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}' Introduction

Objective

Characterize predictability of the cyber attacker/defender “arms race”
and leverage findings to create a framework for designing proactive
defenses for large computer networks.

Outline
¢ Adversarial dynamics: predictability of non-transitive games.

¢ Responsive defense:
transfer learning, sample results.
¢ Proactive defense:

synthetic attack generation,
sample results.
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}‘ Adversarial Dynamics

Adversarial data mining

¢ Coevolutionary adversarial dynamics are central in a broad range of
important phenomena, including

= security-related (e.g., terrorism, cyber defense, border security,
proliferation);

= business-related (e.g., marketing, economics, finance, fraud).

However, “data mining” algorithms typically assume that the data-
generating process is independent of the algorithm’s activities.

* We conjecture that coevolution of adversary strategies generates
dynamical structures which can be exploited to design proactive
defenses that are effective against both current and near future
attacks.
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&‘ Adversarial Dynamics

Predictability of adversarial coevolution

¢ Influential work by [Farmer et al. 2002] suggests that, for non-transitive
games (e.g. rock-paper-scissors), reactive adversarial learning results in
unpredictable dynamics.

* Our work shows broad classes of proactive learning leads to predictable
dynamics and suggests utility of extrapolating adversary behavior into
the near future.
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} Responsive Defense

Problem

Increase responsiveness of network defenses by exploiting attacker-
defender coevolution via bipartite graph-based transfer learning.

Approach

2 2
. T =
e Hds_m -kgdSH +ﬂ;”dr,esr 'deT”
aug

bipartite graph data model ’
+ ,83| c- WH
+ —
+ objective function
instances - for learning
(5T
features

Responsive Defense

Sample results

Intrusion detection with (publicly-

available) KDD Cup 99 dataset_ Welcome to the UCT Knowledge Discovery in

Databases Archive
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Problem

Proactive Defense

Enable proactive network defense by generating “predicted” attack data
and using this synthetic data to train defense systems.

Approach
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Synthetic Data Learning Algorithm

. Identify relevant modes of attack (e.g., via SMEs

or auxiliary data).

. Construct S-HDS model and generate set of

synthetic attack instances A..

. Assemble sets of normal network activity N and

measured attack activity A, for network of
interest.

. Train classifier (e.g., RLS) using training data

TR = Ny U Ay U As. Estimate class label
(innocent or malicious) of any network activity
x with formula: orient(x) = sign(c™x).

Sample results

Proactive Defense

e Setup: attacker (Spammer) assumes defender (Spam filter) uses naive
Bayes (NB) for detection and manipulates observable (email message)

to defeat NB.
e Proactive Spam filter design:

= generate synthetic Spam data
via Algorithm SDL with two
attack modes (add-words,
synonyms);

= train proactive filter on both
real current Spam and
synthetic (near future) Spam;

= results shown are for Ling-
Spam dataset.

NB Algorithm: Nominal Spam

class\truth non-Spam Spam
non-Spam 262 19
Spam 1 215

NB Algorithm: Nominal and Attack Spam

class\truth non-Spam Spam
non-Spam 524 253
Spam 2 215

Algorithm SDL: Nominal and Attack Spam
non-Spam Spam

non-Spam 524 40
Spam 2 428

class\truth






