.2 U / 0.2 ’I \\ /
O.(l) 0.; E\}‘ T
-
7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 —
Wavelength (um) Wavelength (um)
12 A | R
LABORATORY DIRECTED RESEARCH & DEVELOPMENT Laboratories




=™ _Subcell Models Can Be Used to Model

Negative-Index Prisms (3D)

18

SRR/Snake RF Design (sigma) : Isolated Particle Run in Air
H PWs Add (Cancel): Theta=90, Phi=90 (0)

16

— |Etheta] (Magnetic Response)

|Ephi| (Electric Response)

—~ Magn

etic resy
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- Electric respon
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Frequency, GHz

3.5
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[SRR generating magnetic response around 3.2 GHz

[Z dipole generating electric response around 3.2 GHz
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™" _We assemble a 3D prism of subcells to
realize a negative-refractive index

SRR-Snake RF Design (Air Matrix)
Claussius Mossatti Effective Refractive Index
(period=24.2 mm)
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»=""The RF 3D prism run shows a negative index of
L about minus one occurring around 3.3 GHz
3 10x10x10 Prism

|| Scattered Pattern |

.,
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wave
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"TRe scattered refracted beam scans with frequency

10x10x10 Prism

Scattered Pattern
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"="The results of the RF 3D prism run show negative
: refraction occurring around 3.3 GHz A
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ke ﬂ dual-plane wave excitation of a single resonator
simplifies interpretation of effective-media results

O separate electric and magnetic
responses

E
P . . .
Q far-field amplitudes yield
¥ K spectral positions of resonances
PN

Q far-field patterns yield

Hectrically Snall Object polarizabilites and type of response
‘ Far Zone Pattem

O electric vs. magnetic

<> U dipole vs. quadrapole
— Q effective media parameters (with
+ > + e o0 o p (

removal of radiation damping)

Dipole Quadrupole
Design Procedure: Isolated Particle
Simulation and Moments

Hectric Held Drive

L @ 1 aM
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