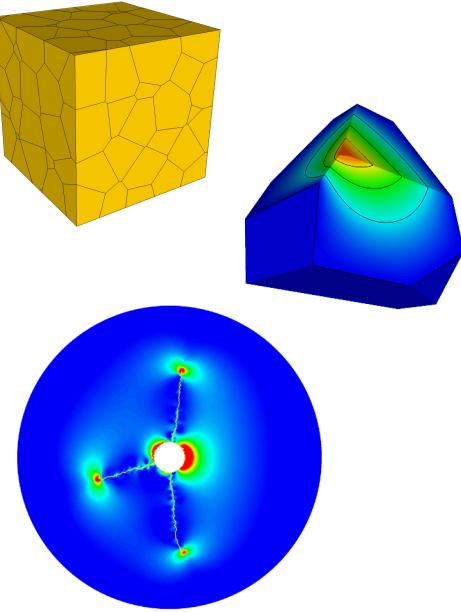


A Polyhedral Finite-Element Formulation using Harmonic Shape Functions with Applications to the Modeling of Multi-Physics Fracture Processes



Joe Bishop

Computational Structural Mechanics and Applications
Sandia National Laboratories
Albuquerque, NM

NSF Workshop on Barycentric Coordinates in Geometry Processing and
Finite/Boundary Element Methods
Columbia University, New York, USA
July 25–27, 2012

This material is based upon work supported as part of the Center for Frontiers of
Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences under Award
Number DE-SC0001114.

Sandia
National
Laboratories

U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

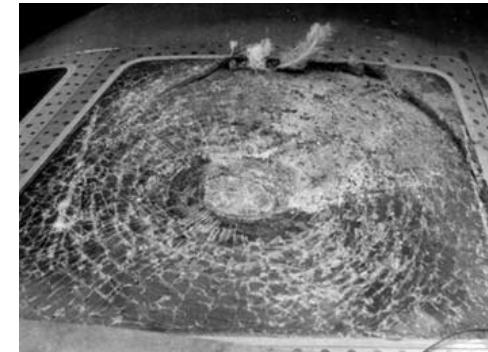
Outline

1. Pervasive fracture and fragmentation
2. Random meshes and a polyhedral finite-element formulation
3. Assessing mesh convergence in a probabilistic sense
4. Example of statistical convergence using dynamic ring expansion
5. What is material variability?
6. Summary

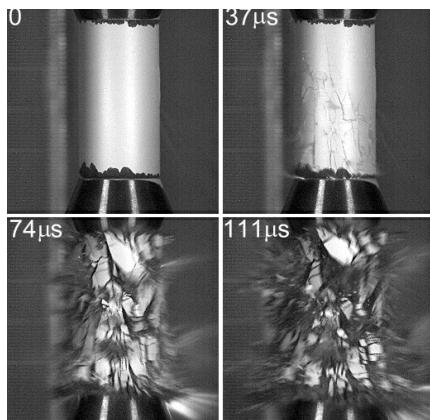
Pervasive Fracture

blast induced structural collapse

USS Cole



bird strike

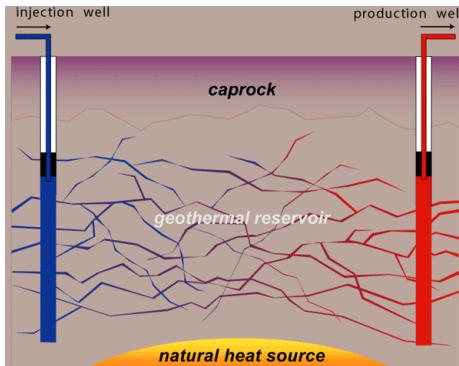


- crack branching
- crack coalescence
- tortuous crack paths
(sensitivity to material heterogeneity)
- stochastic behavior

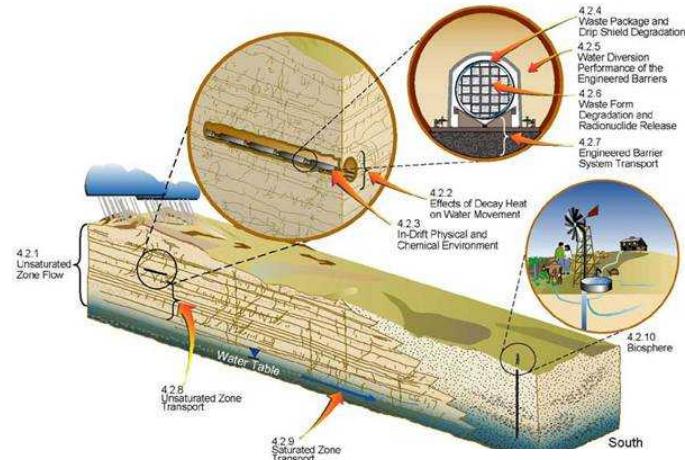
dynamic pervasive fracture

Geomechanics Applications

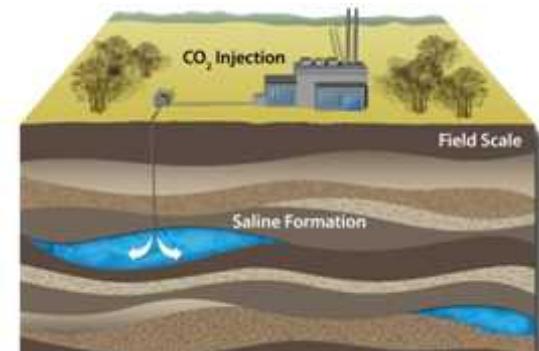
Engineered Geothermal



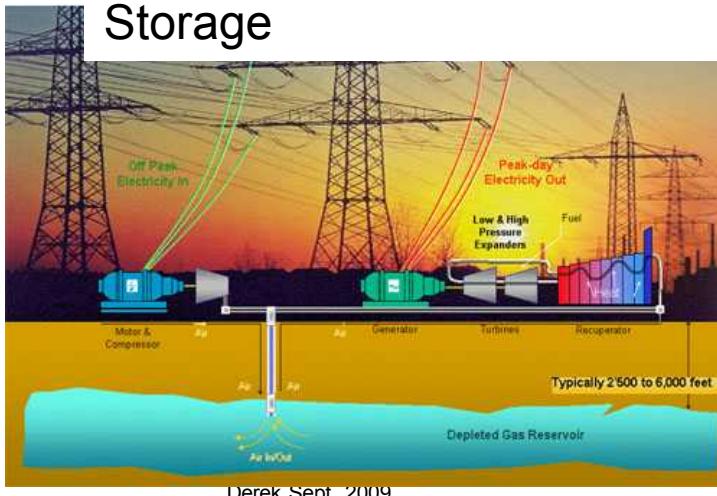
Nuclear Waste Isolation



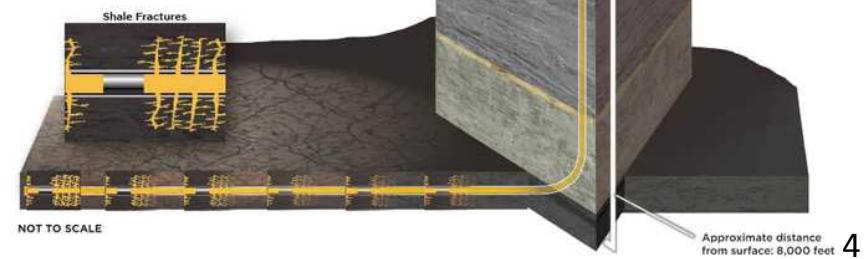
CO₂ Sequestration



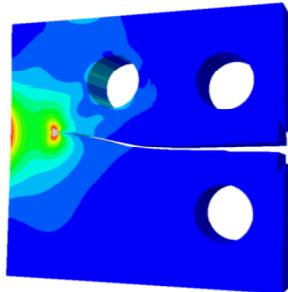
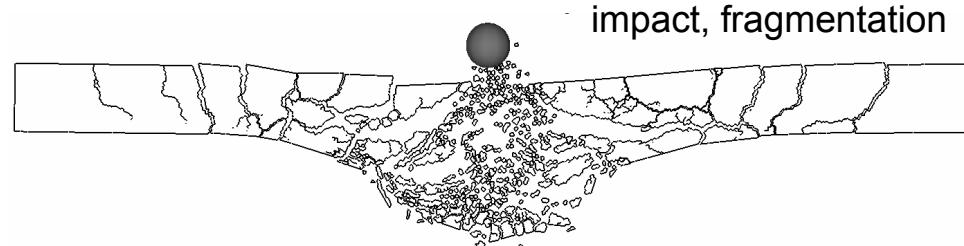
Compressed Air Energy Storage



Hydraulic Fracturing



Spectrum of Fracture Problems



spectrum of fracture problems

single crack

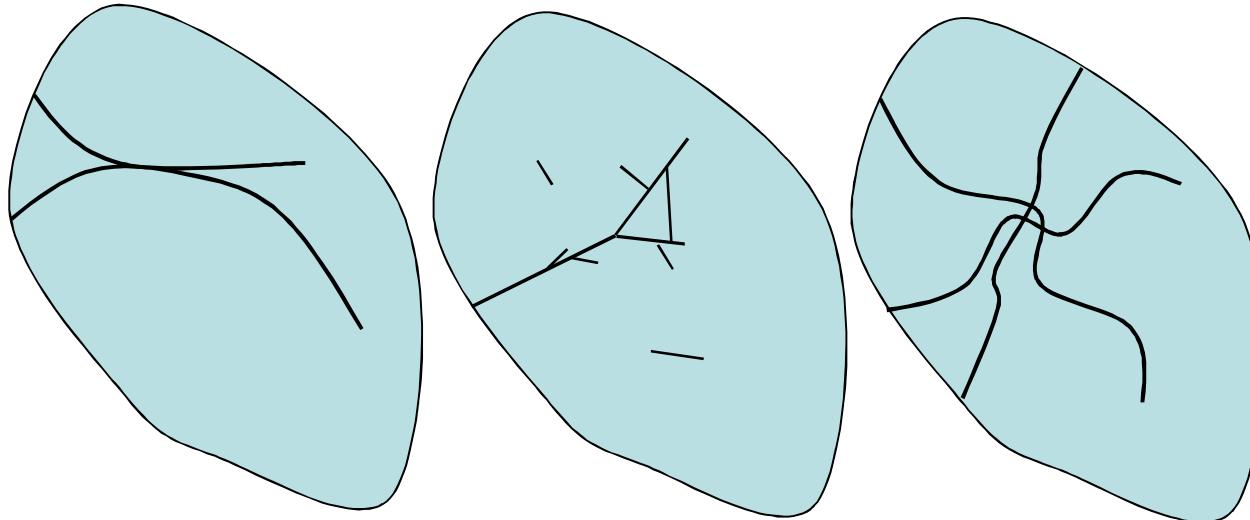
pervasive fracture

- well defined deterministic propagation path
- analytical solutions
- enrichment methods (GFEM, XFEM, . . .)

- crack branching
- crack coalescence
- tortuous crack paths
(sensitivity to material heterogeneity)
- stochastic behavior

How far can we extend the computational tools
used for one end of the spectrum to the other?

Computational Challenges to Allowing Cracks to Grow Arbitrarily



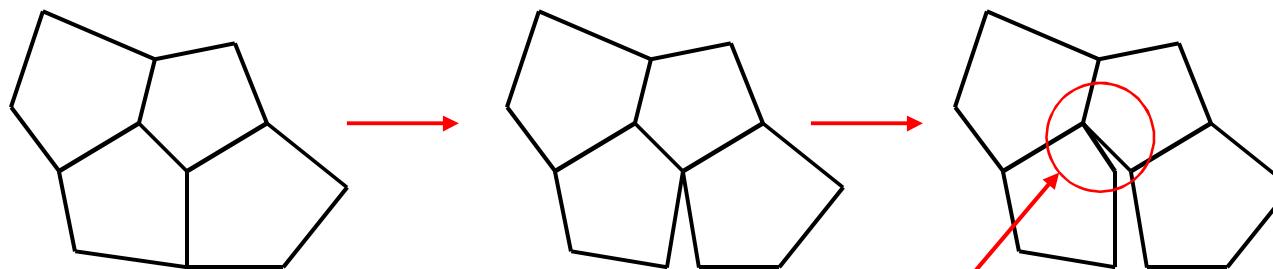
- Do we restrict branching?
- Do we restrict initiation?
 - from surface only?
 - from crack tips only?
 - from existing cracks only?
- Constraints on turning angles?
- Constraints on crossing angles?
- Constraints on minimum fragment size?

What about 3D?

Computational Approach

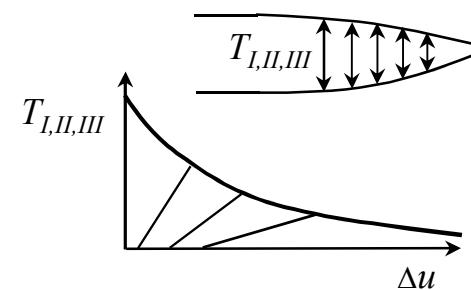
- Random Voronoi tessellation (mesh)
- Polyhedral finite-elements
- Fracture only allowed at element edges.
- Dynamic mesh connectivity
- Insert cohesive tractions on new fracture surfaces (fracture energy).

Pandolfi, A. and M. Ortiz, 2002, *Engineering with Computers*, **18**: p. 148-159.



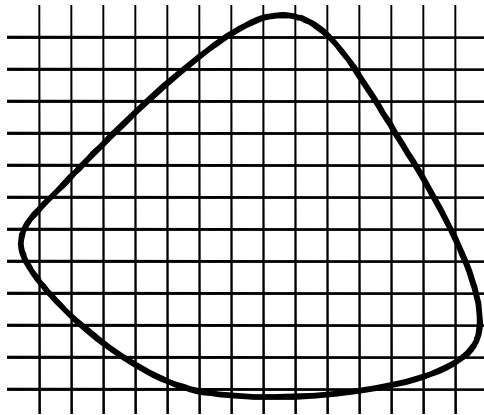
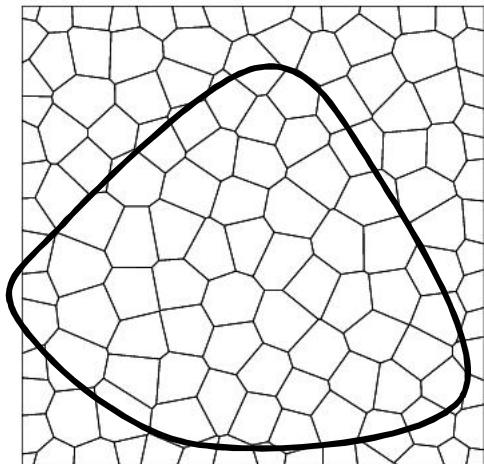
changing mesh connectivity

cohesive tractions at
crack tip

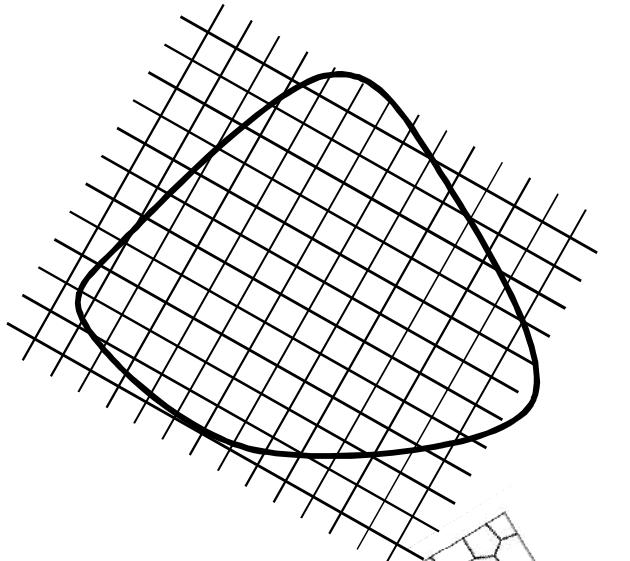
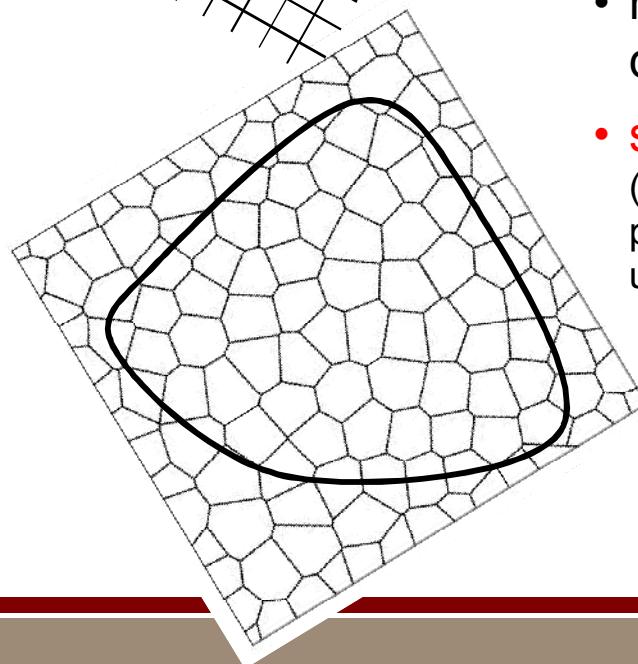


Why a Random Voronoi Mesh?

Bolander, J.E. and S. Saito, 1998, *Fracture analyses using spring networks with random geometry*. Engineering Fracture Mechanics, **61**(5-6): p. 569-591.



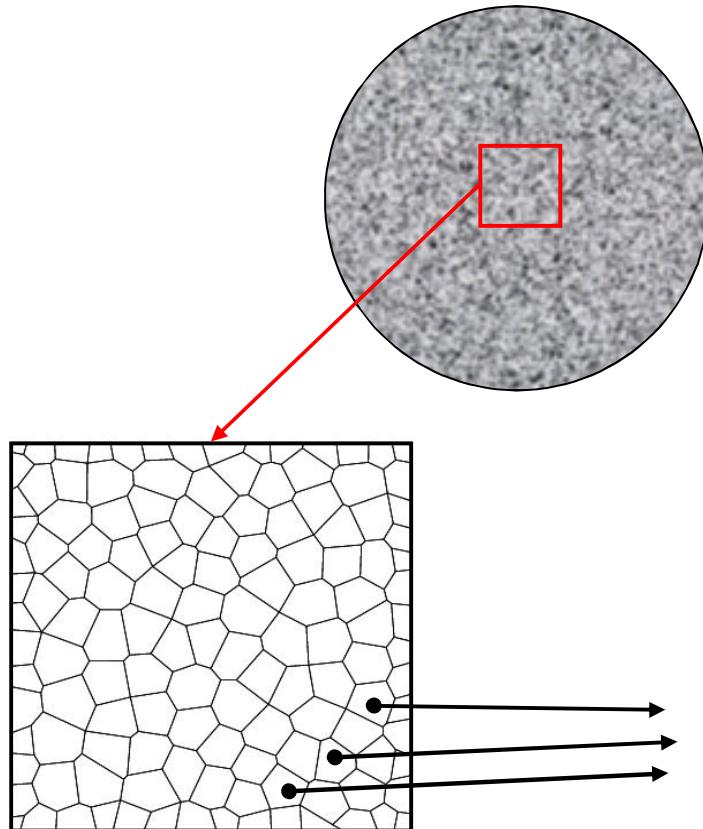
Voronoi tessellation of
with random seeding



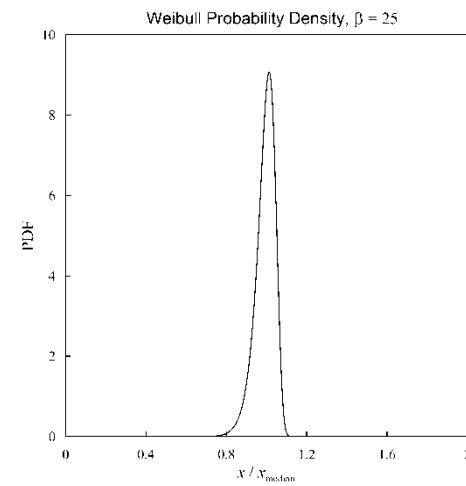
Structured grids can result in
strong mesh induced bias
(nonobjective).

- need to use 'random' discretizations
- **statistically isotropic**
(distribution of edge orientations
passes KS test against the
uniform distribution)

Voronoi Texture Augments Material Variability

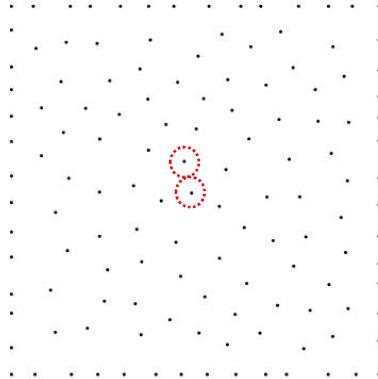


Probability Density

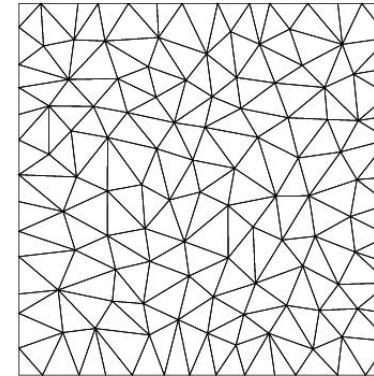


Voronoi Mesh Generation

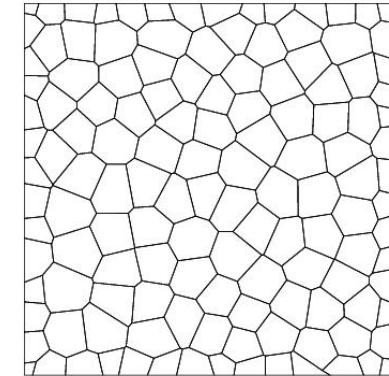
Bolander, J., Saito, S., 1998, 'Fracture Analyses using Spring Networks with Random Geometry,' *Engineering Fracture Mechanics*, 61, 569-591



Poisson process

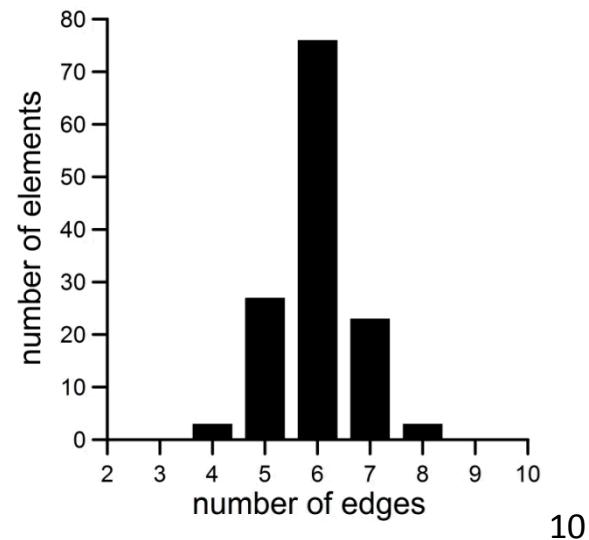


Delaunay triangulation

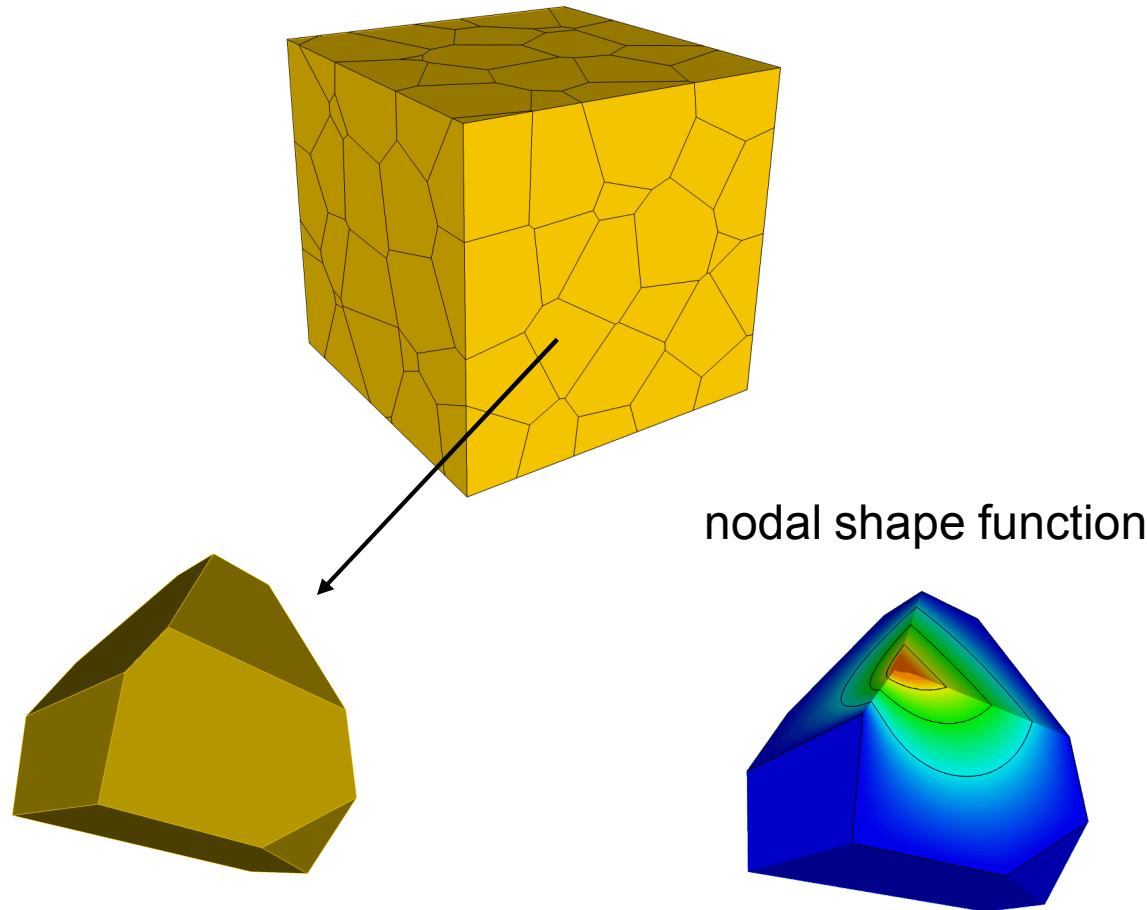


dual Voronoi

- Note that each Voronoi junction is randomly oriented.
- Most Voronoi junctions are triples.
- Average interior angles are 120° .



3D Element Formulation



Harmonic Functions

A harmonic function is a solution of Laplace's equation.

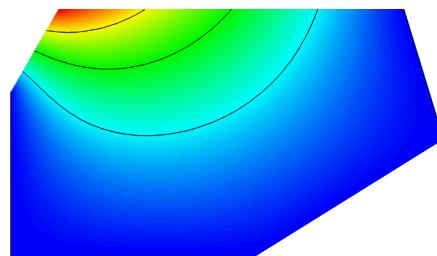
$$\nabla^2 \varphi = 0$$

or

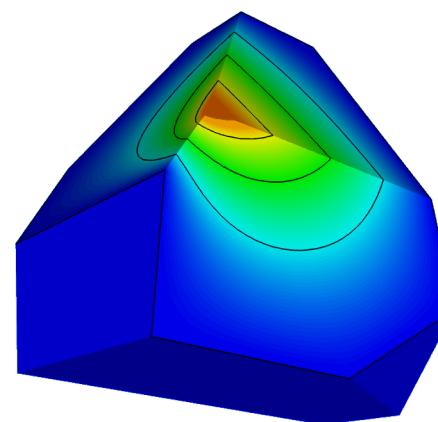
$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0$$

Can solve efficiently using BEM, or can just use FEM.

example in 2D



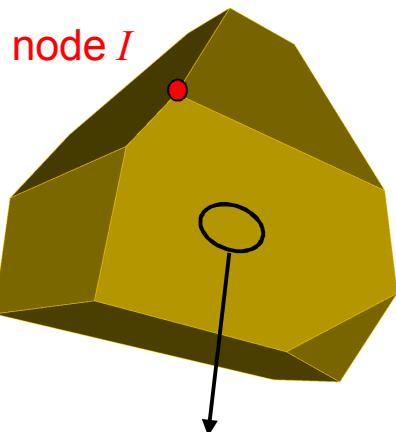
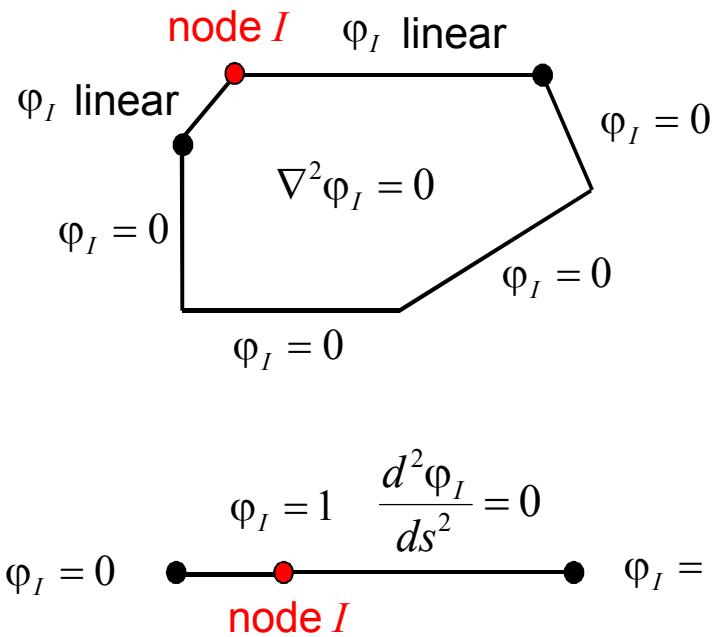
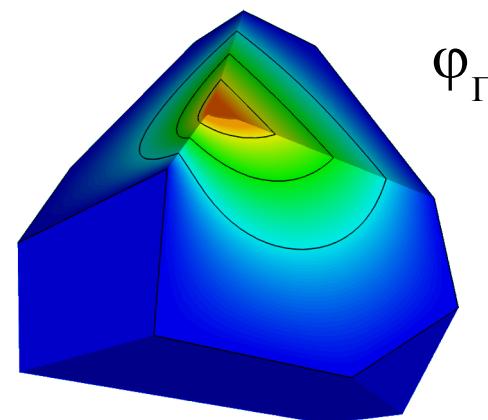
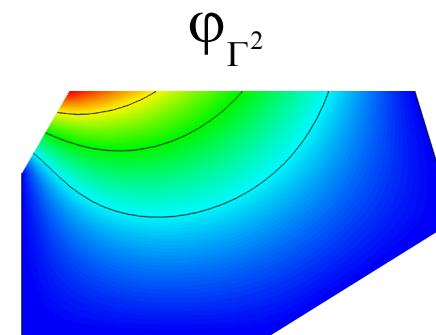
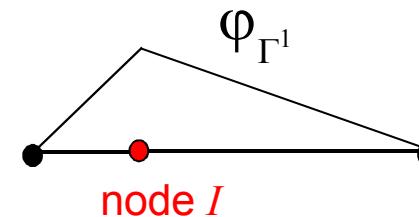
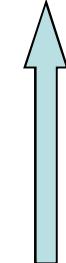
example in 3D



A subset of a broader notion of “energy minimizing” functions.

Construction of Harmonic Shape Functions in 3D

(Joshi, 2007, "Harmonic coordinates for character articulation")



boundary
conditions

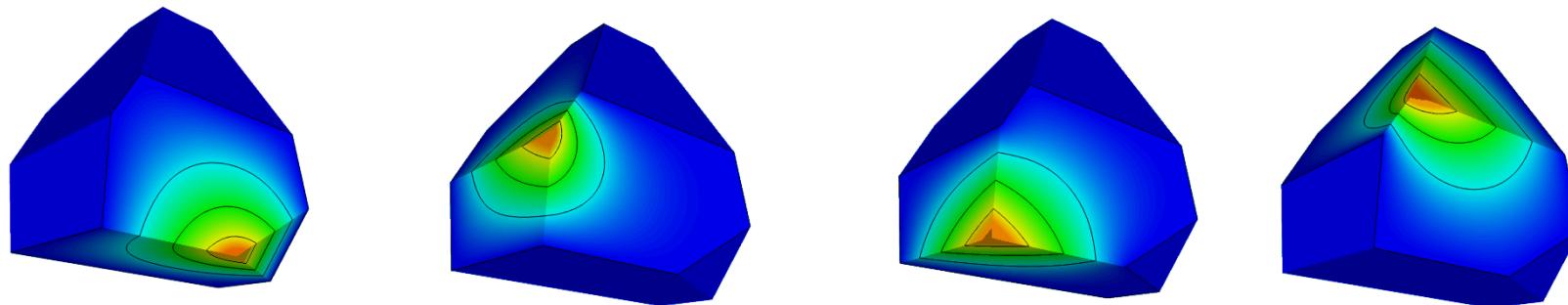
Γ^3

Γ^2

Γ^1

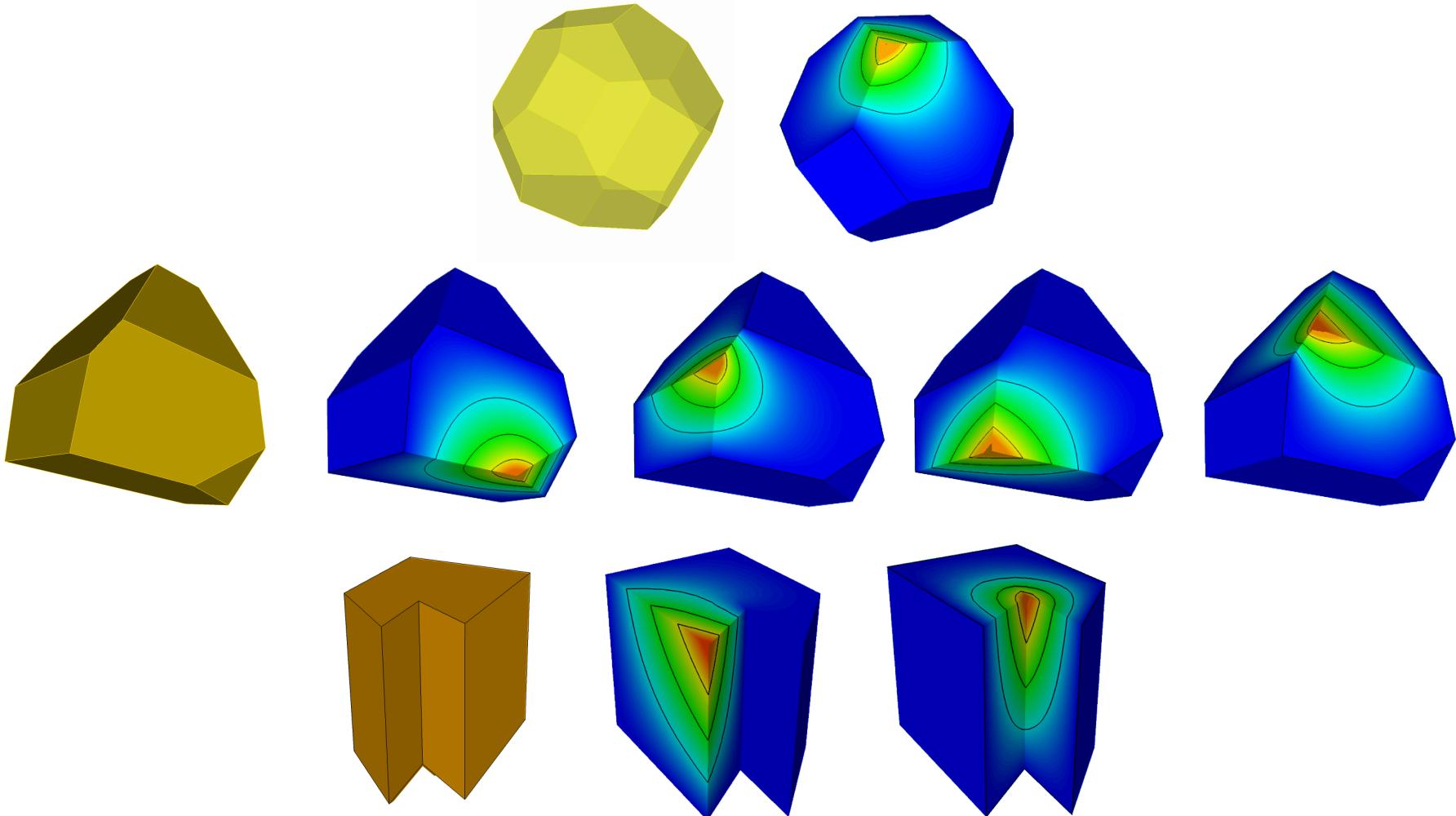
Harmonic Shape Function Properties

- partition of unity and reproduce space $\sum_I \psi_I(\mathbf{x}) = 1, \quad \sum_I \psi_I(\mathbf{x}) \mathbf{x}_I = \mathbf{x}$
even for the discrete harmonic solution $\sum_I \psi_I^h(\mathbf{x}) = 1, \quad \sum_I \psi_I^h(\mathbf{x}) \mathbf{x}_I = \mathbf{x}$
- Kronecker delta property at nodes $\psi_I(\mathbf{x}_J) = \delta_{IJ}$
- linear on edges (low order)
- shape functions defined on original configuration (no mapping to 'parent' shape)



shape functions

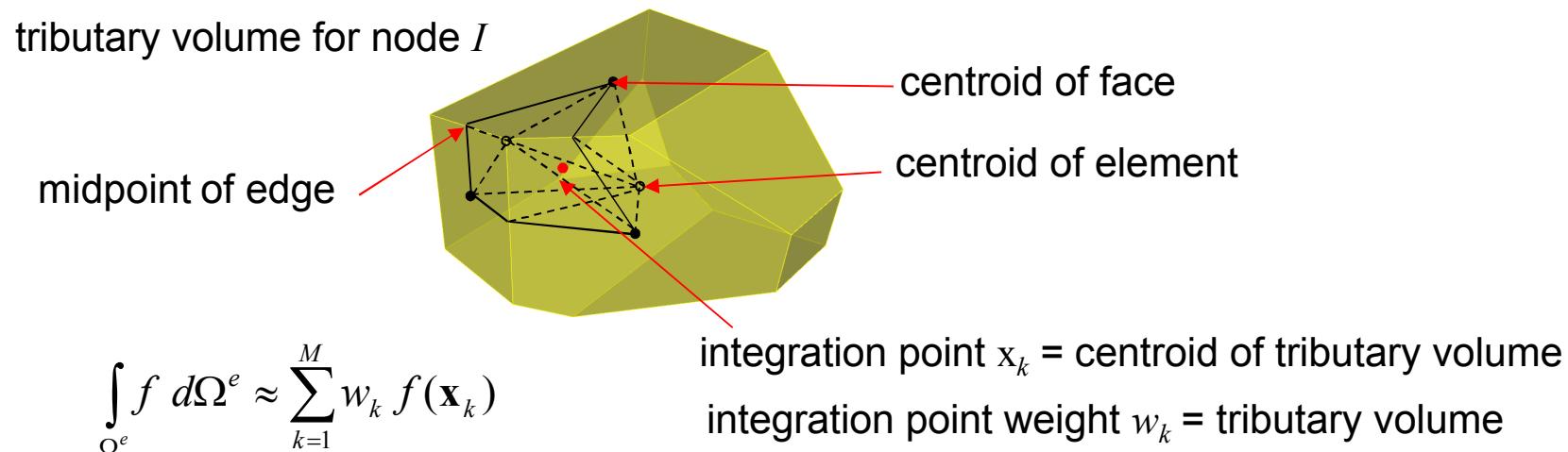
Harmonic Shape Function Examples



Only need to store shape functions and derivatives at integration points.
Discard everything else.

Element Integration

- Due to computational expense of plasticity models, want to minimize the number of integration points.
- Follow approach of Rashid and Selimotec, 2006.
- Each node is associated with a “tributary” volume, connected to the centroid.
- Number of integration points is equal to the number of vertices.



- Integration is only **first order accurate**.
- Sufficient to eliminate any zero energy modes.

“Engineering” Patch Test

The patch test verifies “completeness”, a necessary condition for convergence.

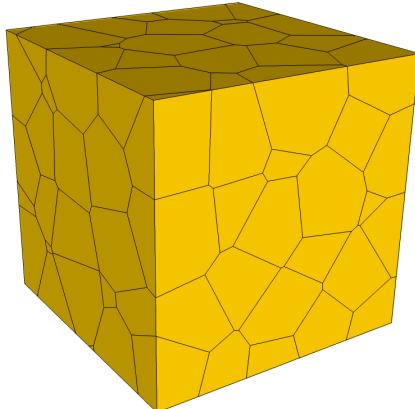
(Displacement field can represent rigid body motions and a constant strain state.)

On an “arbitrary” patch of elements, a linear displacement field should be produced on interior nodes when such a field is prescribed on the boundary nodes.

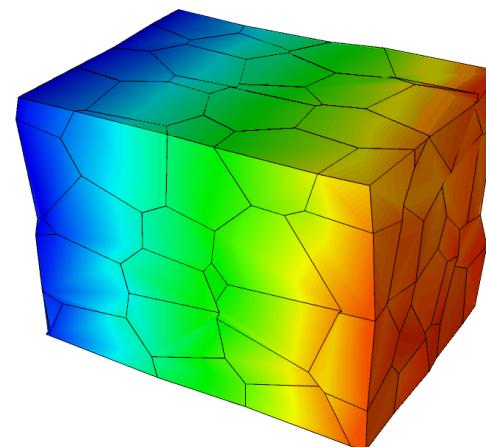
and, stress field should be constant.

Conversely, a constant stress field should be produced within each element when such a field is prescribed on the boundary surface.

and, strain field should be constant.



patch of elements



Failed patch test!
(result of low-order integration)

Element Stiffness Matrix (Linear Example)

From the weak form we get the element stiffness matrix

$$\mathbf{k}^e = \int_{\Omega^e} \mathbf{B}^T \mathbf{D} \mathbf{B} \, d\Omega$$

D contains elastic material constants.

$$\mathbf{B} = [\mathbf{B}_1 \quad \mathbf{B}_2 \quad \dots \quad \mathbf{B}_I \quad \dots \quad \mathbf{B}_{N_{en}}]$$

N_{en} = number of element nodes

$$\underbrace{\mathbf{k}^e}_{3N_{en} \times 3N_{en}} = \begin{bmatrix} \mathbf{k}_{11}^e & \mathbf{k}_{12}^e & \dots \\ \mathbf{k}_{21}^e & \mathbf{k}_{22}^e & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

nodal submatrix

$$\mathbf{k}_{IJ}^e = \int_{\Omega^e} \mathbf{B}_I^T \mathbf{D} \mathbf{B}_J \, d\Omega$$

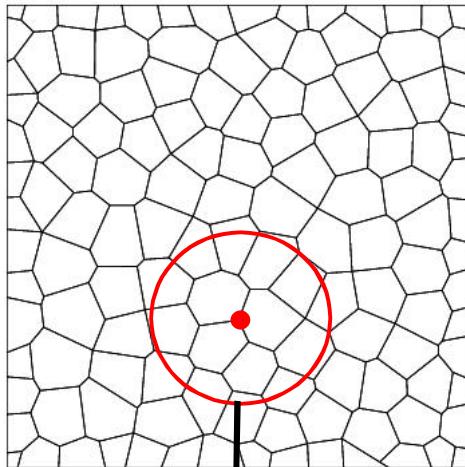
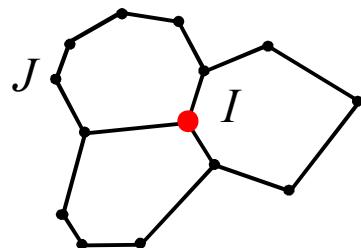
3×3

Contains terms like: $\int_{\Omega^e} \varphi_{I,x} \varphi_{J,x} \, d\Omega$, $\int_{\Omega^e} \varphi_{I,x} \varphi_{J,y} \, d\Omega$, $\int_{\Omega^e} \varphi_{I,x} \varphi_{J,z} \, d\Omega$, ...

But $\int_{\Omega^e} f \, d\Omega^e \approx \sum_{k=1}^M w_k f(\mathbf{x}_k)$ What's the effect of this approx.?

Requirements to Pass the Patch Test

(Krongauz and Belytschko, 1997)



Ω_I = support of node I

global equilibrium
equations:

$$\sum_J \mathbf{K}_{IJ} \mathbf{u}_J = \mathbf{F}_I$$

\mathbf{K}_{IJ} = global stiffness matrix

For patch test,
need

$$u_x(x, y, z) = a_1 x + a_2 y + a_3 z + a_4$$

$$u_y(x, y, z) = b_1 x + b_2 y + b_3 z + b_4$$

$$u_z(x, y, z) = c_1 x + c_2 y + c_3 z + c_4$$

to be a solution of $\mathbf{Ku} = \mathbf{F}$ when applied as boundary conditions.

For interior nodes I need $\sum_J \mathbf{K}_{IJ} \mathbf{u}_J^{\text{linear}} = \mathbf{0}$ $(\mathbf{F}_I = \mathbf{0})$

Row I column J of \mathbf{K}_{IJ} contains terms like:

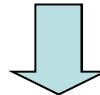
$$\int_{\Omega_I} \varphi_{I,x} \varphi_{J,x} d\Omega, \quad \int_{\Omega_I} \varphi_{I,x} \varphi_{J,y} d\Omega, \quad \int_{\Omega_I} \varphi_{I,x} \varphi_{J,z} d\Omega, \quad \dots$$

For example, need $\sum_J \int_{\Omega_I} \varphi_{I,x} \varphi_{J,z} \underbrace{(a_1 x_J + a_2 y_J + a_3 z_J + a_4)} d\Omega = 0$

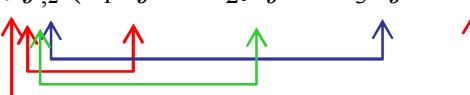
Requirements to Pass the Patch Test

(Krongauz and Belytschko, 1997)

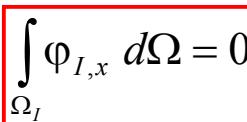
$$\sum_J \int_{\Omega_I} \varphi_{I,x} \varphi_{J,z} (a_1 x_J + a_2 y_J + a_3 z_J + a_4) d\Omega = 0$$



$$\int_{\Omega_I} \varphi_{I,x} \sum_J \varphi_{J,z} (a_1 x_J + a_2 y_J + a_3 z_J + a_4) d\Omega = 0$$

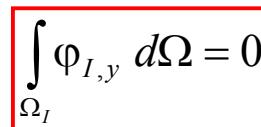


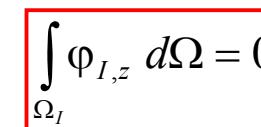
recall $\sum_{J=1}^N x_J \varphi_{J,z} = 0$ $\sum_{J=1}^N y_J \varphi_{J,z} = 0$ $\sum_{J=1}^N z_J \varphi_{J,z} = 1$ and $\sum_{J=1}^N \varphi_{J,z} = 0$


$$\int_{\Omega_I} \varphi_{I,x} d\Omega = 0$$

These integration properties of the shape function derivatives must hold in order to pass the patch test.

similarly


$$\int_{\Omega_I} \varphi_{I,y} d\Omega = 0$$


$$\int_{\Omega_I} \varphi_{I,z} d\Omega = 0$$

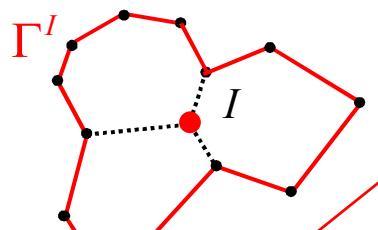
But what about numerical integration?

$$\int_{\Omega_I} \varphi_{I,x} d\Omega \approx \sum_{k=1}^{N_{ip}} w_k \varphi_{I,x}(\mathbf{x}_k)$$

w_k = integration weight
 \mathbf{x}_k = integration point

Integration Consistency

$\varphi_I = 0$ on Γ^I



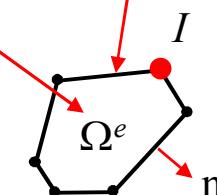
Ω_I = support of node I

$$\int_{\Omega_I} \varphi_{I,x} d\Omega = 0$$

is equivalent to

Divergence Theorem

$$\int_{\Omega^e} \varphi_{I,x} d\Omega = \int_{\Gamma^e} \varphi_I n_x d\Gamma$$

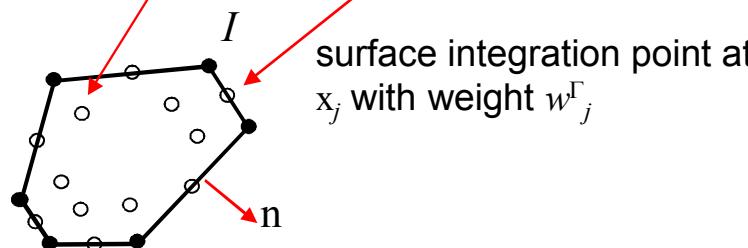


$$\int_{\Omega^e} \varphi_{I,x} d\Omega = \int_{\Gamma^e} \varphi_I n_x d\Gamma$$

Satisfaction of discrete form of Divergence Theorem requires “=”

volume integration point at \mathbf{x}_k with weight w_k

$$\sum_{k=1}^M w_k \varphi_{I,x}(\mathbf{x}_k) \underset{\text{volume}}{\approx} \sum_{j=1}^{M_\Gamma} w_j^\Gamma \varphi_I(\mathbf{x}_j) n_x(\mathbf{x}_j)$$



surface integration point at \mathbf{x}_j with weight w_j^Γ

Approximate integration will cause failure of patch test for first-order integration.

Would need a large number of integration points to satisfy patch test.

... too expensive!

Instead, let's “tweak” the shape function derivatives to satisfy the patch test.

Let's “tweak” the Shape Function Derivatives

discrete form of Divergence Theorem

$$a_x^{I,k}, a_y^{I,k}, a_z^{I,k}$$

are the new shape function derivatives for the I -th shape function at integration point k .

$$\sum_{k=1}^M w_k a_x^{I,k} - \sum_{j=1}^{M_\Gamma} w_j^\Gamma \varphi_I(\mathbf{x}_j) n_x(\mathbf{x}_j) = 0 \quad I = 1, \dots, N_{en}$$

$$\sum_{k=1}^M w_k a_y^{I,k} - \sum_{j=1}^{M_\Gamma} w_j^\Gamma \varphi_I(\mathbf{x}_j) n_y(\mathbf{x}_j) = 0 \quad I = 1, \dots, N_{en}$$

$$\sum_{k=1}^M w_k a_z^{I,k} - \sum_{j=1}^{M_\Gamma} w_j^\Gamma \varphi_I(\mathbf{x}_j) n_z(\mathbf{x}_j) = 0 \quad I = 1, \dots, N_{en}$$

How to calculate $a_x^{I,k}, a_y^{I,k}, a_z^{I,k}$?

Minimize the sum of the squares of the difference w.r.t to the original derivatives.

$$L = \sum_{I=1}^{N_{en}} \sum_{k=1}^M \left(\varphi_{I,x}(\mathbf{x}_k) - a_x^{I,k} \right)^2$$

with “integration constraints”

$$\sum_{k=1}^M w_k a_x^{I,k} - \sum_{j=1}^{M_\Gamma} w_j^\Gamma \varphi_I(\mathbf{x}_j) n_x(\mathbf{x}_j) = 0 \quad I = 1, \dots, N_{en}$$

solve use Lagrange multipliers

Modified Shape Function Derivatives

Introduce Lagrange multipliers λ_I , $I = 1, \dots, N_{en}$ and form the augmented Lagrangian L_A

$$L_A = \sum_{I=1}^{N_{en}} \sum_{k=1}^M (\varphi_{I,x}(\mathbf{x}_k) - a_x^{I,k})^2 + \sum_{i=1}^{N_{en}} \lambda_I \left[\sum_{k=1}^M w_k a_x^{I,k} - \sum_{j=1}^{M_\Gamma} w_j^\Gamma \varphi_I(\mathbf{x}_j) n_x(\mathbf{x}_j) \right]$$

necessary condition for
local minimum

$$\frac{\partial L_A}{\partial a_x^{I,k}} = 0, \quad I = 1, \dots, N_{en}, \quad k = 1, \dots, M$$

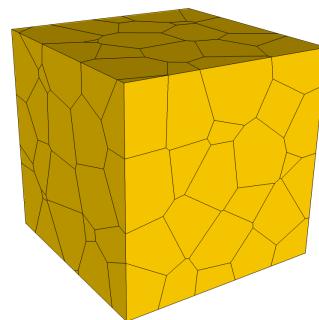
$$\frac{\partial L_A}{\partial \lambda_I} = 0, \quad I = 1, \dots, N_{en}$$

$$\begin{bmatrix} \mathbf{A} & \mathbf{L}^T \\ \mathbf{L} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{a}_x \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_x \\ \mathbf{c}_x \end{bmatrix}$$

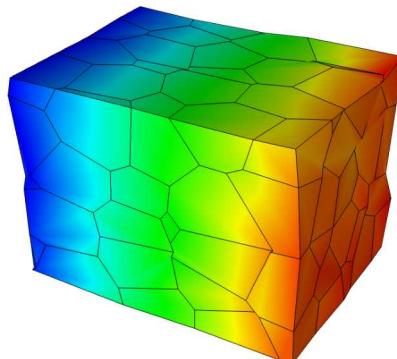
same for $(\)_y$ and $(\)_z$, only need to factor once for each element

3D Verification: Engineering Patch Test

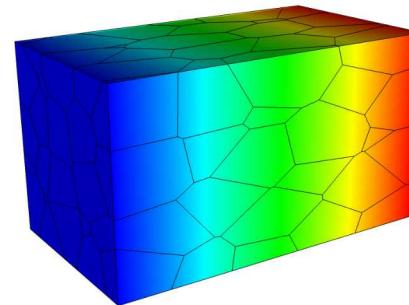
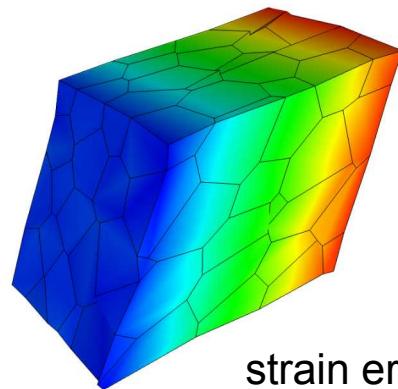
random patch



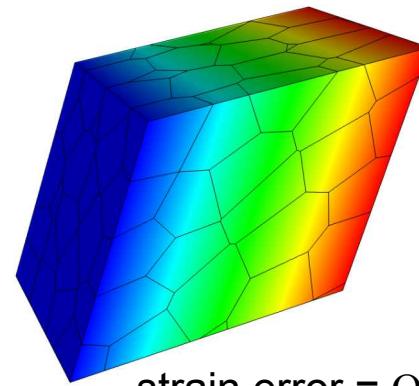
without derivative correction



with derivative correction

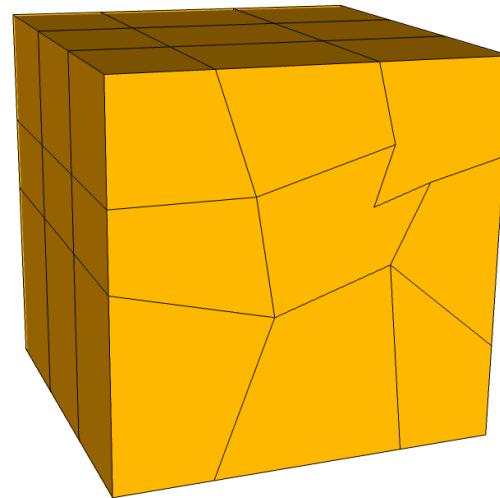
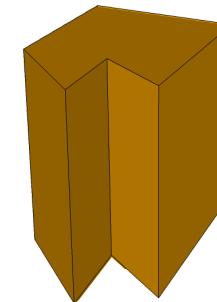
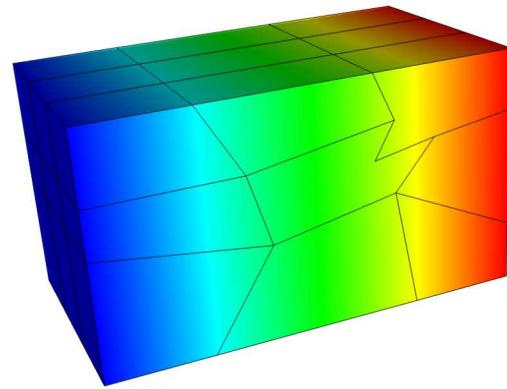
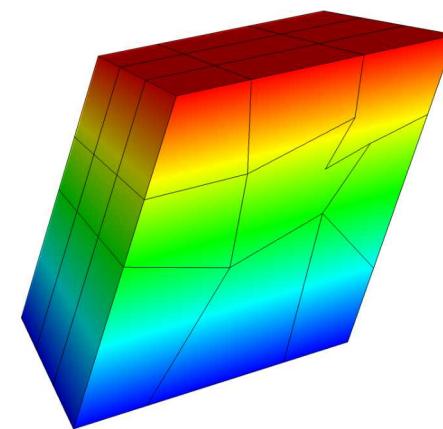


strain error = $O(10^{-1})$

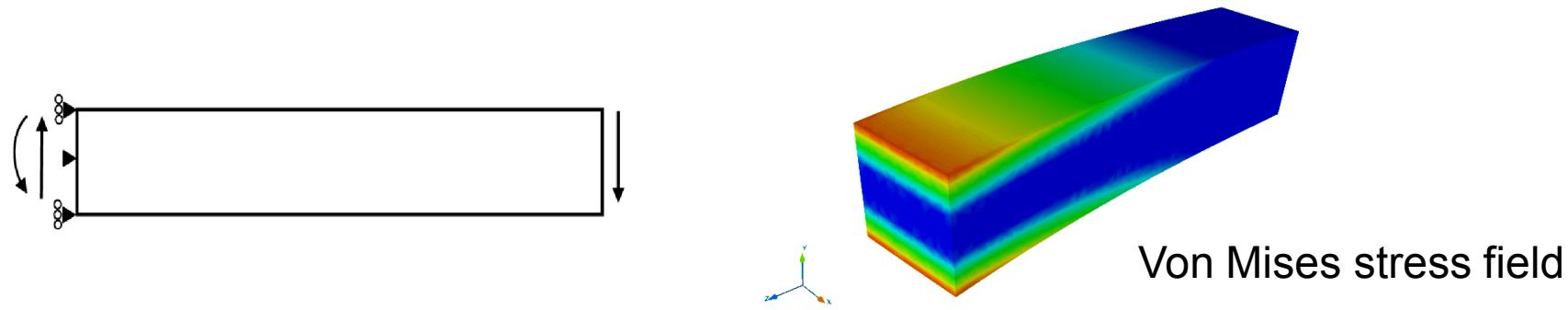


strain error = $O(10^{-5})$

Patch Test with Nonconvex Elements



Verification Test: Beam with a Transverse End-Load



3D exact linear elasticity solution, (Barber, 2010)

$$\sigma_{xx} = \sigma_{yy} = \sigma_{xy} = 0$$

$$\sigma_{zz} = \frac{F_y}{I_x} y z$$

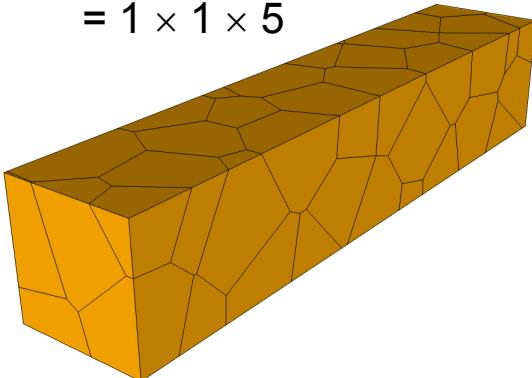
$$\sigma_{xz} = \frac{2F_y a^2}{\pi^2 I_x} \frac{\nu}{1+\nu} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin\left(\frac{n\pi x}{a}\right) \frac{\sinh\left(\frac{n\pi y}{a}\right)}{\cosh\left(\frac{n\pi b}{a}\right)}$$

$$\sigma_{yz} = \frac{F_y}{I_x} \left\{ \frac{1}{2}(b^2 - y^2) + \frac{1}{6}(3x^2 - a^2) \frac{\nu}{1+\nu} - \frac{2a^2}{\pi^2} \frac{\nu}{1+\nu} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin\left(\frac{n\pi x}{a}\right) \frac{\sinh\left(\frac{n\pi y}{a}\right)}{\cosh\left(\frac{n\pi b}{a}\right)} \right\}$$

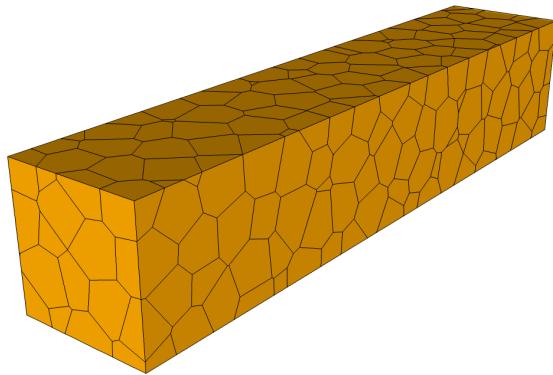
From this stress field → strain field → integrate to get
displacement field using compatibility equations.

Randomly Close-Packed Voronoi Meshes

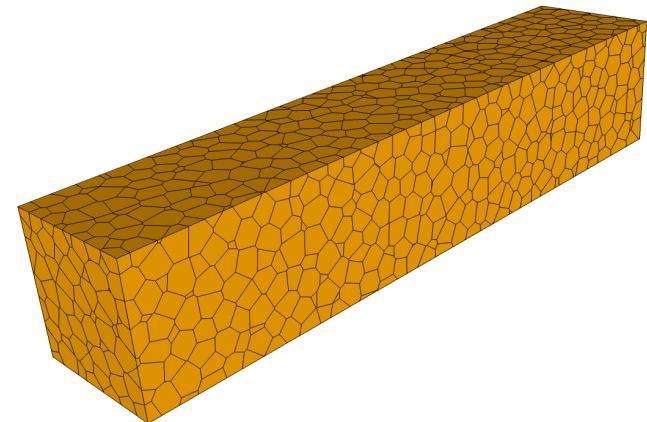
beam dimension
 $= 1 \times 1 \times 5$



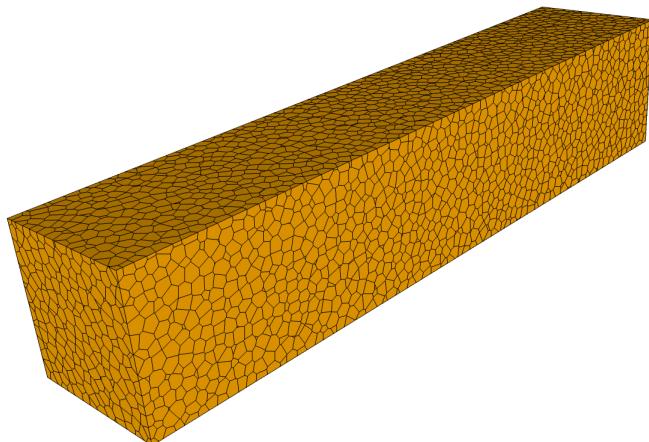
point spacing = 0.5



point spacing = 0.25

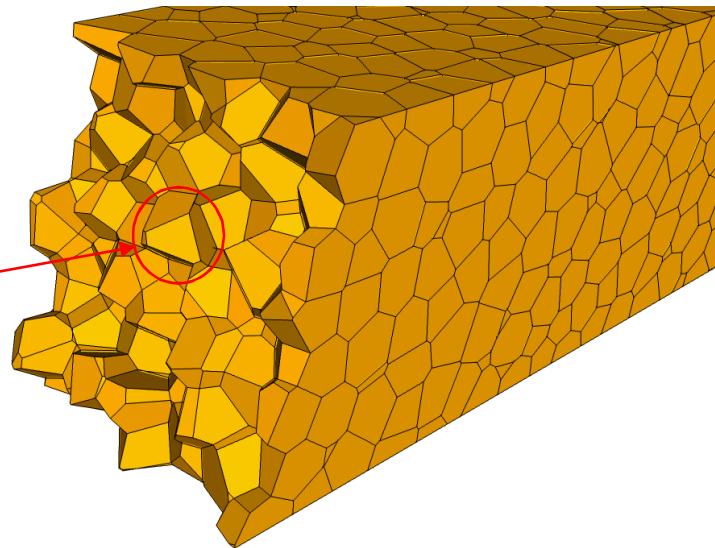


point spacing = 0.125

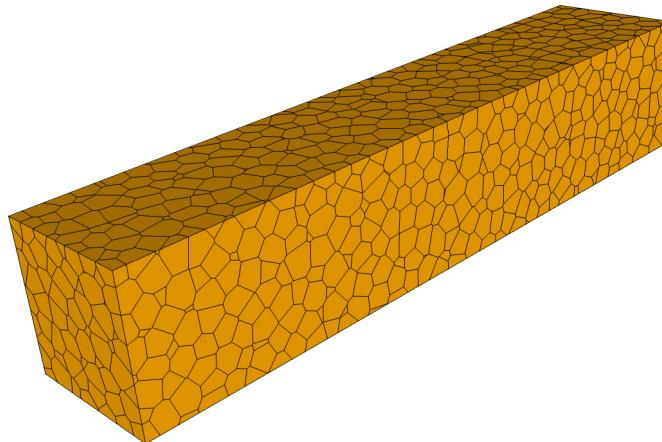


point spacing = 0.0625

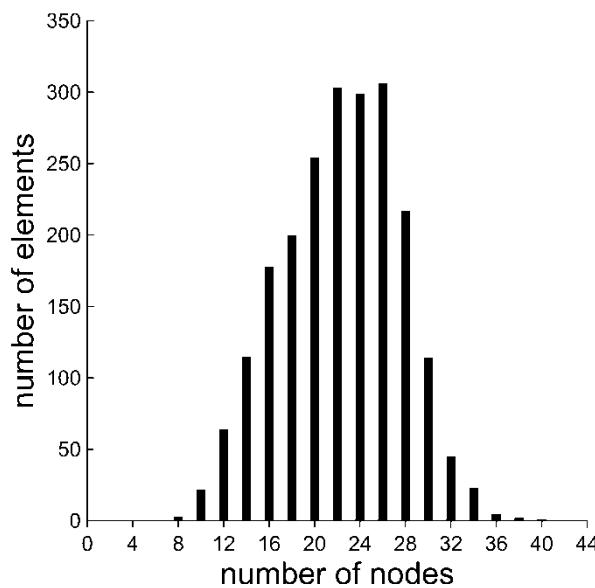
minimum edge
to diameter
ratio = 10^{-4}



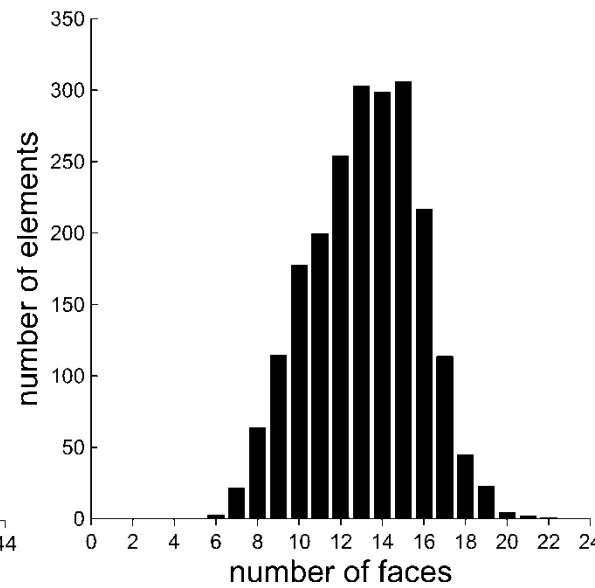
Randomly Close-Packed Voronoi Meshes



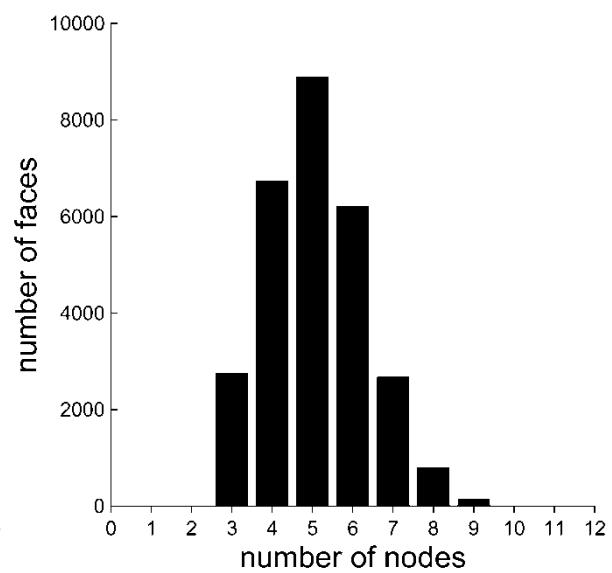
mesh statistics



median 24 nodes per element



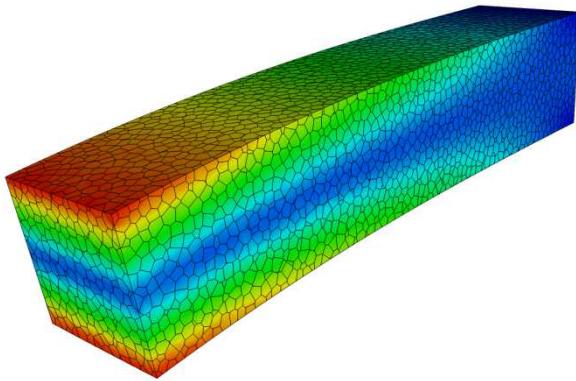
median 14 faces per element



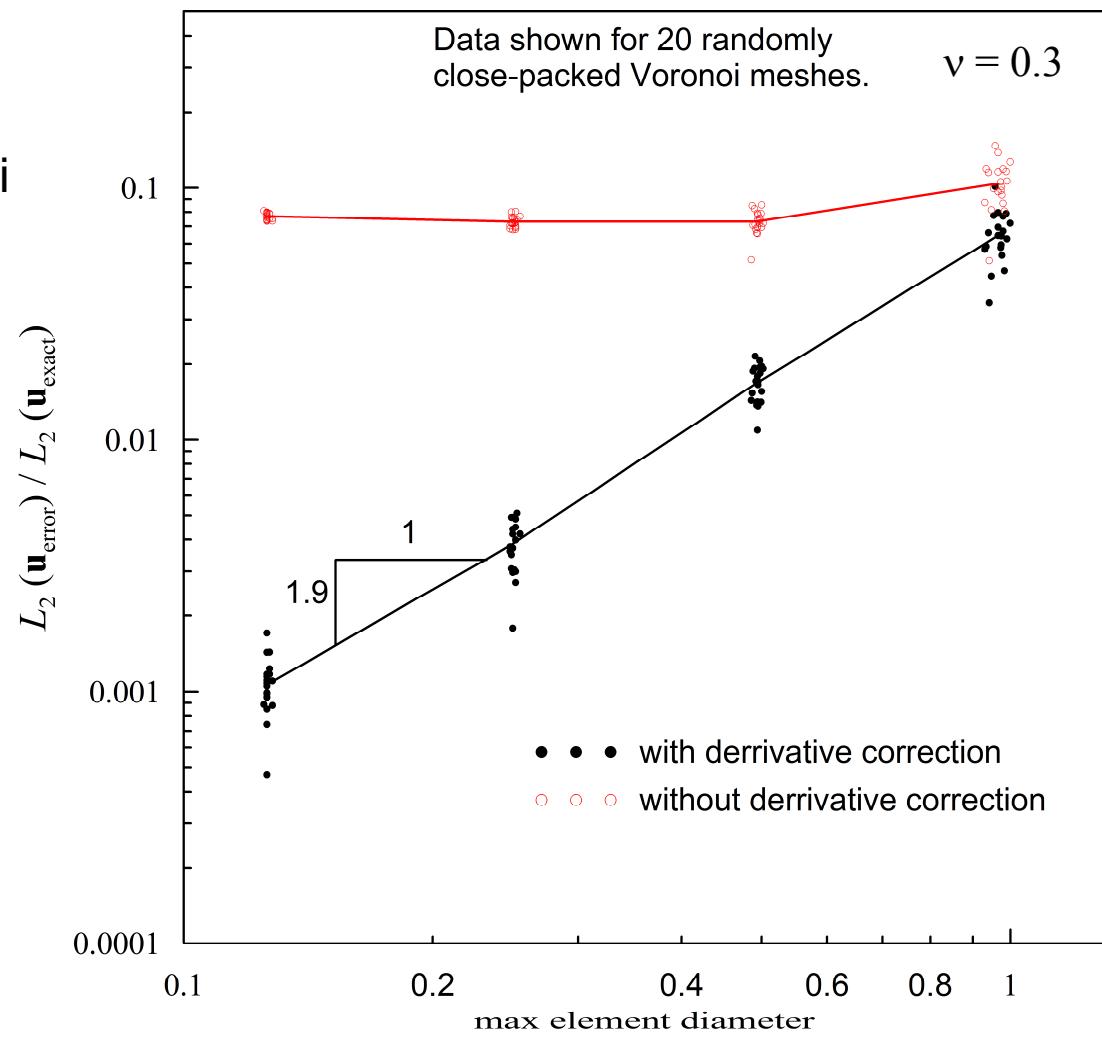
median 5 nodes per face

Verification Test: Beam with a Transverse End-Load

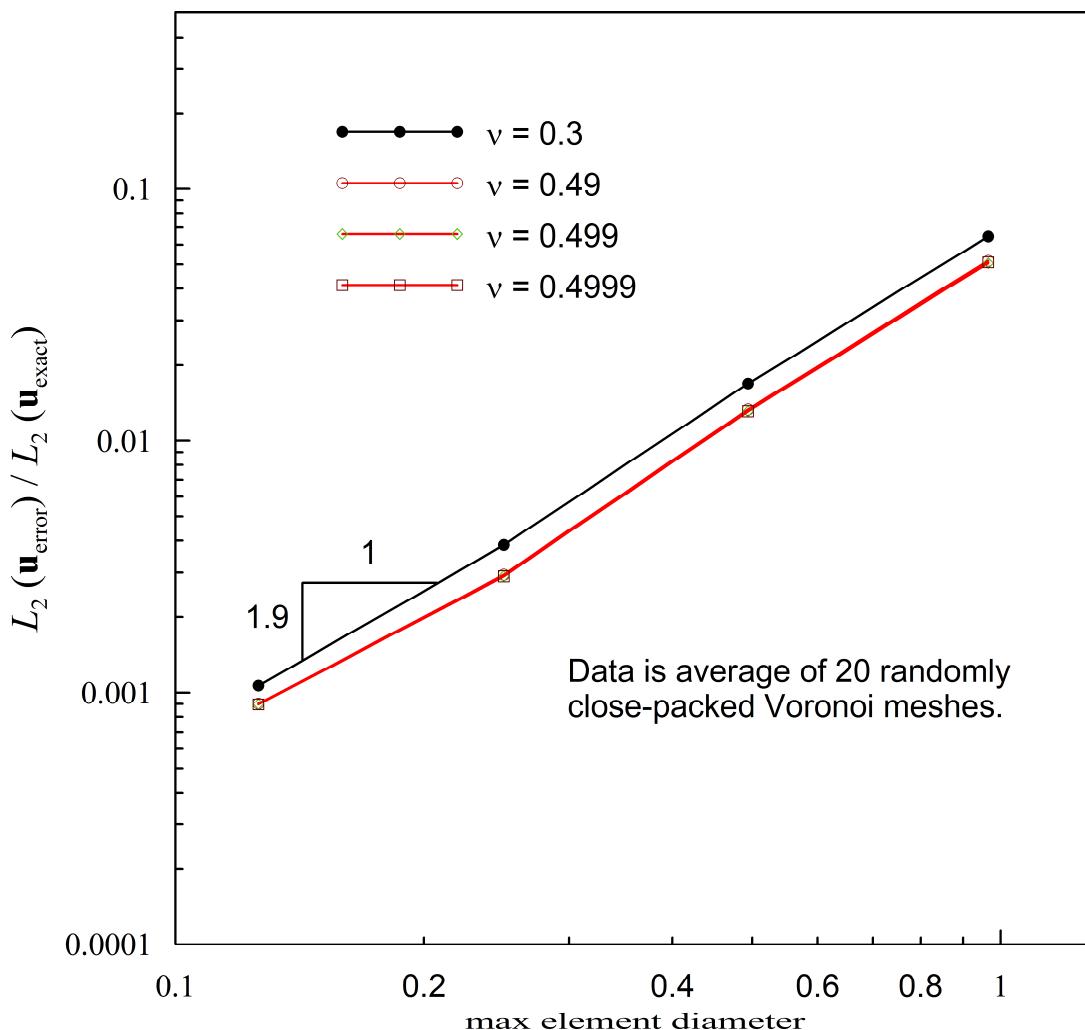
Randomly Close-Packed Voronoi



deformed shape, Von Mises stress



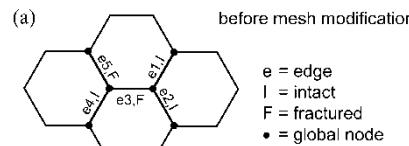
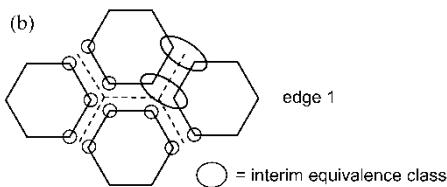
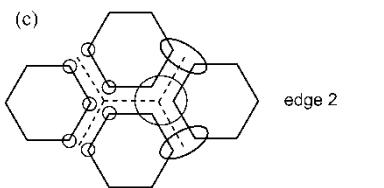
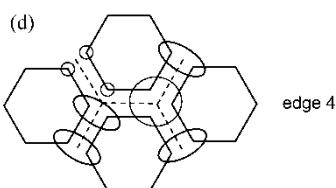
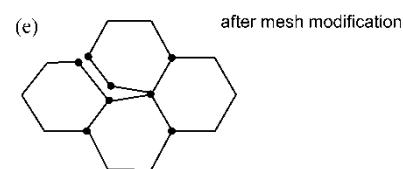
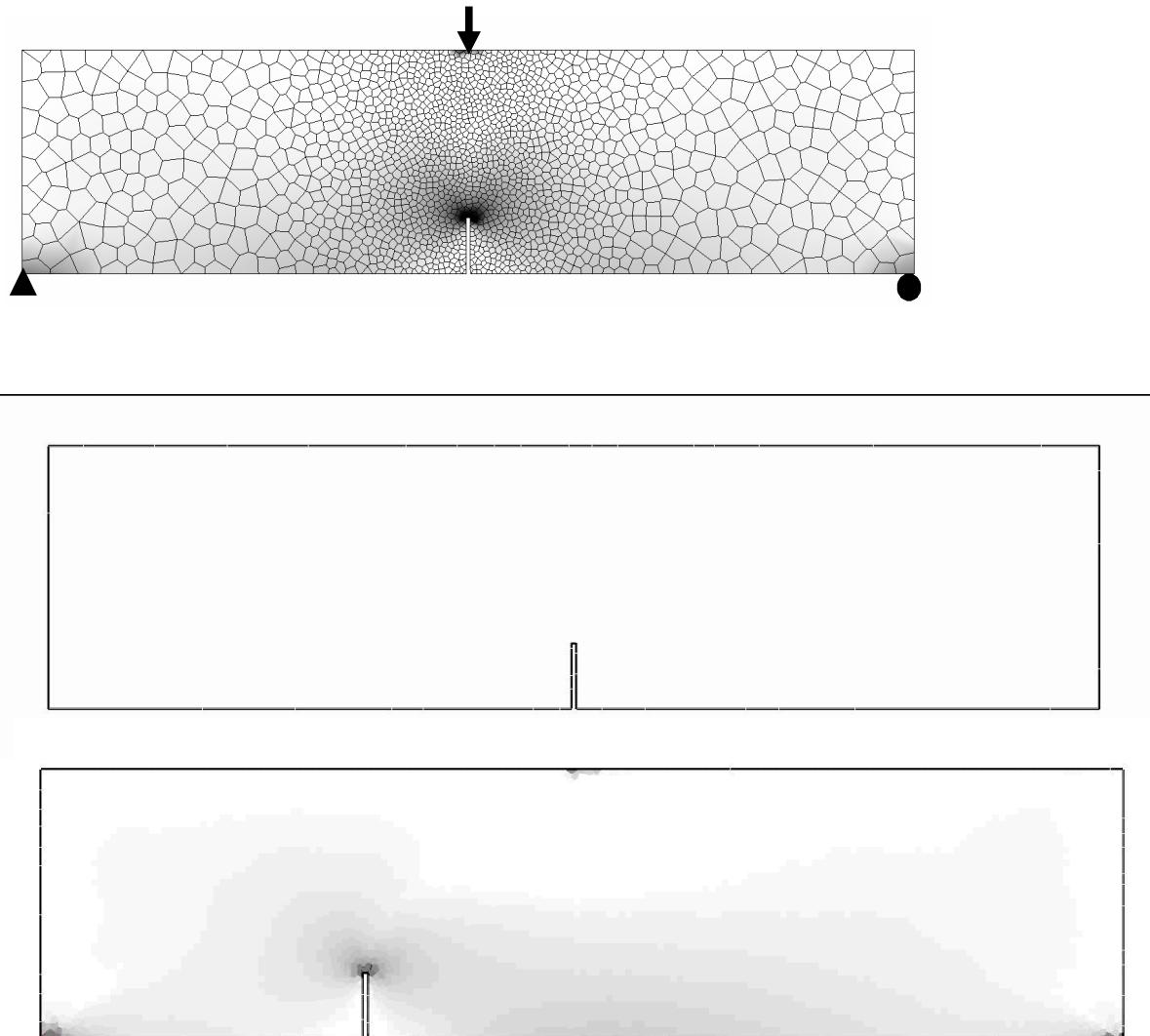
Verification Test: Beam with a Transverse End-Load



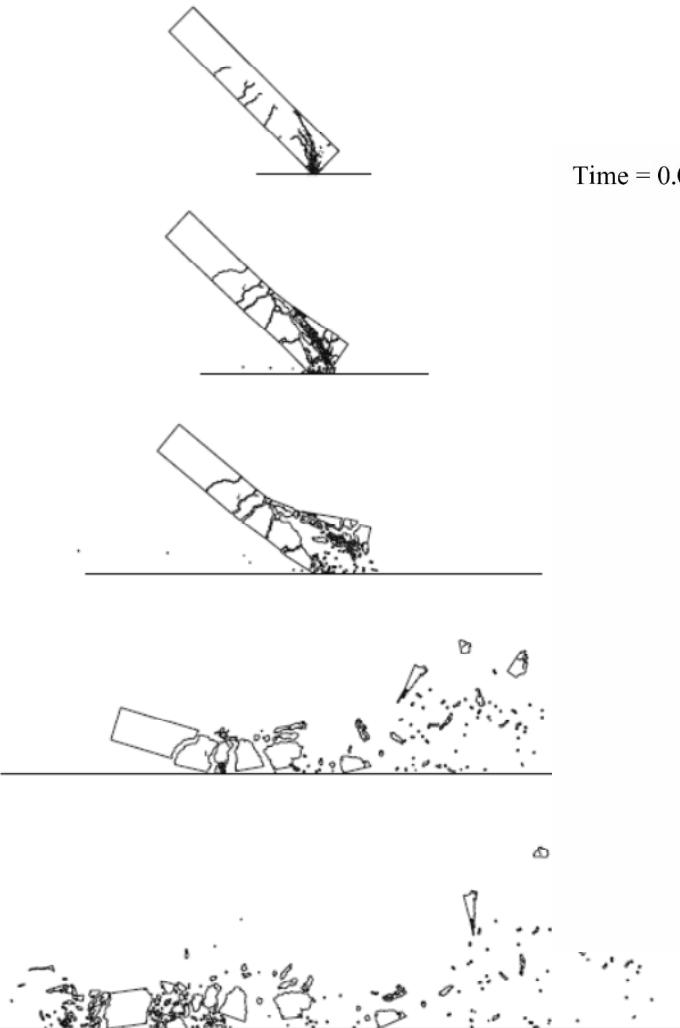
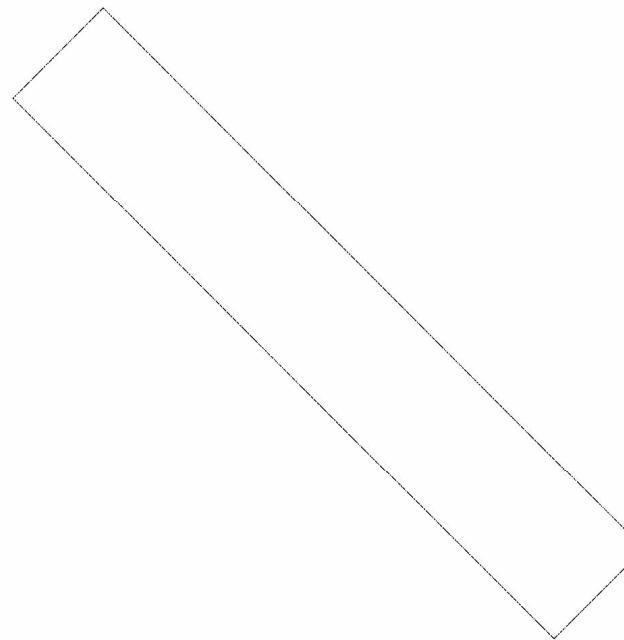
Standard mean-dilation formulation for nearly incompressible behavior (Nagtegaal, 1974)

No reduction in convergence rate as $\nu \rightarrow 1/2$.

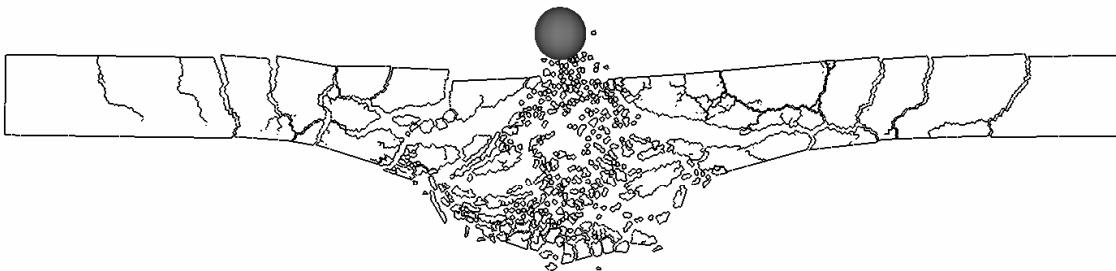
Dynamic Mesh Connectivity



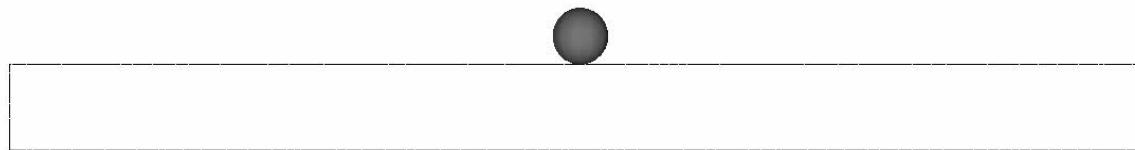
Quasi-Brittle Material Impact



Impact Example



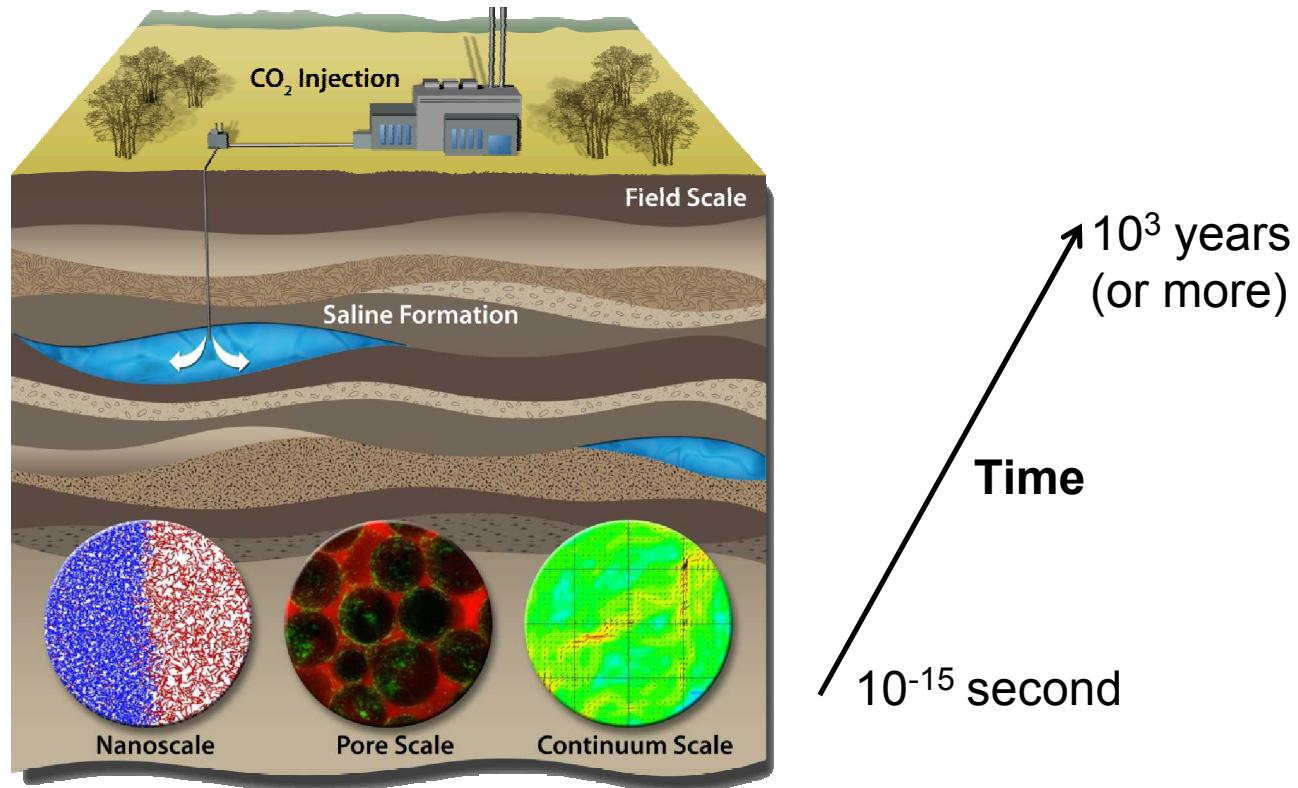
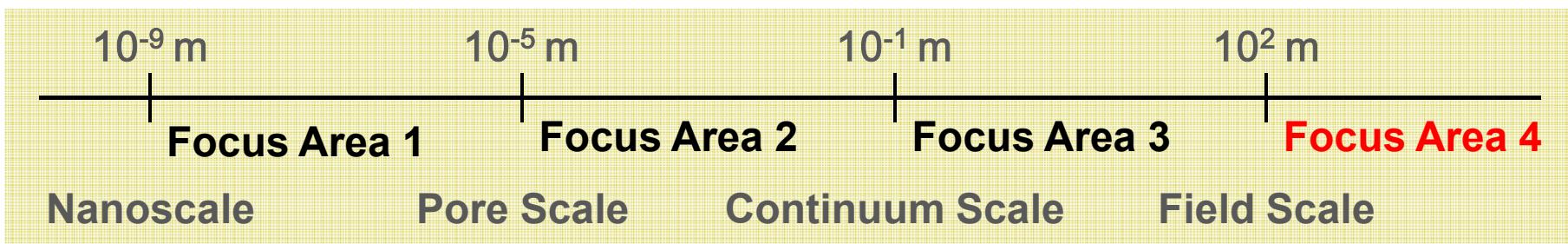
Time = 0.00000



CFSES: Center for Subsurface Energy Security

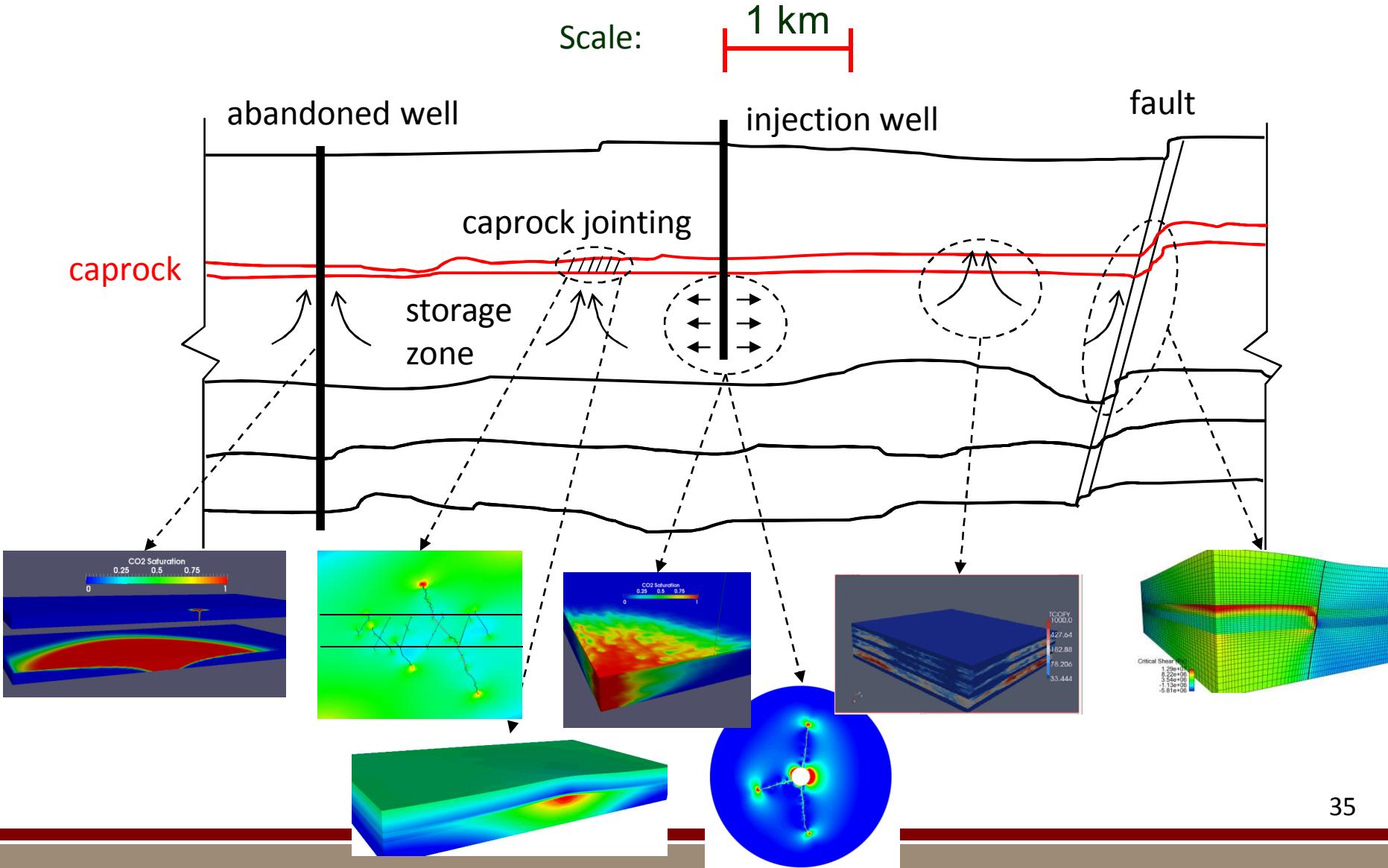
Sandia
National
Laboratories

(www.utcfses.org)



Potential Leakage Paths for CO₂

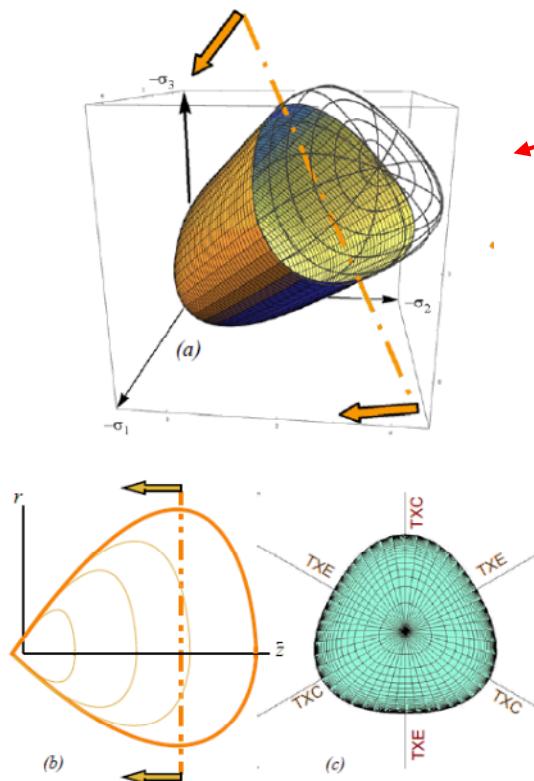
Primary CO₂ trapping mechanism is structural.



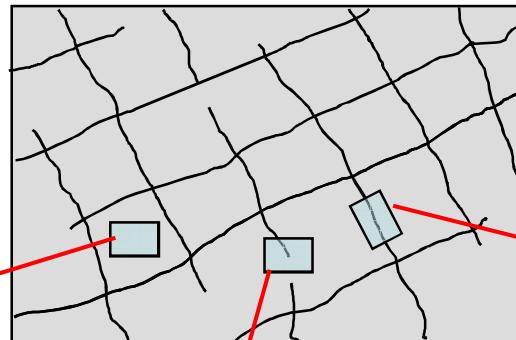
Hydromechanical Coupling in Fractured Rock

bulk constitutive properties

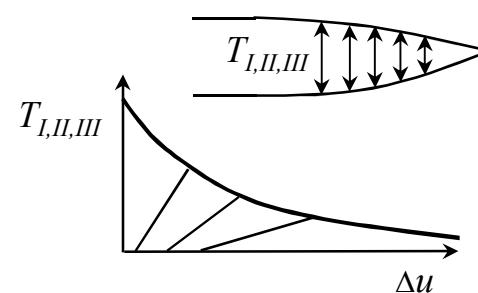
(Sandia GeoModel
Fossum & Brannon, 2004)



Fractured Porous Rock



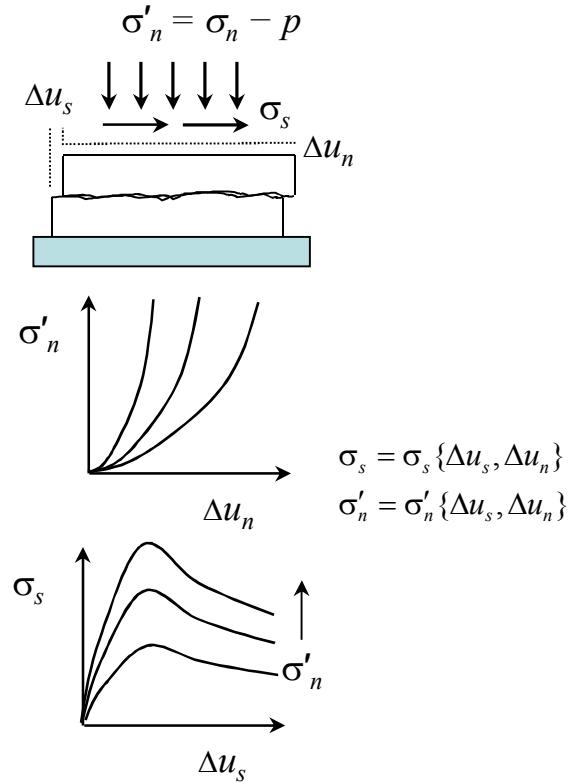
crack-tip cohesive properties



additional challenges

- scale dependence
- history dependence
- precipitation
- dissolution

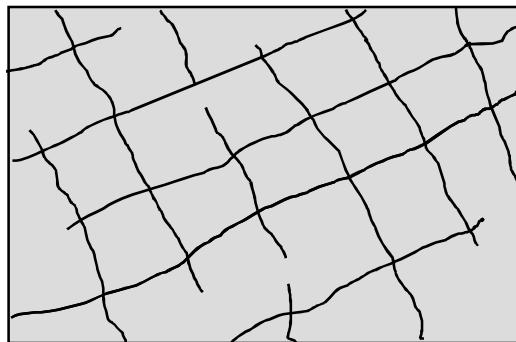
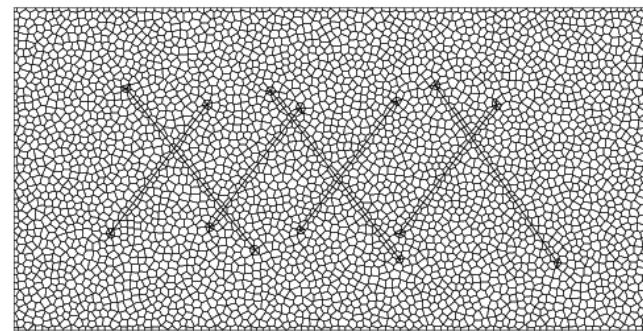
fracture contact properties

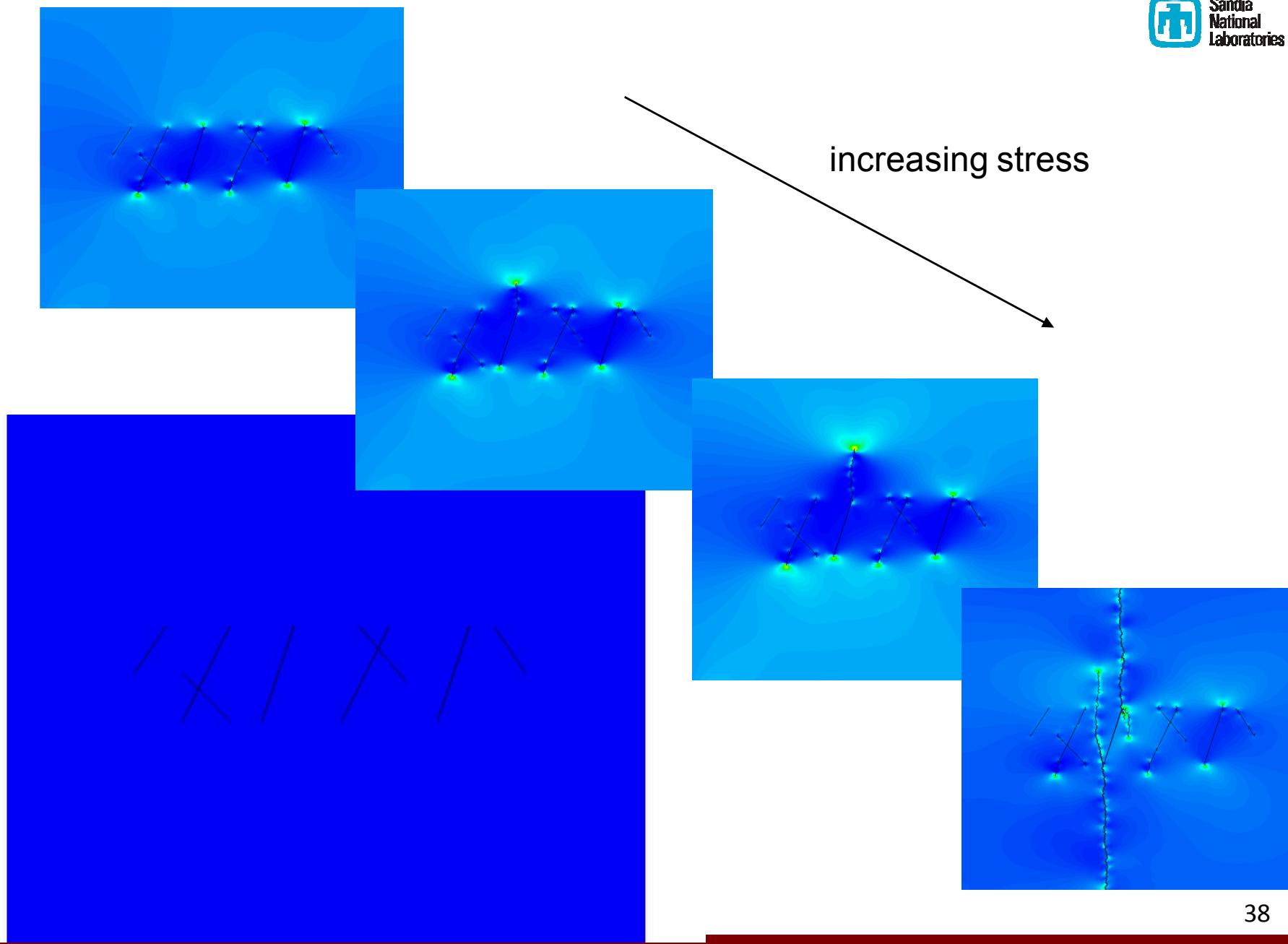


MeshingGenie (Trilinos)

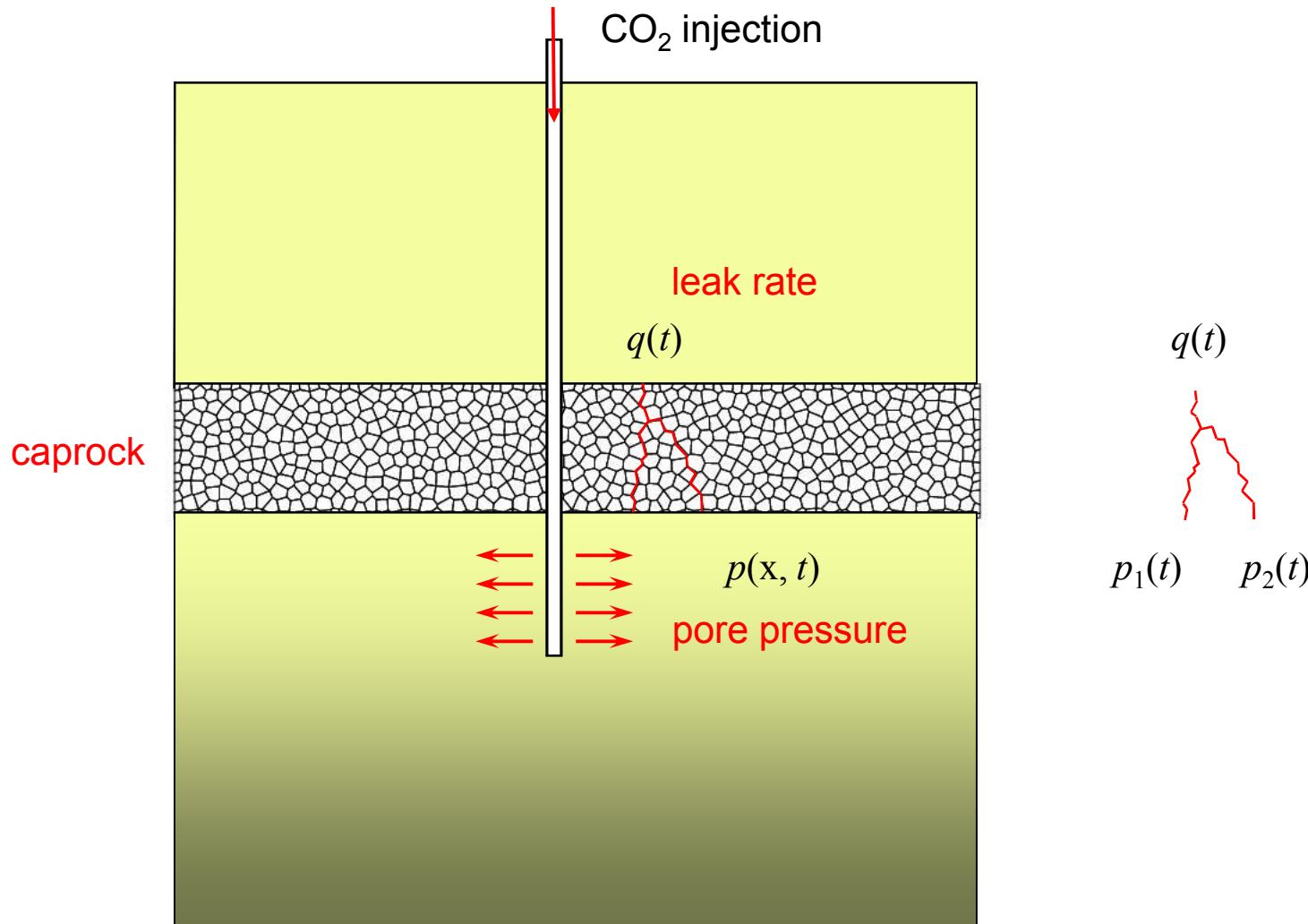
(Ebeida, M., Knupp, P., Vitus Leung, Sandia National Laboratories)

Fractured Rock



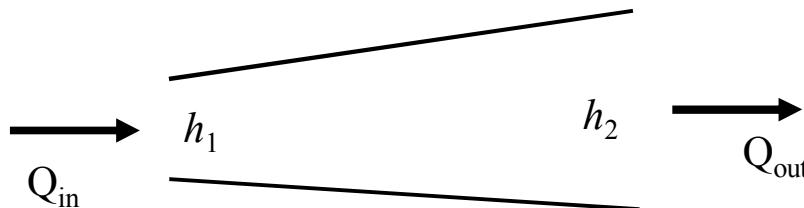
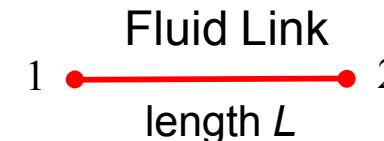


Fluid Flow in 2D Discrete Fracture Networks



Fluid Flow in 2D Discrete Fracture Networks

Solve fluid network to get nodal pressures and flow rates.



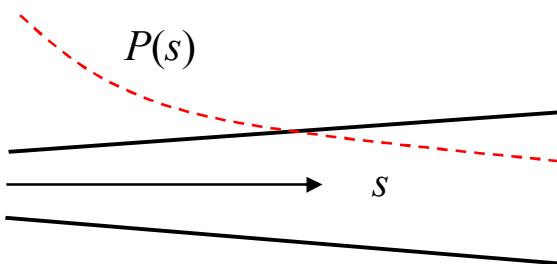
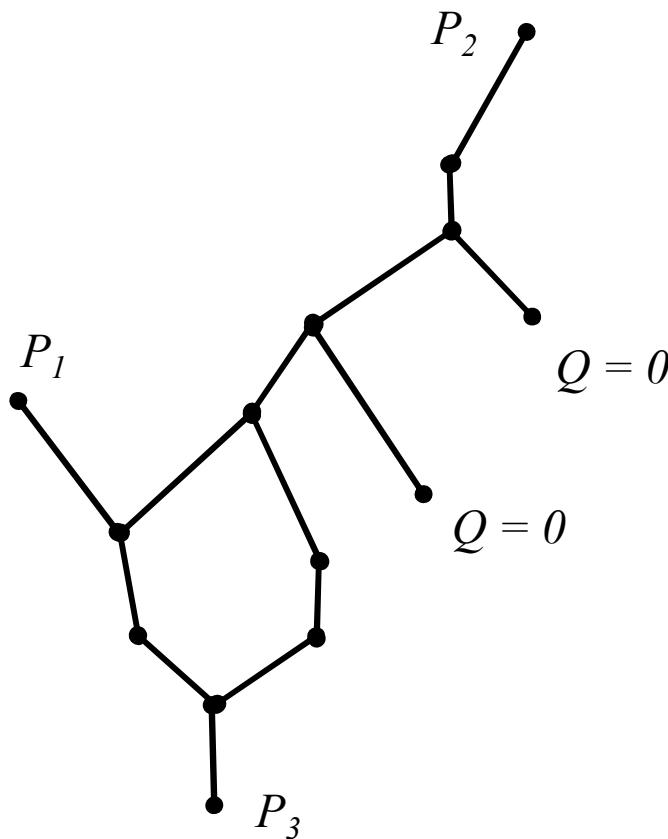
$$\begin{Bmatrix} Q_1 \\ Q_2 \end{Bmatrix} = \frac{T}{\mu} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} P_1 \\ P_2 \end{Bmatrix}$$

$$T = \frac{h_1^2 h_2^2}{6L} \frac{1}{h_1 + h_2}$$

Reynold's lubrication equation

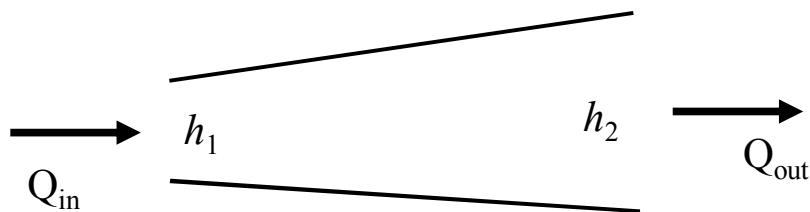
$$\nabla(\rho \mathbf{Q}) = 0$$

$$\mathbf{Q} = -\frac{h^3}{12\mu} (\nabla p - \rho g h)$$



Q = flow rate
 P = pressure
 μ = viscosity
 T = transmissibility

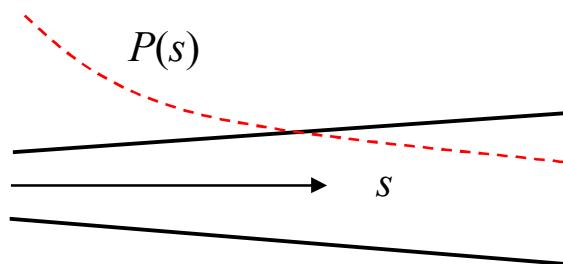
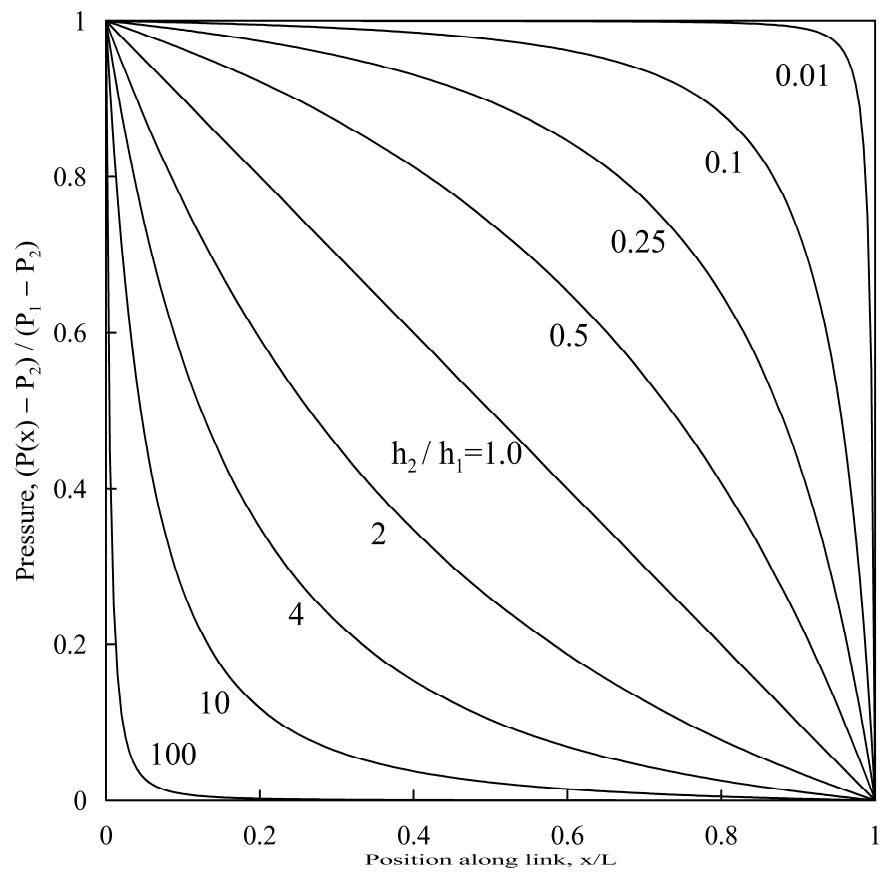
Fluid Flow in Discrete Fracture Networks



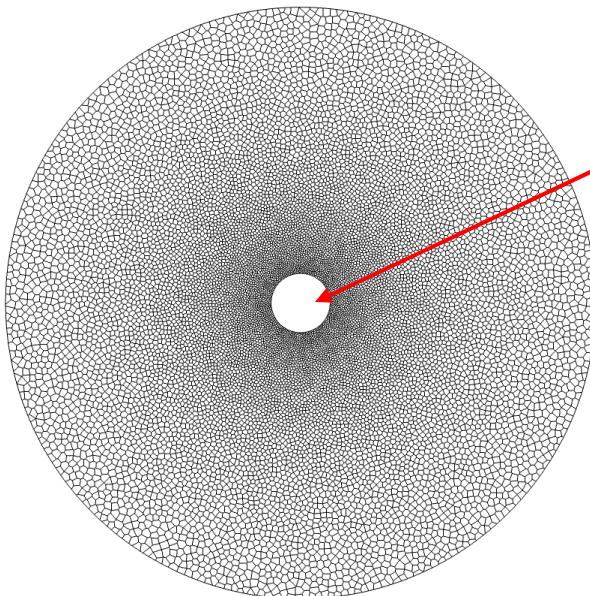
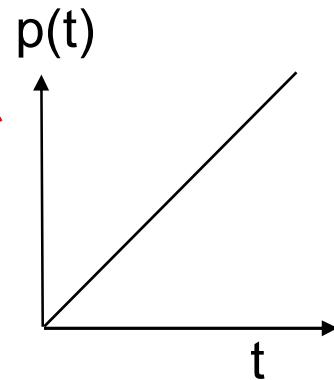
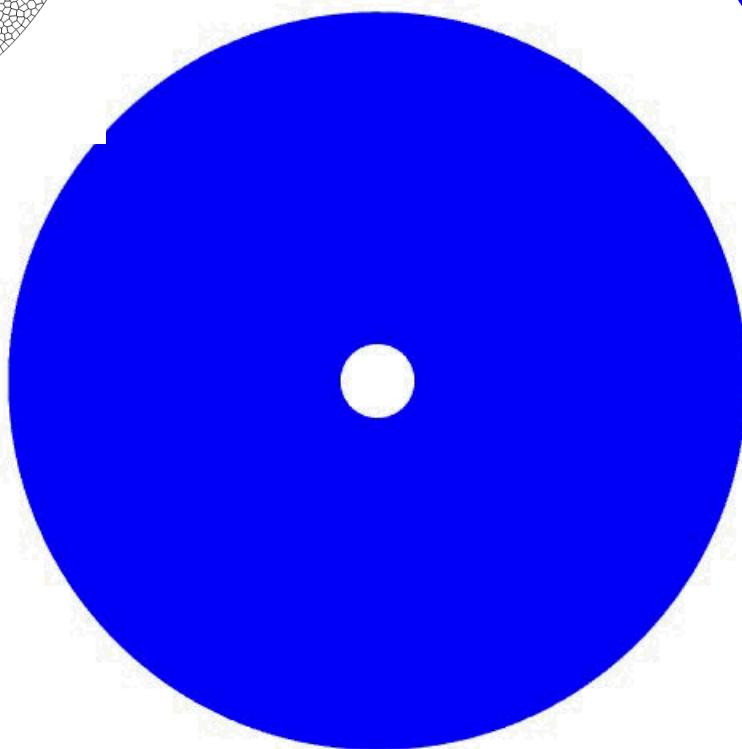
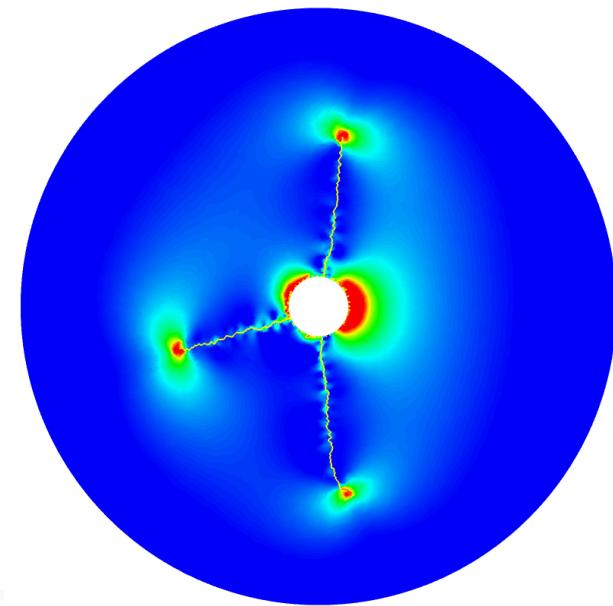
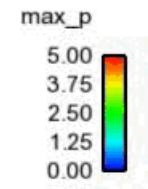
Reynold's lubrication equation

$$\nabla(\rho \mathbf{Q}) = 0$$

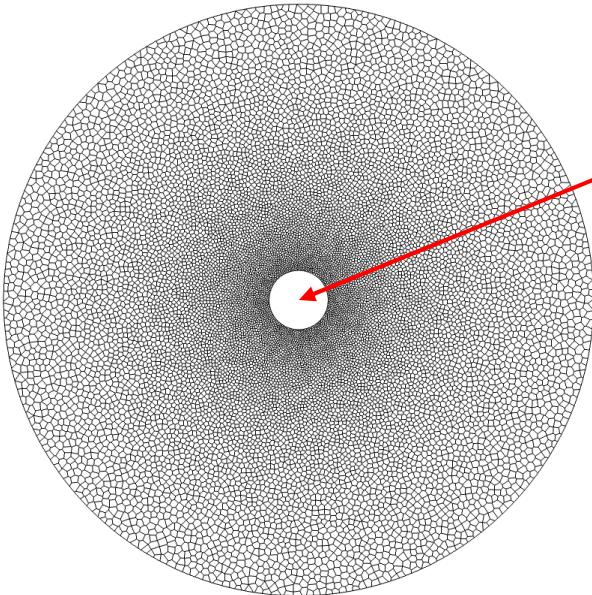
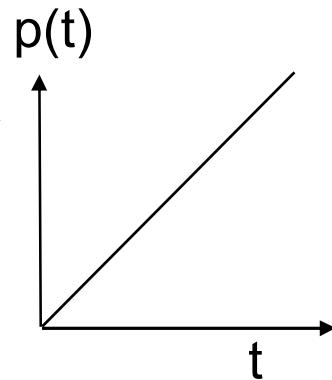
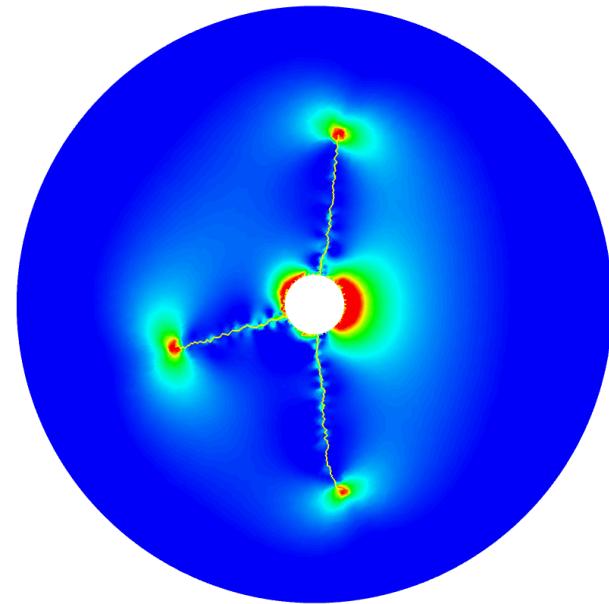
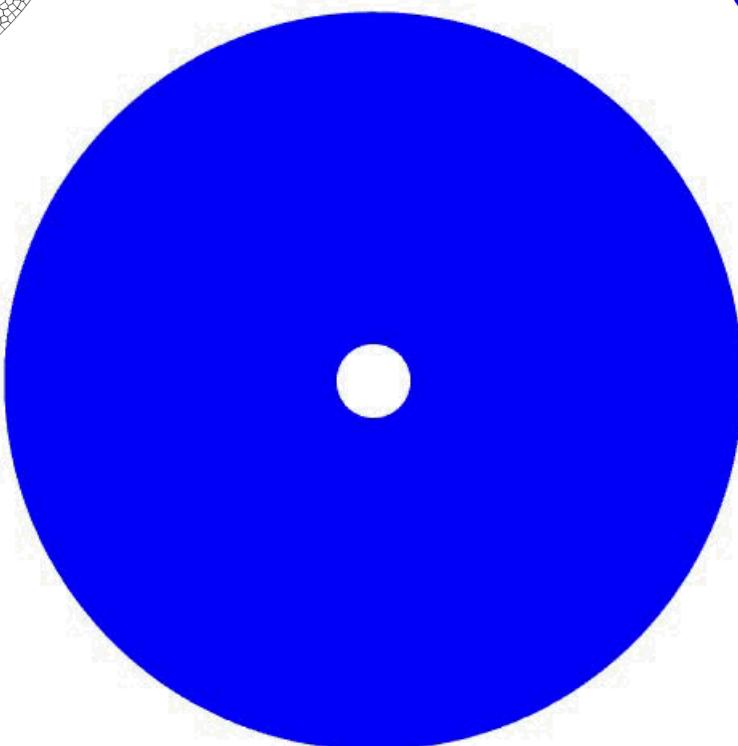
$$\mathbf{Q} = -\frac{h^3}{12\mu} (\nabla p - \rho g h)$$



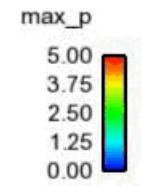
Hydraulic Fracture Simulation

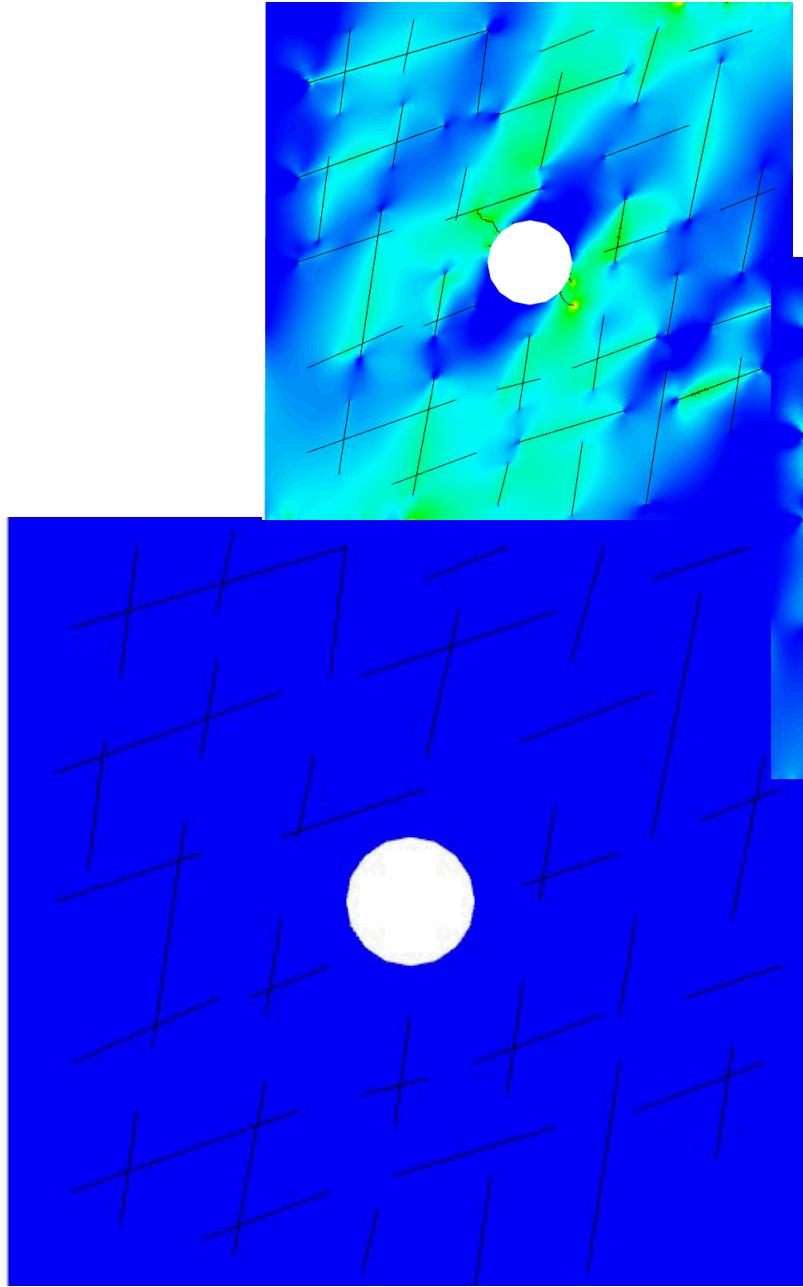


Hydraulic Fracture Simulation

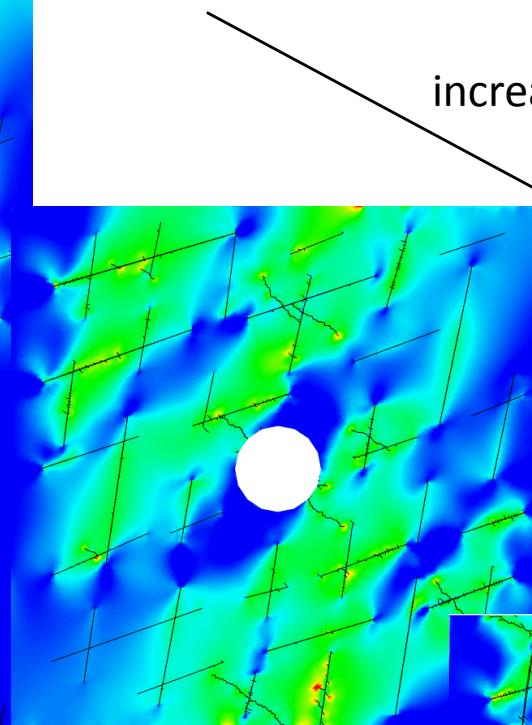


Coupled fluid flow in
fracture networks

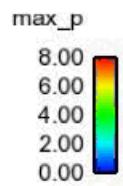
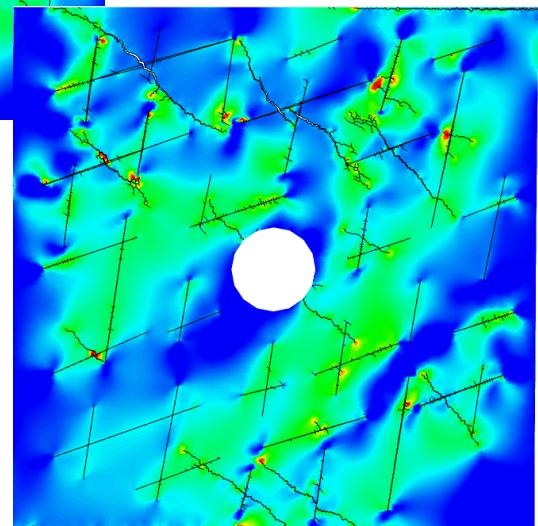




increasing stress



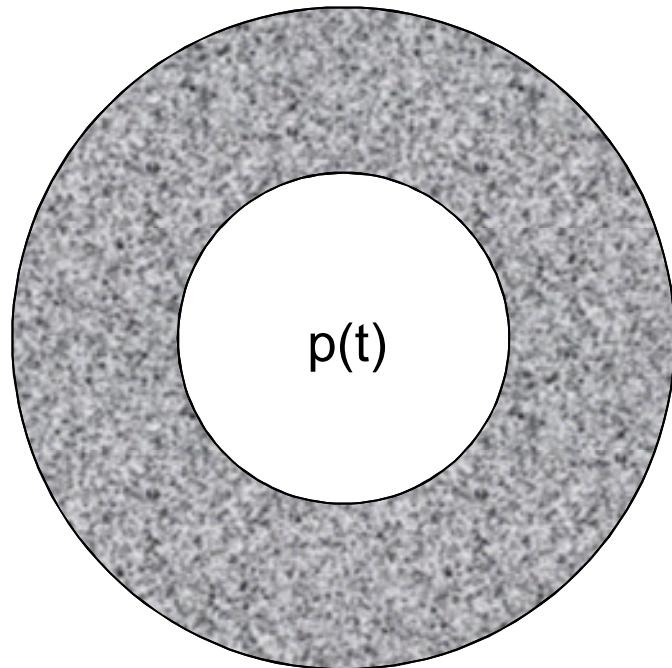
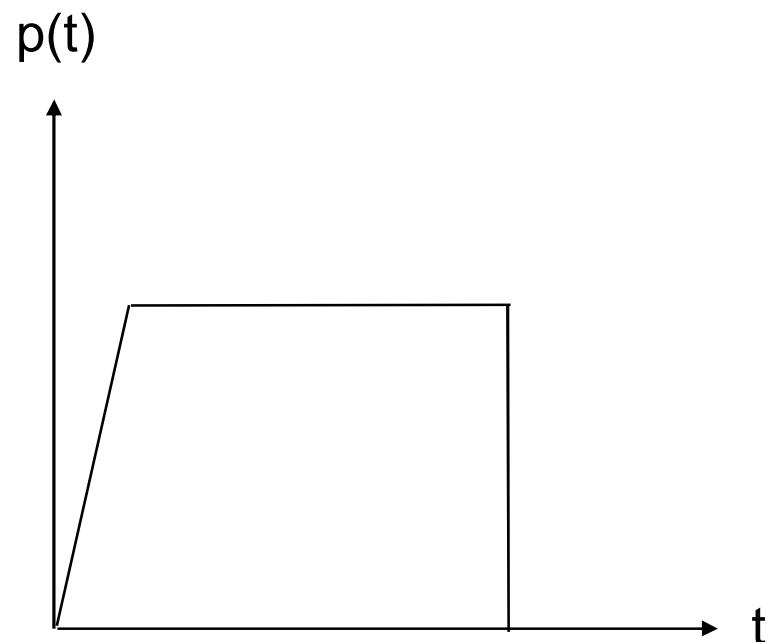
play movie

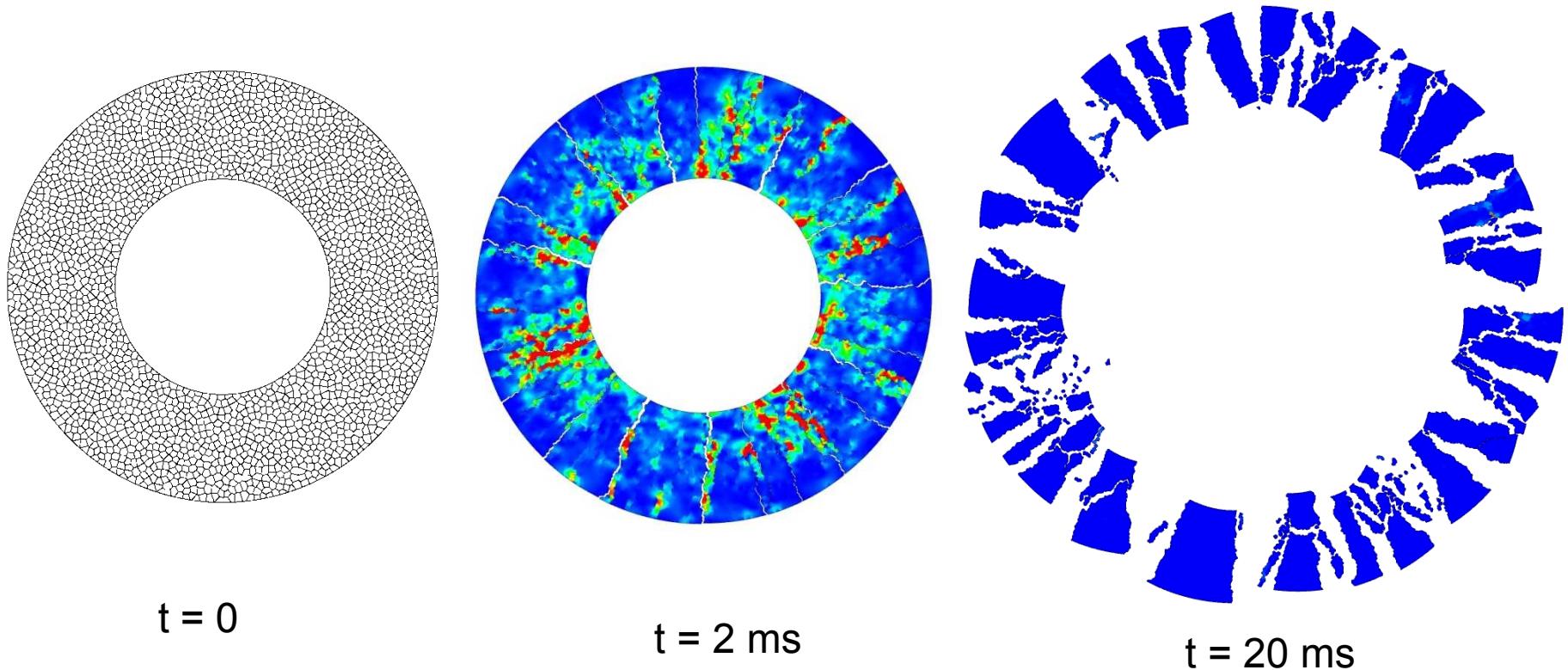


Outline

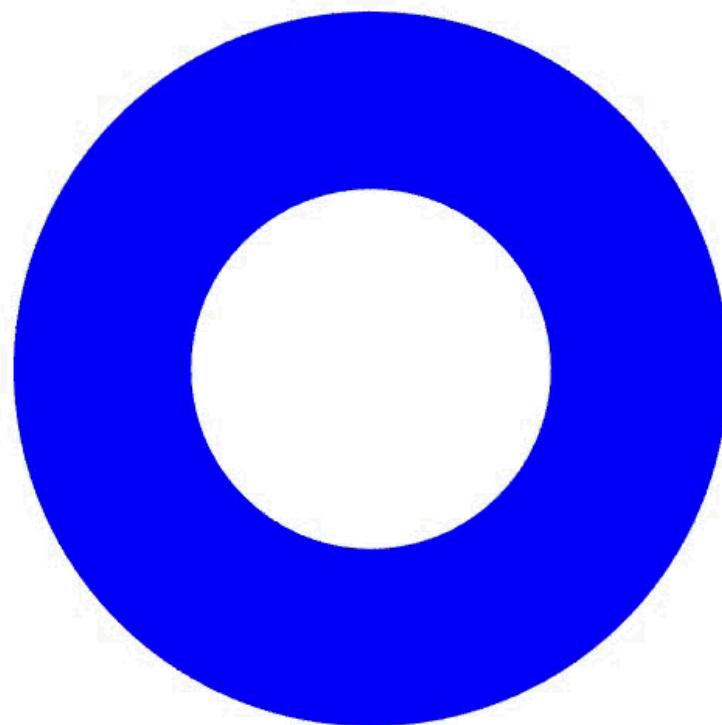
1. Pervasive fracture and fragmentation
2. Random meshes and a polyhedral finite-element formulation
3. **Assessing mesh convergence in a probabilistic sense**
4. Example of statistical convergence using dynamic ring expansion
5. What is material variability?
6. Summary

Example: Explosively Loaded Cylinder

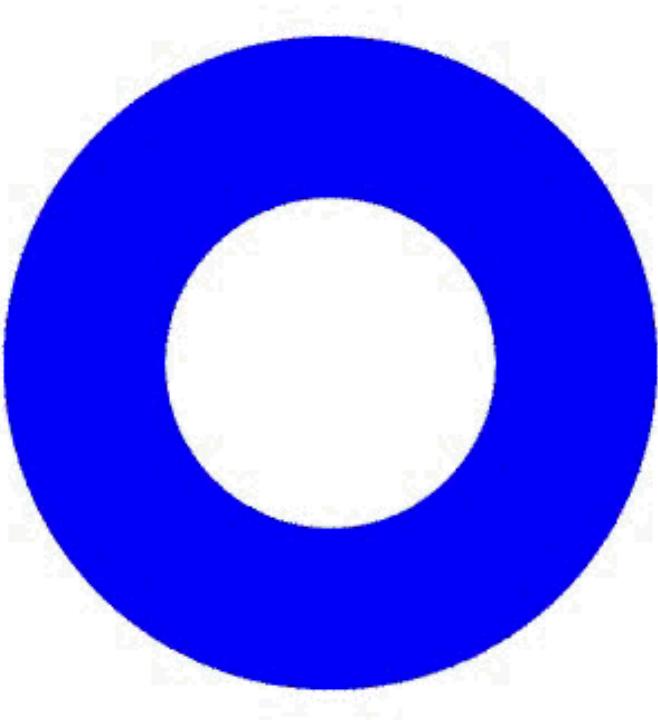




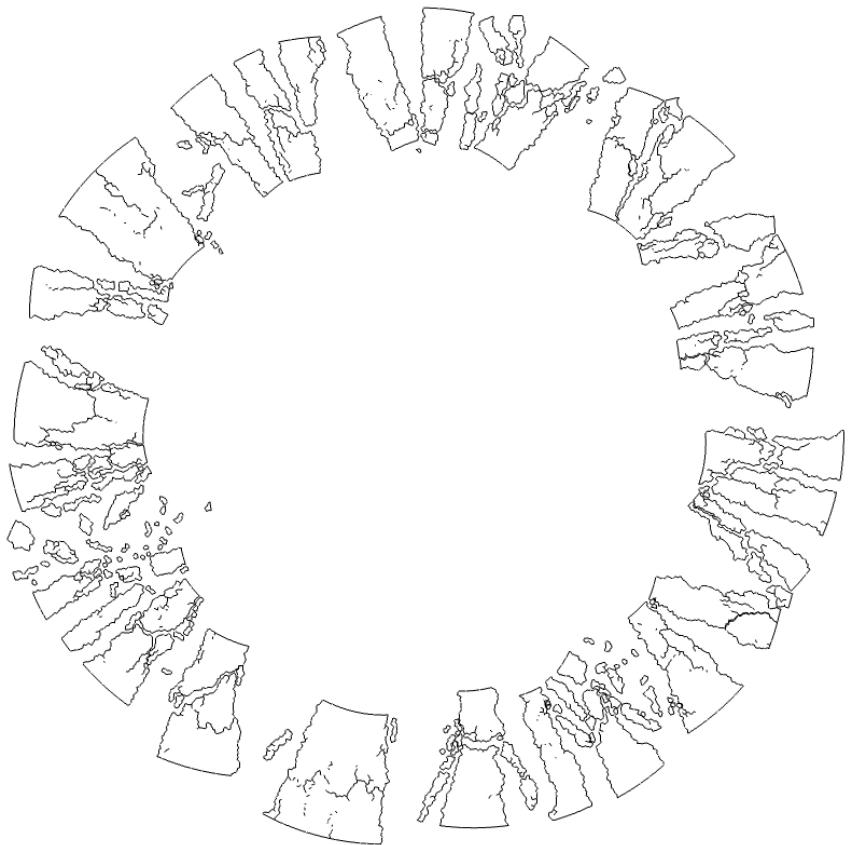
Short Time View, 2ms



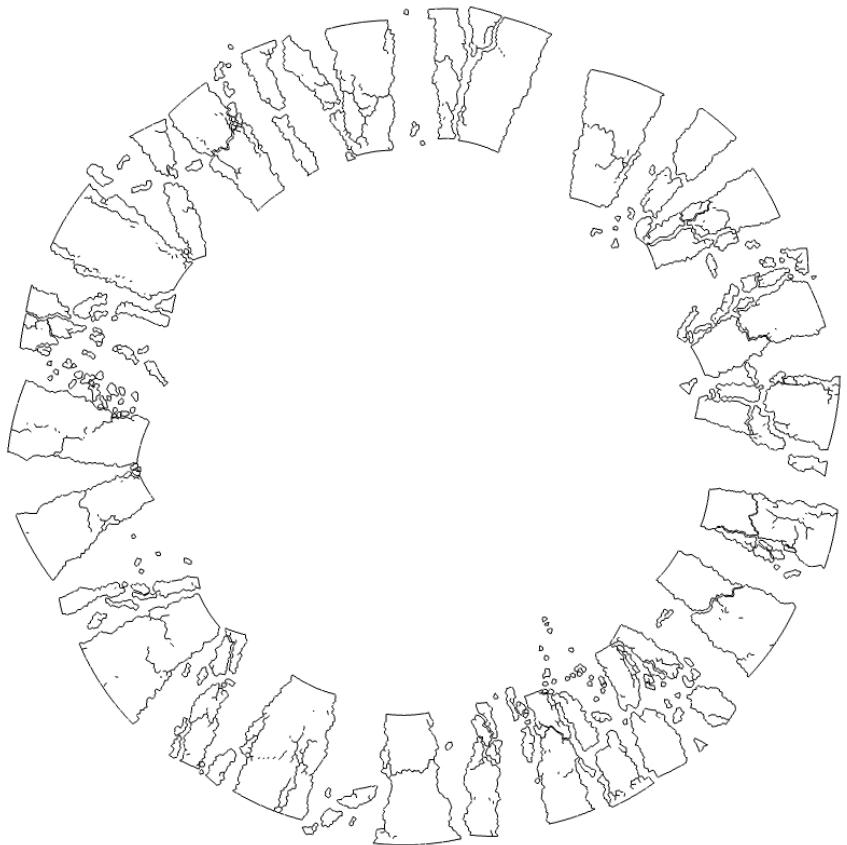
Long Time View, 20ms



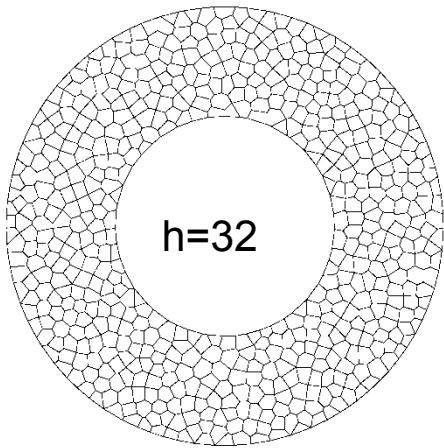
realization 1



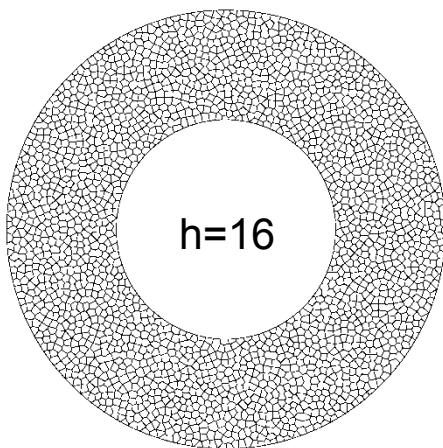
realization 2



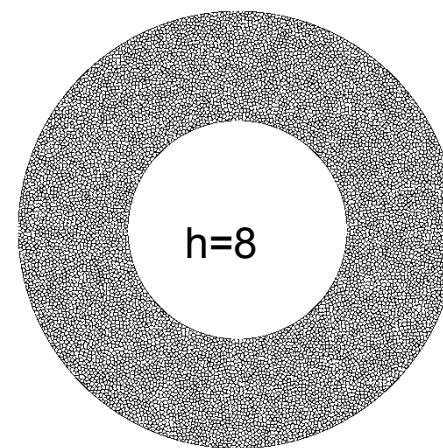
Mesh Convergence?



$h=32$



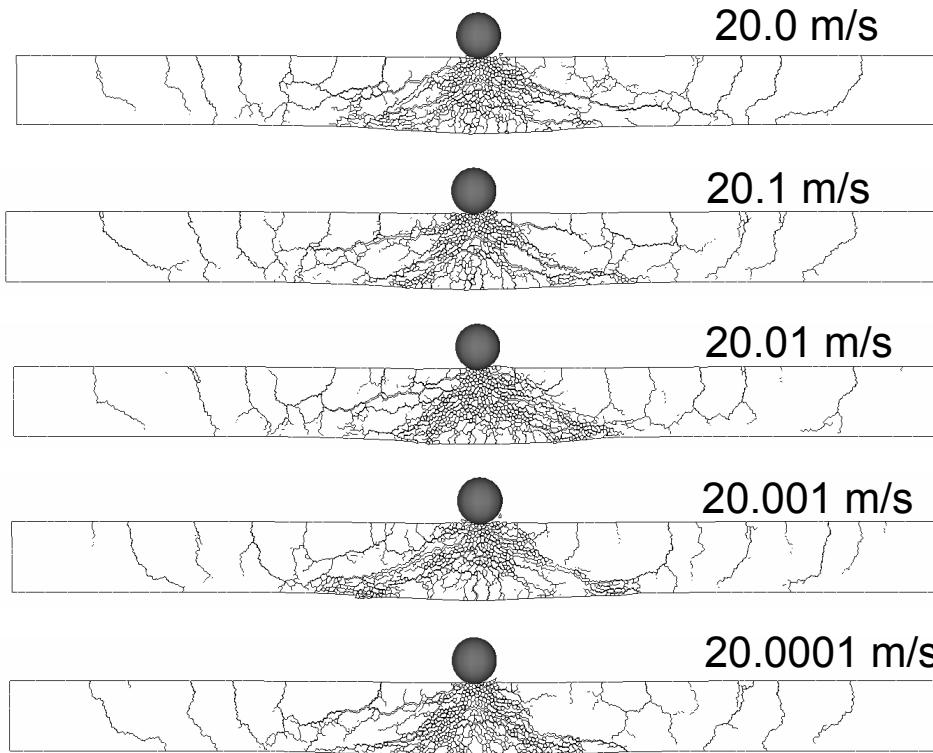
$h=16$



$h=8$

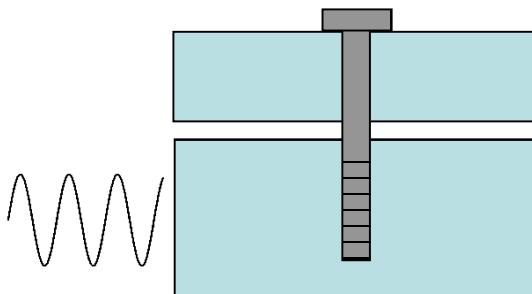
converging ?

Extreme Sensitivity to Initial Conditions



Crack patterns are qualitatively similar but distinctly different.

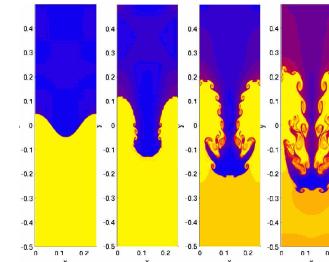
Nonlinear Dynamical Systems



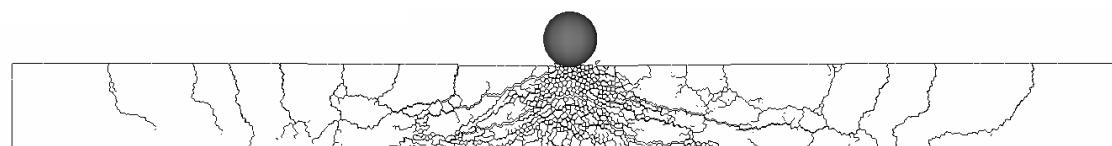
piecewise-smooth dynamical systems

- stick-slip
- contact-impact

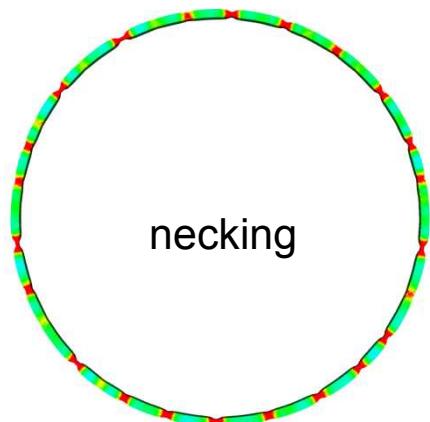
buckling



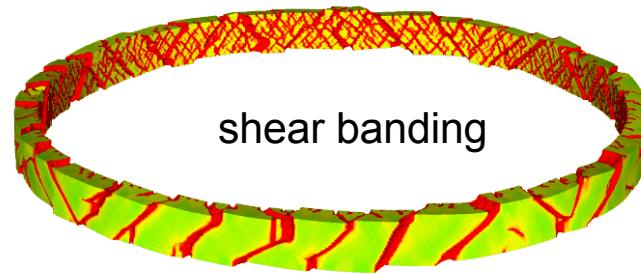
Rayleigh-Taylor instability



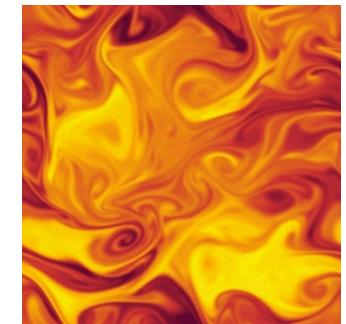
pervasive fracture



necking



shear banding



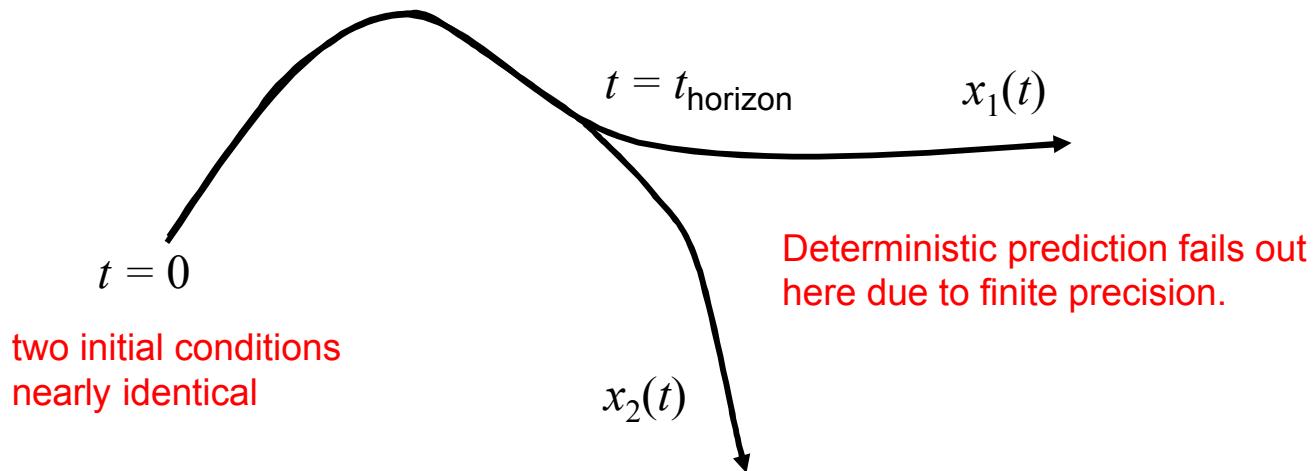
turbulence

- These deterministic systems can exhibit extreme sensitivity to initial conditions and system parameters.
- What about verification of mesh convergence?
- Need a way to quantify convergence in a statistical sense using random sampling.

Deterministic Horizon (Predictability Horizon)

result of extreme sensitivity to initial conditions

trajectories in phase space



$$\delta(t) = x_1(t) - x_2(t)$$

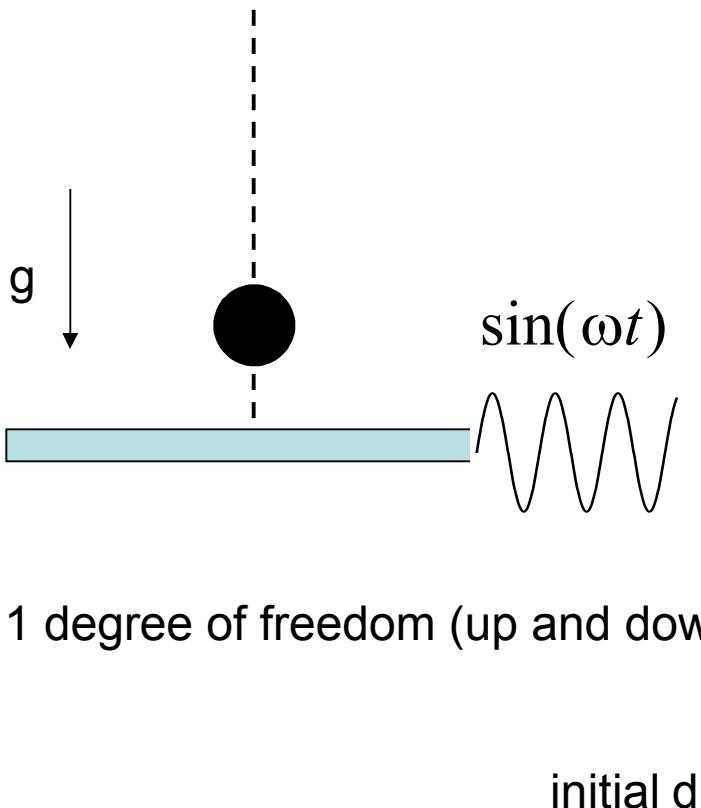
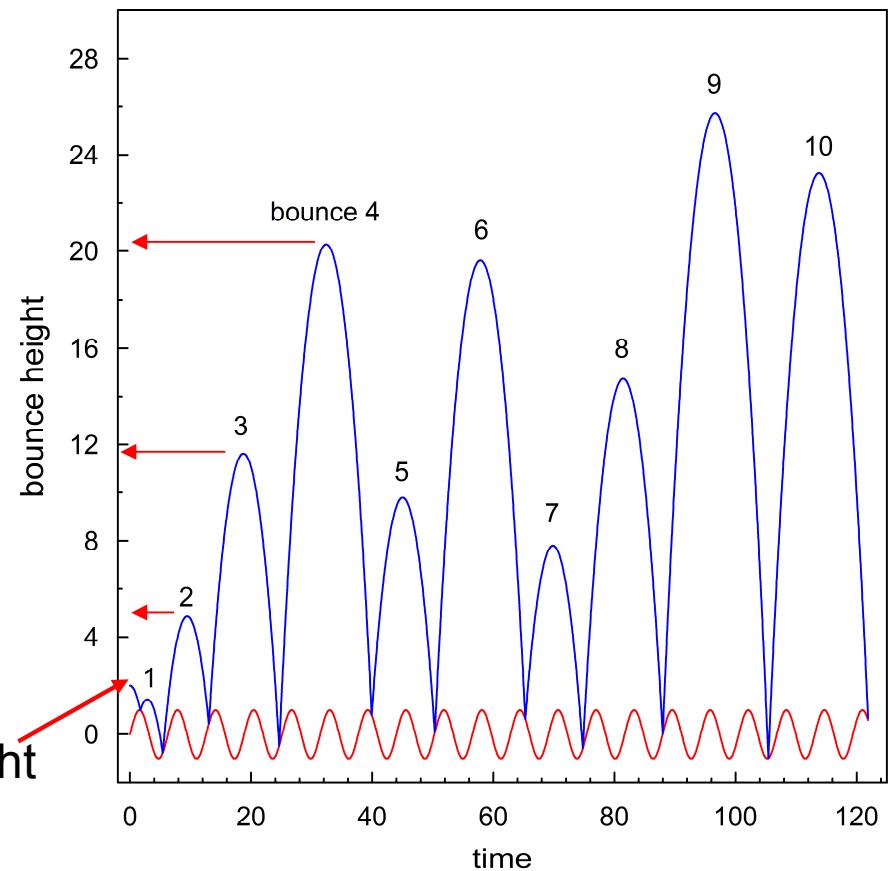
$$\|\delta(t)\| \sim \|\delta_0\| e^{\lambda t}$$

λ = Liapunov exponent

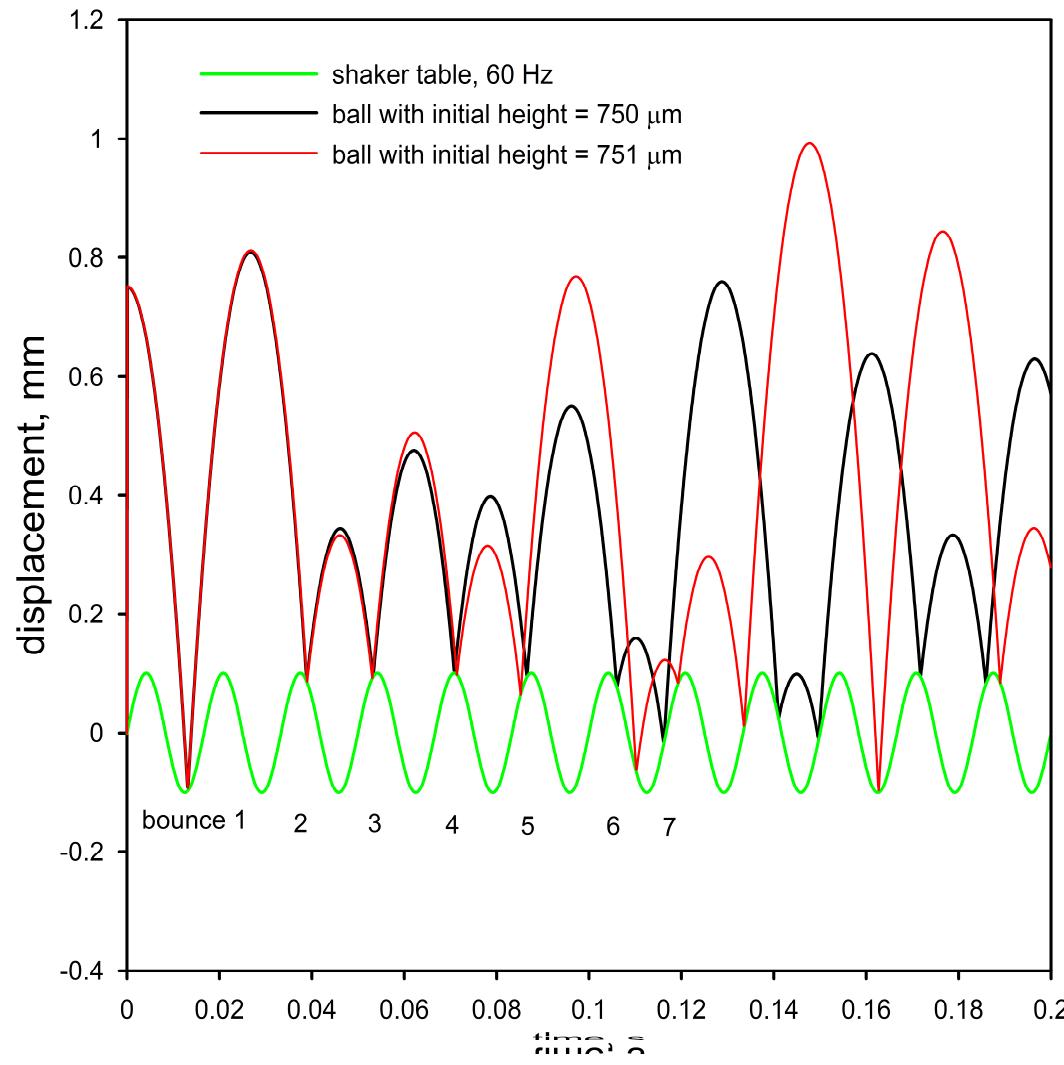
$$t_{\text{horizon}} \sim O\left(\frac{1}{\lambda} \ln \frac{a}{\|\delta_0\|}\right)$$

a = acceptable accuracy

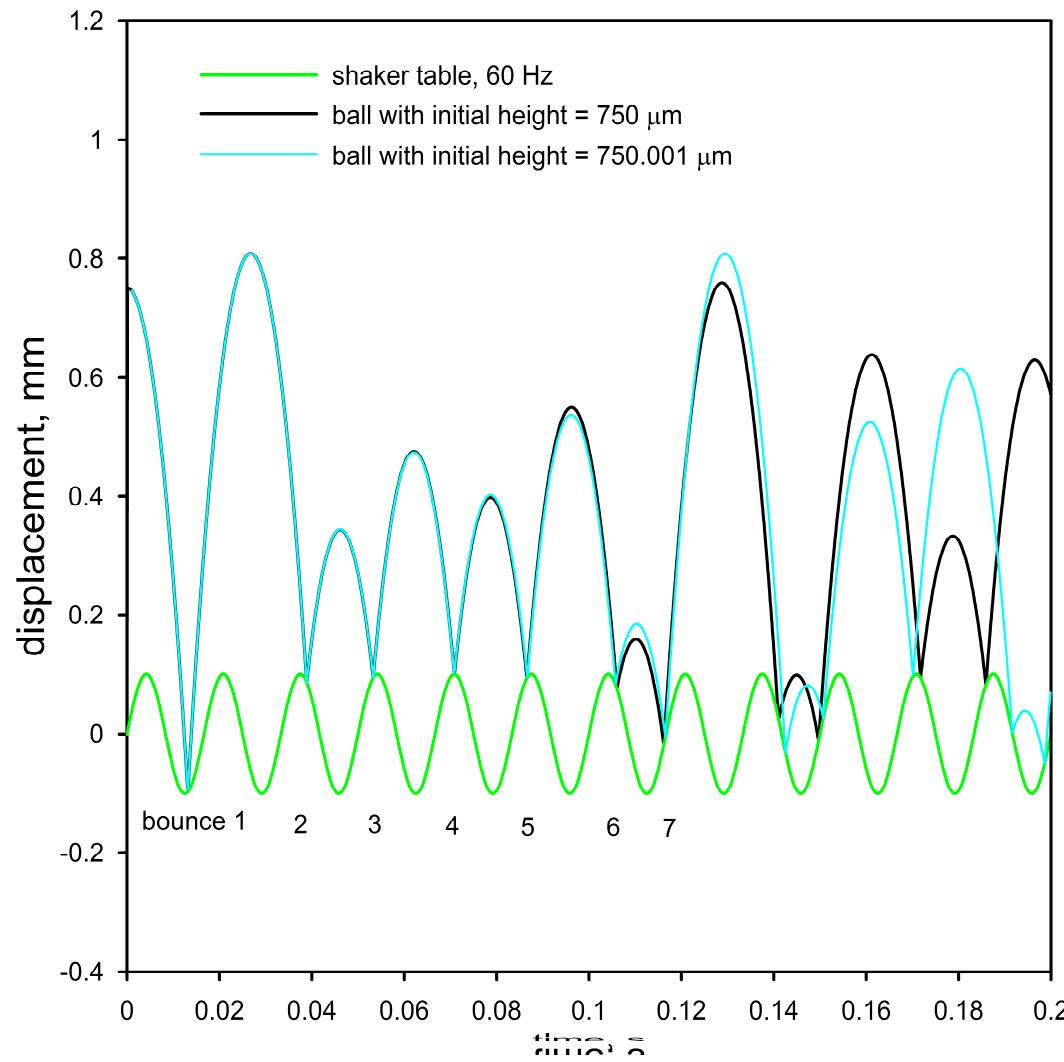
Example: A Contact-Impact System, (Bouncing Ball)



Sensitivity to Initial Conditions

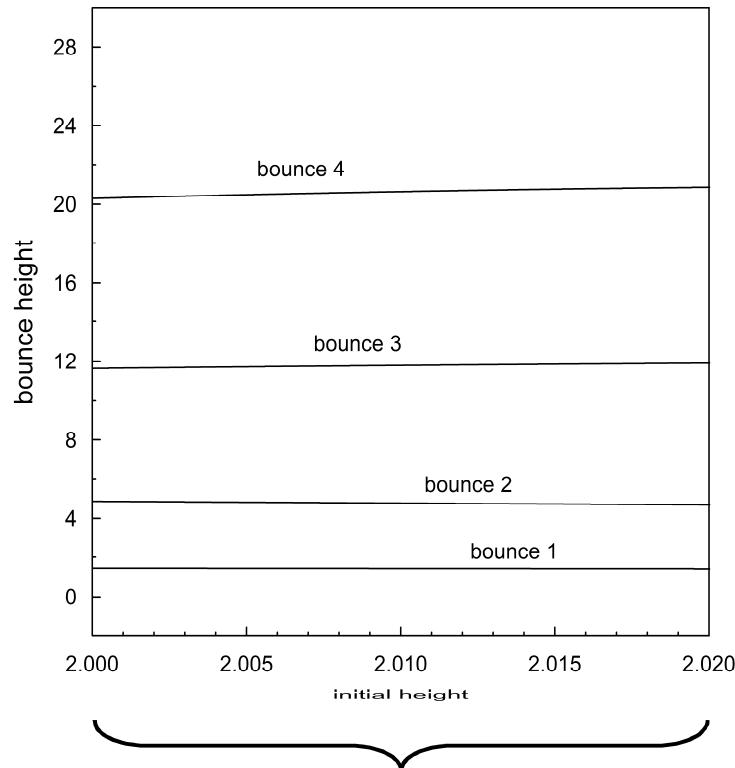


Sensitivity to Initial Conditions

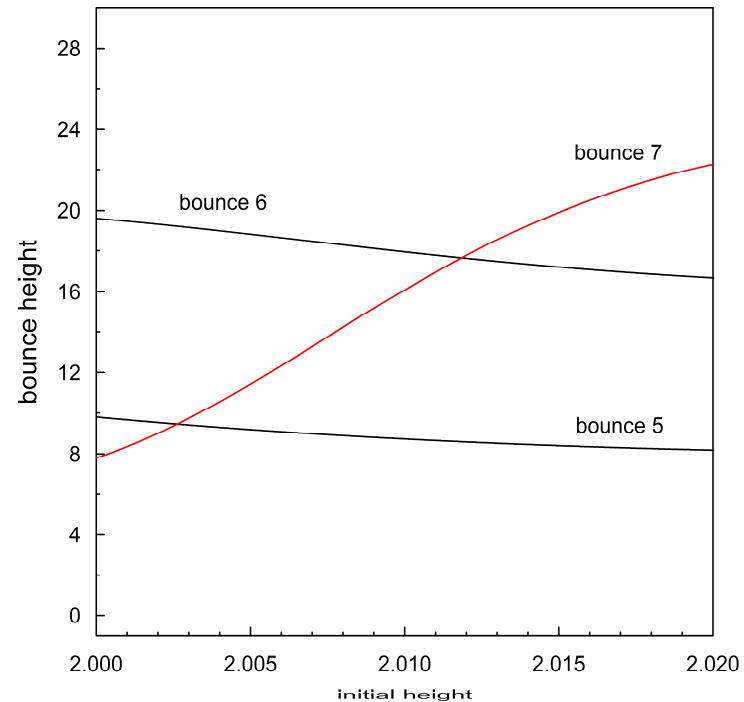


Height between Bounces

bounce 1,2,3, and 4



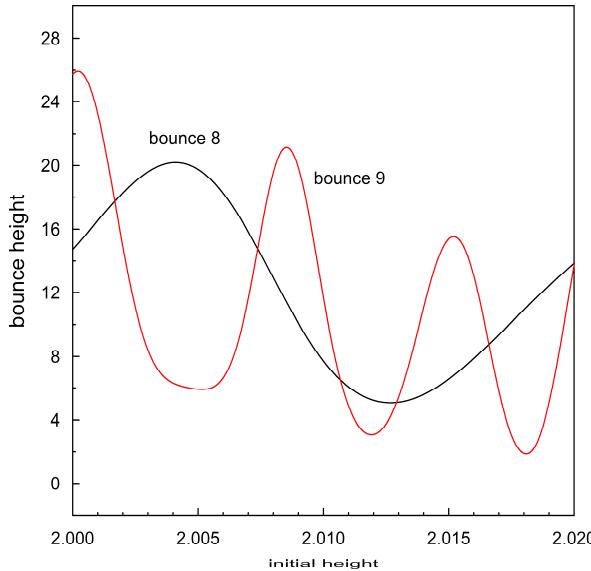
bounce 5,6, and 7



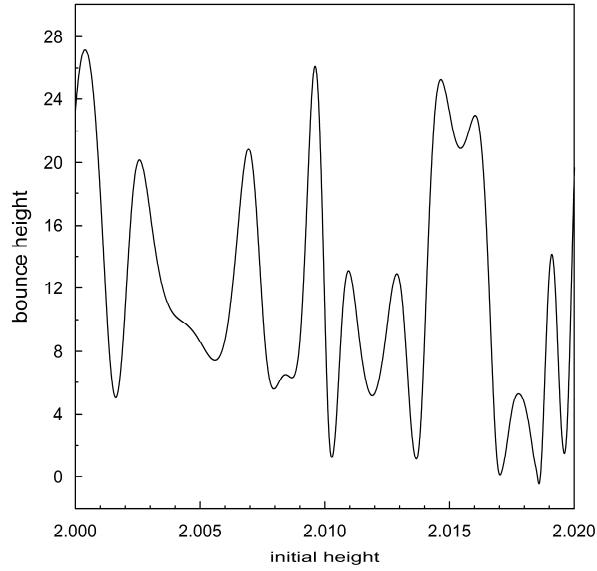
1% variation on initial drop height

Height between Bounces

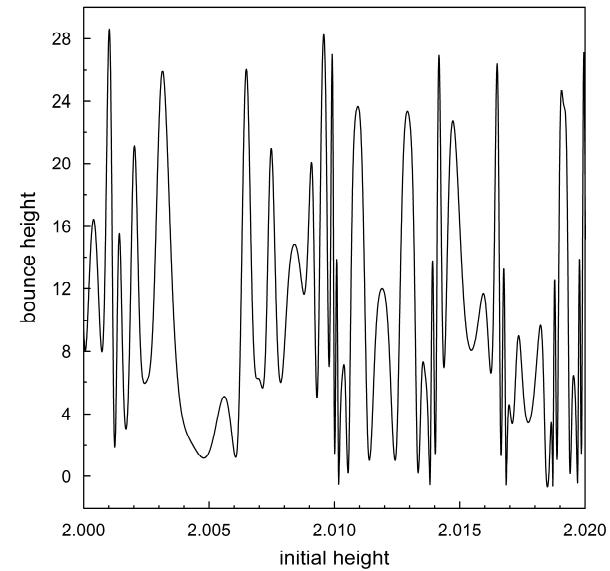
bounce 8 and 9



bounce 10



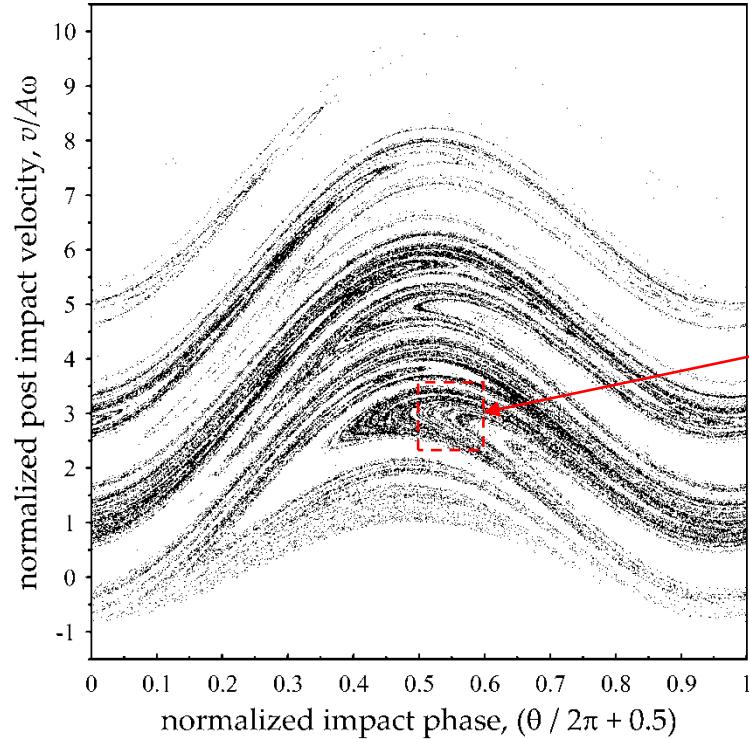
bounce 11



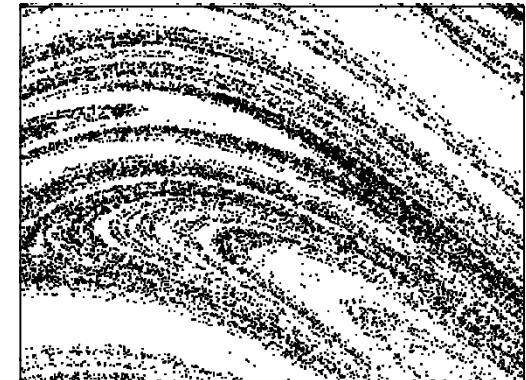
- Each bounce stretches and folds phase space (position and velocity).
- Correlation of bounce height with input height decreases with each bounce.
- Information is lost (entropy is created) with each bounce.
- There exists a deterministic time-horizon beyond which only a statistical description is appropriate.

Single trajectory, 80000 bounces

phase space, density of states

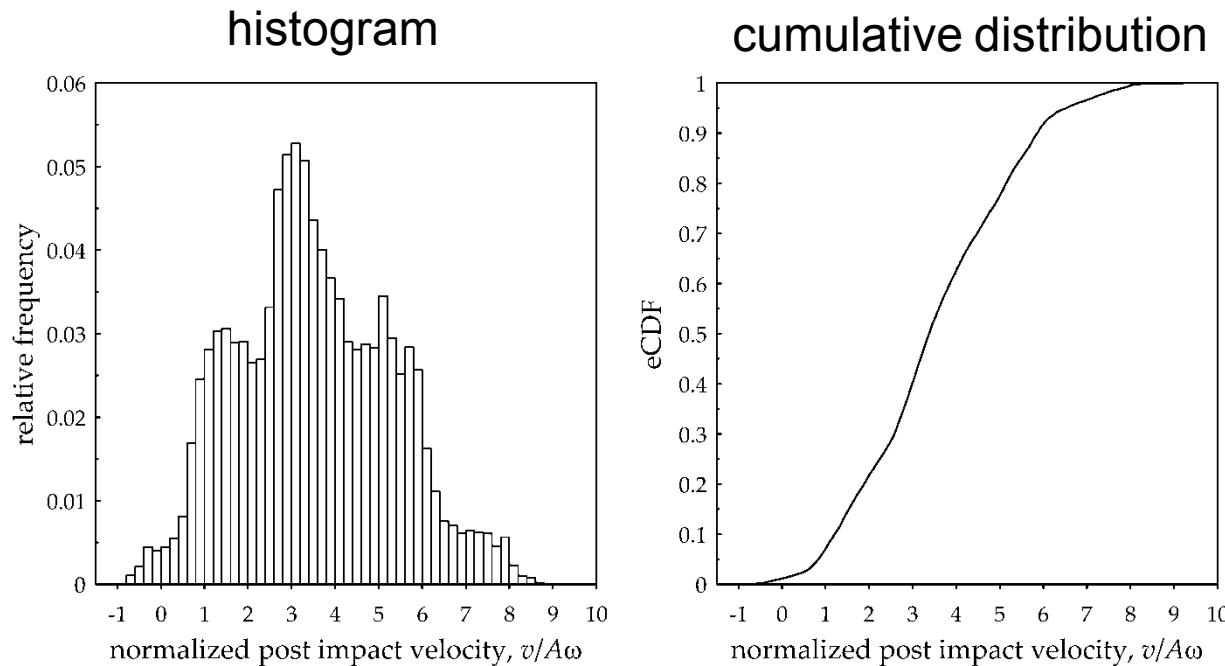


fractal structure



Beyond the predictability horizon, only statistical descriptions are appropriate.

Single trajectory, 80000 bounces



Despite extreme sensitivity to initial conditions, statistical behavior is “stable”.

Review of Probability

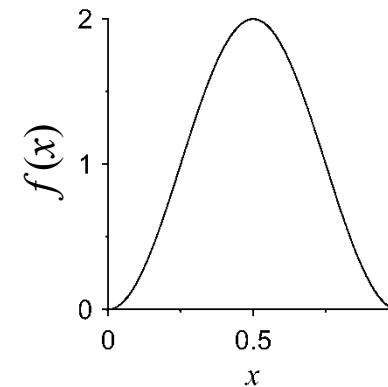
X = random variable

(an engineering quantity of interest)

PDF

$f(x)$ probability distribution function

$$f(x) = \frac{dF}{dx}$$

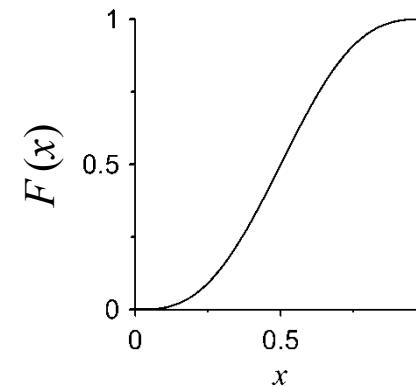


CDF

$F(x)$ cumulative distribution function

$$F(x) = \Pr(X < x)$$

$$F(x) = \int_{-\infty}^x f(x') dx'$$



Definitions of Statistical Convergence

almost sure convergence

$$\Pr \left(\lim_{h \rightarrow 0} x_h = x \right) = 1$$

convergence in r -mean

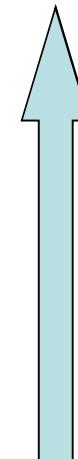
$$\lim_{h \rightarrow 0} E \left(|x_h - x|^r \right) = 0$$

convergence in probability

$$\lim_{h \rightarrow 0} \Pr \left(|x_h - x| > \varepsilon \right) = 0$$

convergence in distribution

$$\lim_{h \rightarrow 0} F_h(x) = F(x)$$



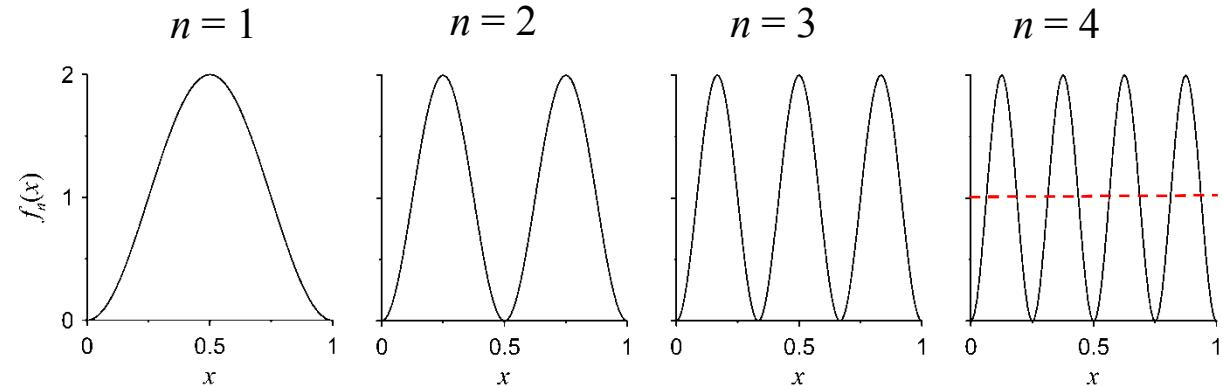
increasing
strength

Example

sequence of random variables $X_n, n = 1, 2, 3, \dots$

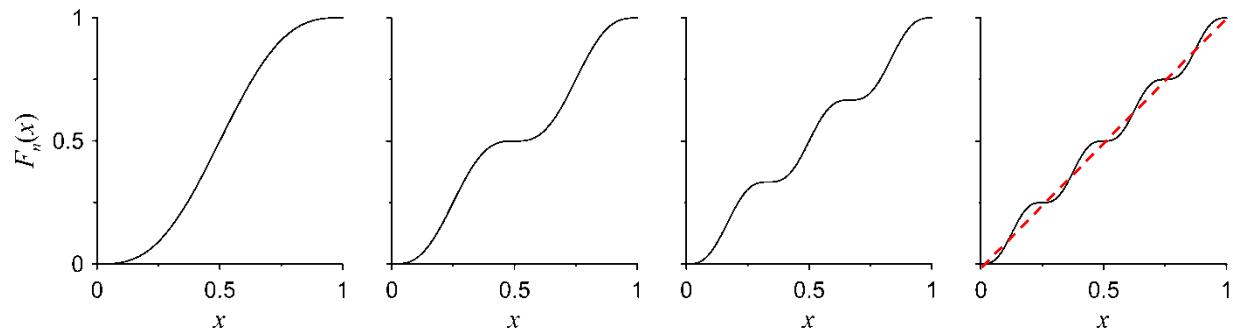
PDF

$$f_n(x) = 1 - \cos(2\pi n x)$$



CDF

$$F_n(x) = x - \frac{1}{2\pi n} \sin(2\pi n x)$$



YES

convergence-in-distribution: $\lim_{n \rightarrow \infty} F_n(x) = x$ for each x (pointwise)

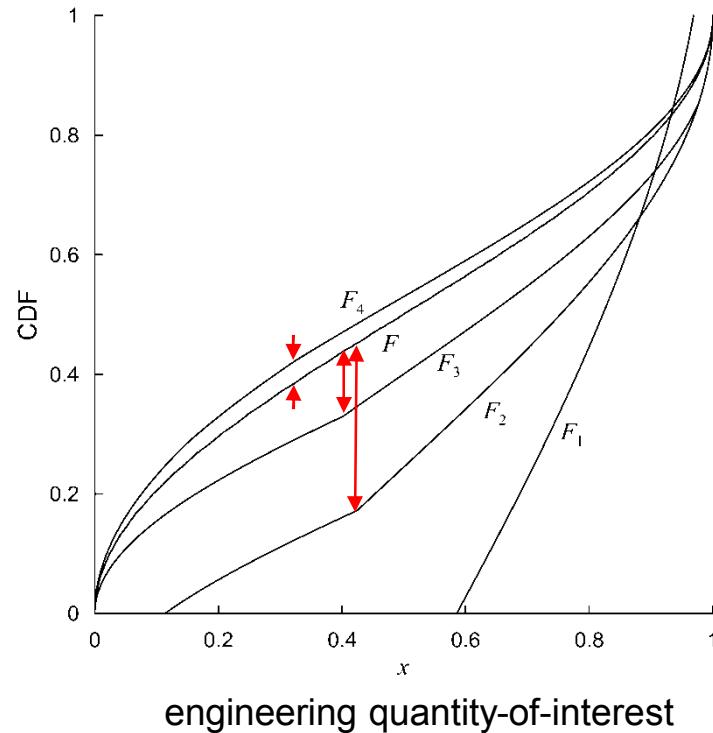
NO

convergence-in-probability: $\lim_{n \rightarrow \infty} \Pr(|X_n - X| > \varepsilon) = 0$ $\Pr(|X_n - X| > \varepsilon) = \frac{2}{\pi} + O(\varepsilon)$

for all n 64

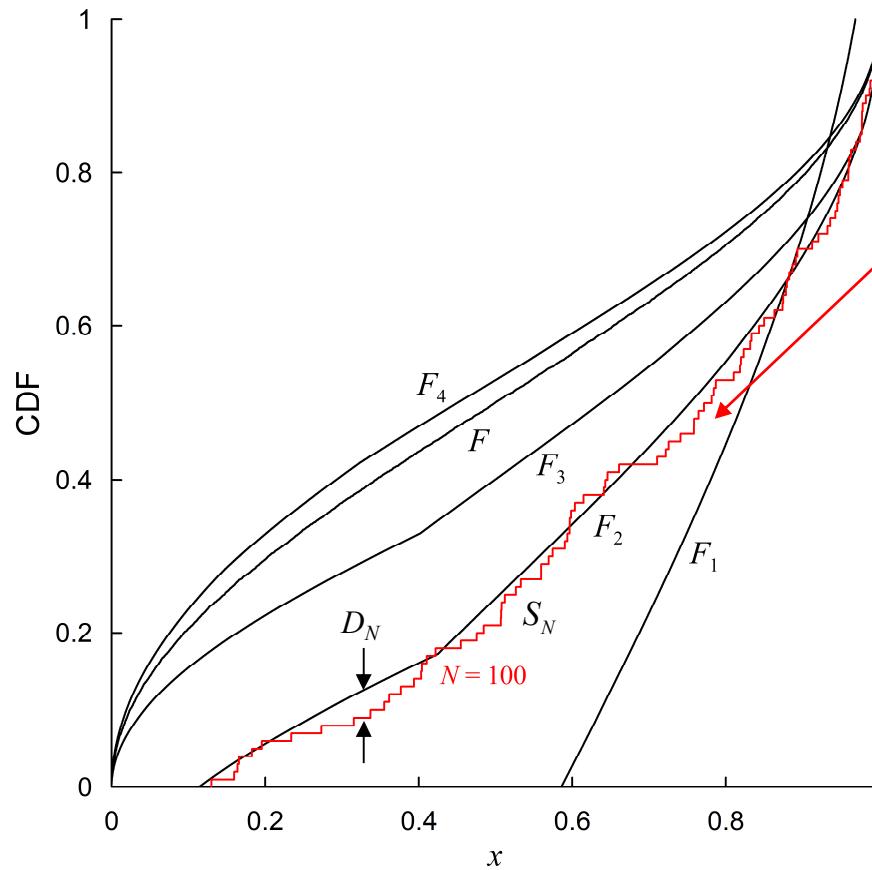
How to Assess Convergence-in-Distribution?

$$\lim_{h \rightarrow 0} F_h(x) = F(x) \quad ?$$



use L_∞ norm: $L_\infty(F_h, F) = \sup_x |F_h(x) - F(x)|$

What about finite sampling effects?



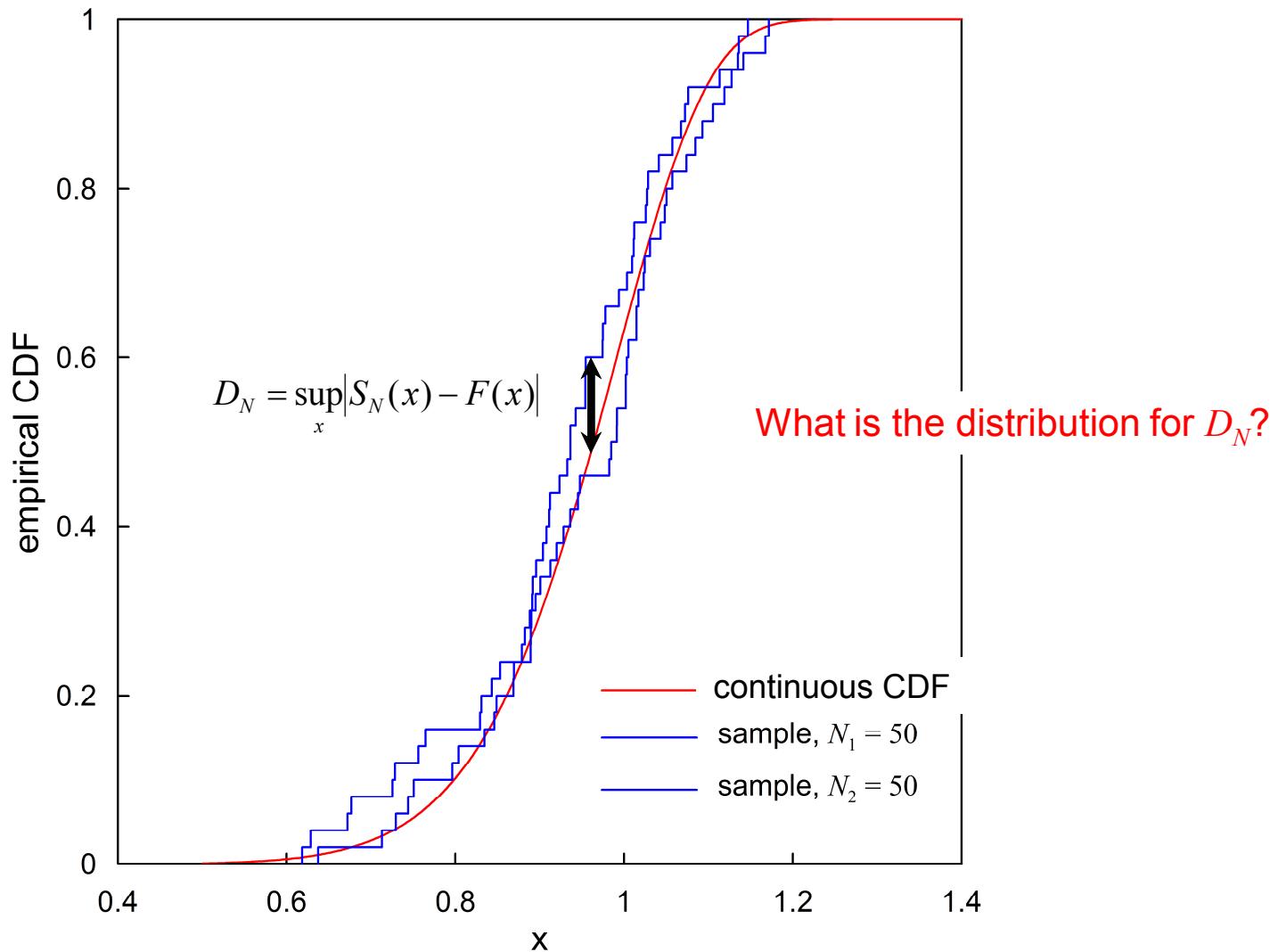
empirical CDF, $S_N(x)$

$$S_N(x) \equiv \begin{cases} 0, & x < x_1 \\ \frac{r}{N}, & x_r < x < x_{r+1} \quad r = 1, \dots, N-1 \\ 1, & x_N < x \end{cases}$$

Strong Law of Large Numbers:

$$\lim_{N \rightarrow \infty} S_N(x) = F(x) \text{ (almost surely)}$$

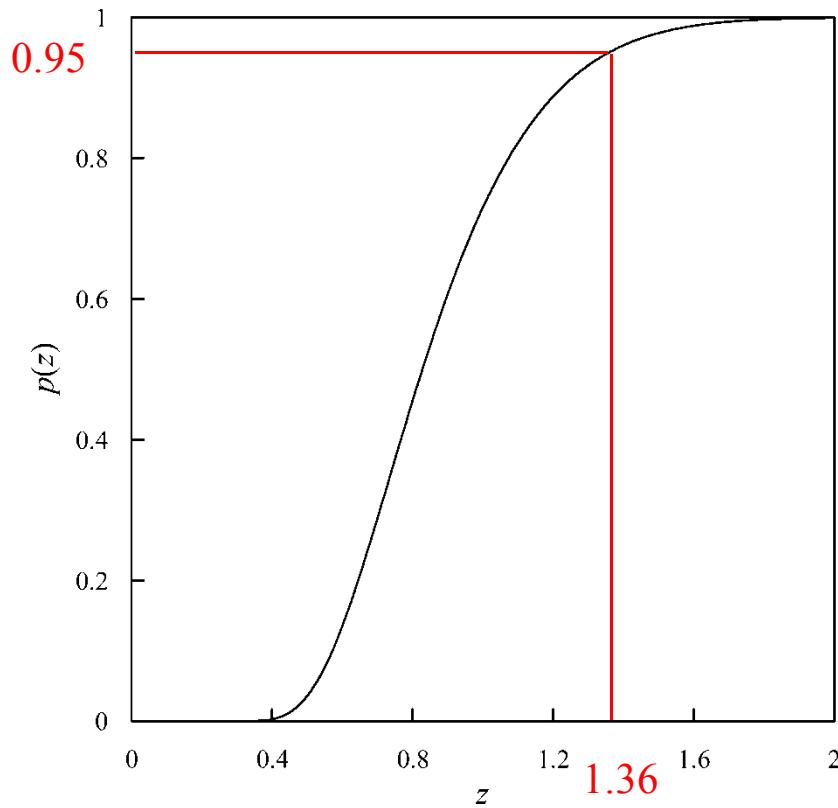
Finite Sampling Fluctuations in CDF



Kolmogorov-Smirnov Statistic

$$D_N = \sup_x |S_N(x) - F(x)|$$

$$\lim_{N \rightarrow \infty} \Pr(D_N < z/\sqrt{N}) = 1 - 2 \sum_{j=1}^{\infty} (-1)^{j-1} \exp(-2j^2 z^2) \equiv p(z)$$



$$\Pr\left(D_N < \frac{1.63}{\sqrt{N}}\right) = 99\%$$

$$\Pr\left(D_N < \frac{1.36}{\sqrt{N}}\right) = 95\%$$

$$\Pr\left(D_N < \frac{1.19}{\sqrt{N}}\right) = 90\%$$

confidence
bounds

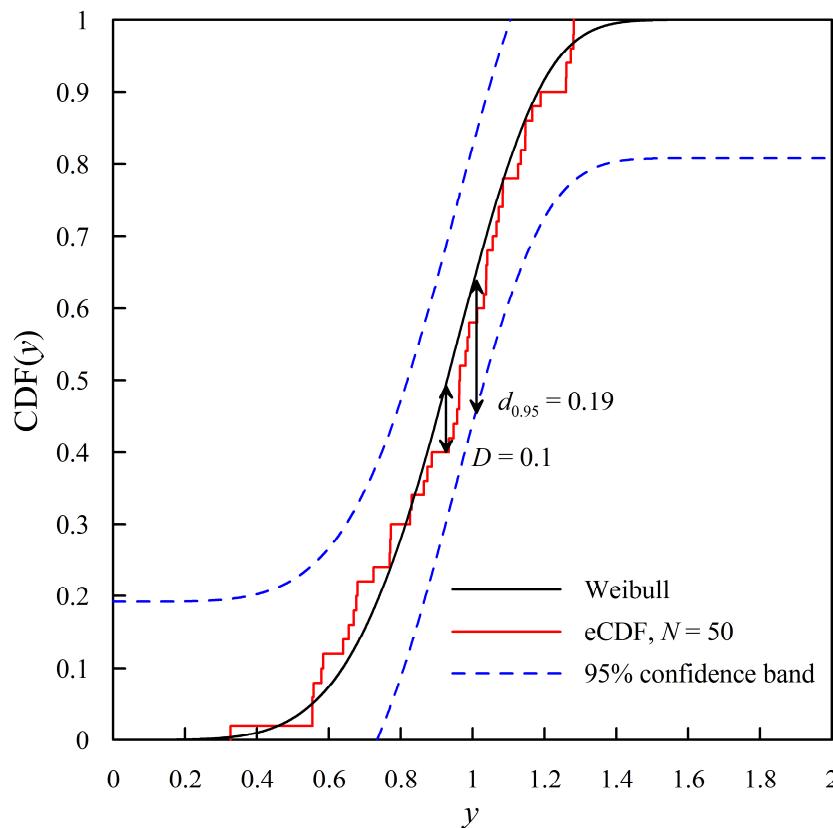
- independent of distribution
- only for continuous CDFs

(conservative to within 2% for $N > 50$)
(tabulated for $N < 50$)

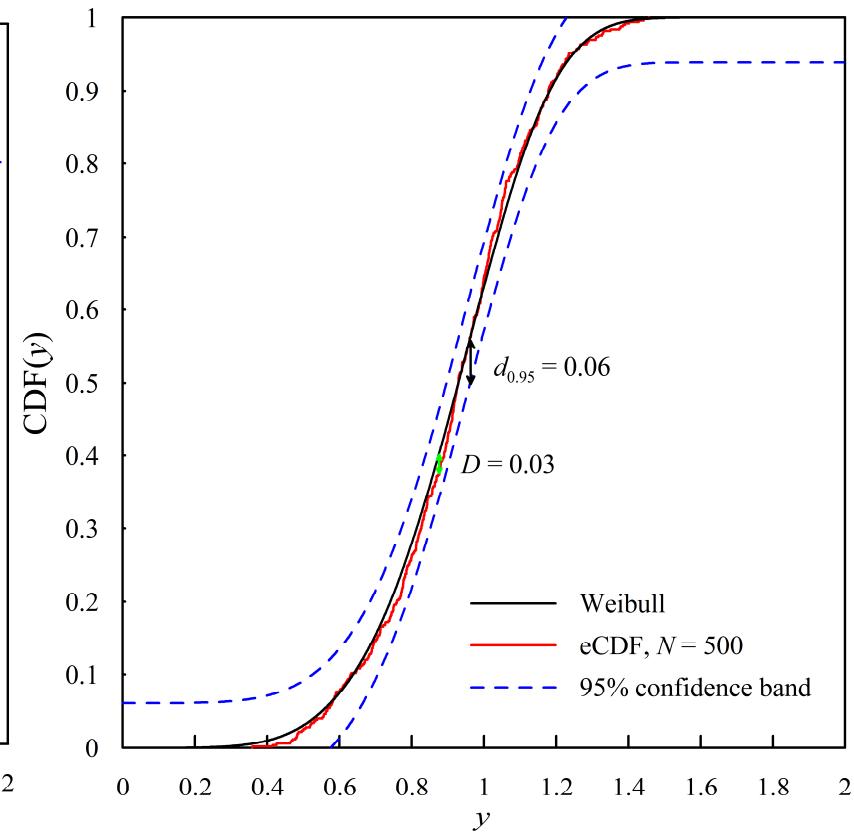
Kolmogorov-Smirnov Statistic

95% confidence bounds

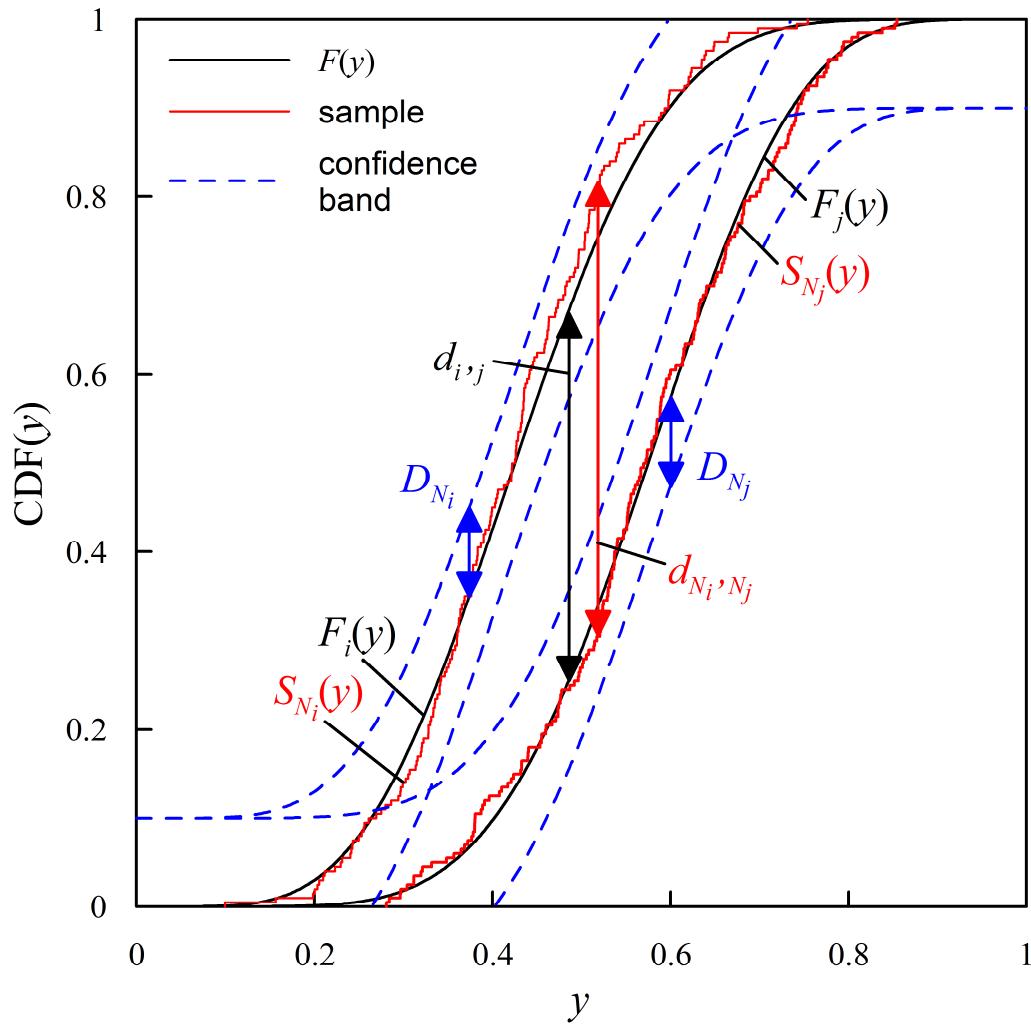
$N = 50$



$N = 500$



How to use KS-statistic to assess convergence-in-distribution with finite sample sizes?



$$|d_{i,j} - d_{N_i, N_j}| \leq D_{N_i} + D_{N_j} = \frac{z_i}{\sqrt{N_i}} + \frac{z_j}{\sqrt{N_j}}$$

Also, joint probability reduces confidence level.

Outline

1. Pervasive fracture and fragmentation
2. Random meshes and a polyhedral finite-element formulation
3. Assessing mesh convergence in a probabilistic sense
4. Example of statistical convergence using dynamic ring expansion
5. What is material variability?
6. Summary

Example: Ductile Thin Ring Expansion

Grady, D. and D. Benson, 1983, "Fragmentation of metal rings by electromagnetic loading." *Experimental Mechanics* **23**(4): 393-400.

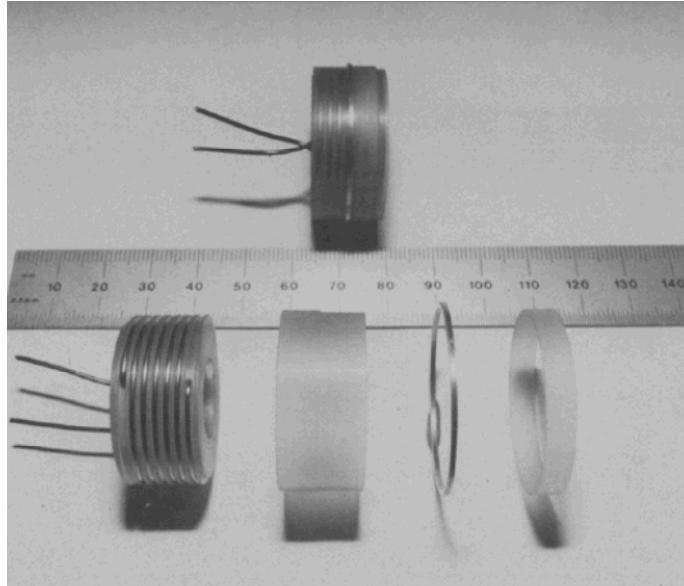
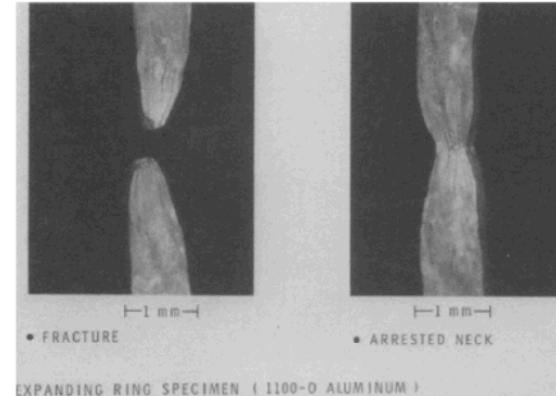
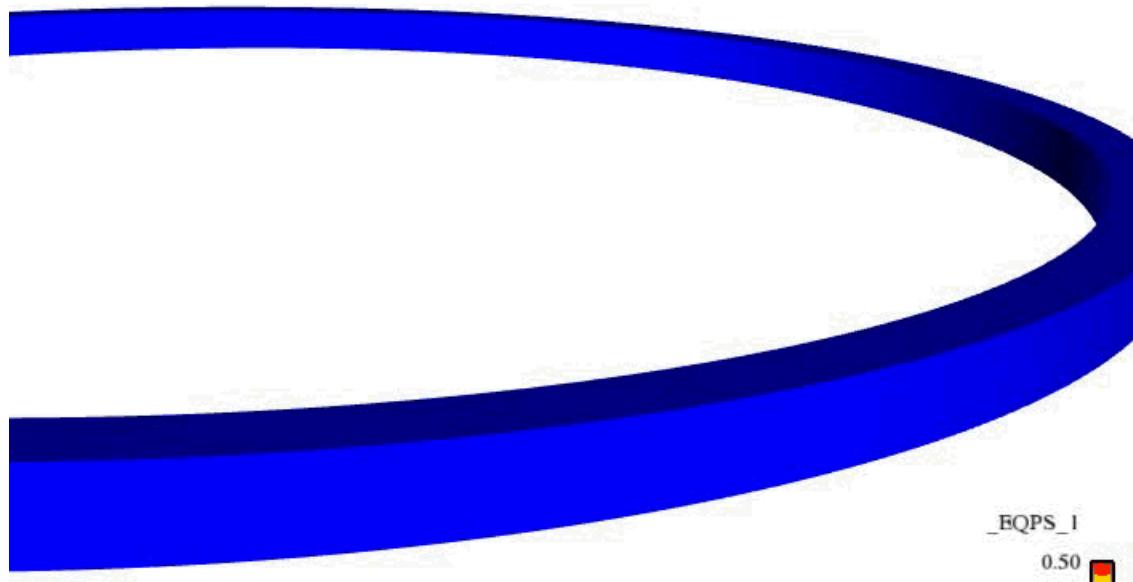
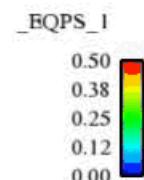
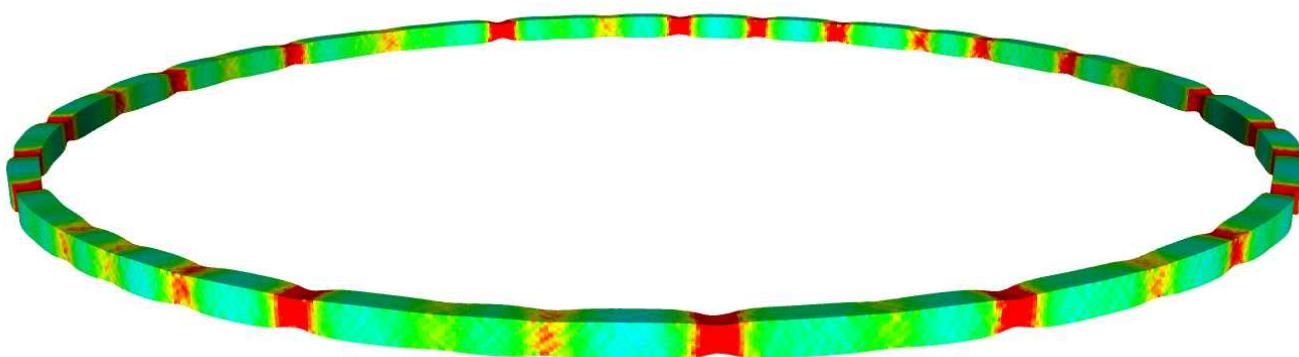


Fig. 5—Photograph of fracture and arrested-neck region from dynamic expansion of an aluminum ring

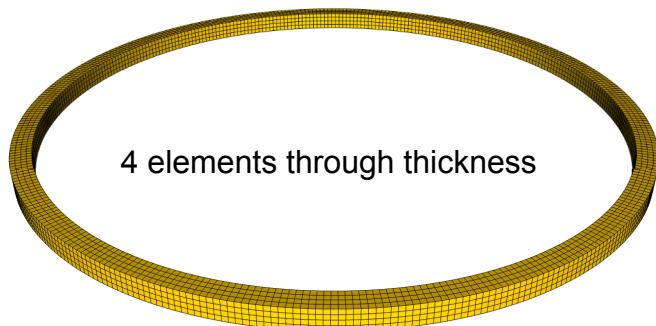
Simulation

Time = 0.000000



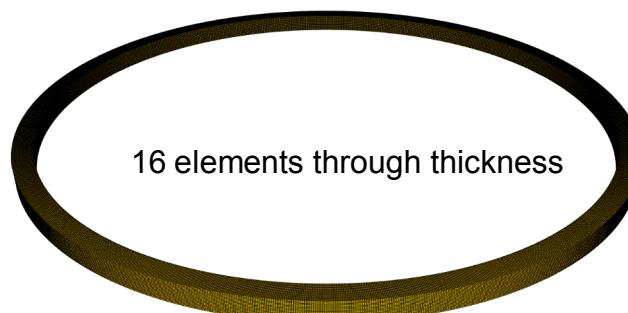
Four Levels of Mesh Refinement

R0



4 elements through thickness

R2



16 elements through thickness

R1

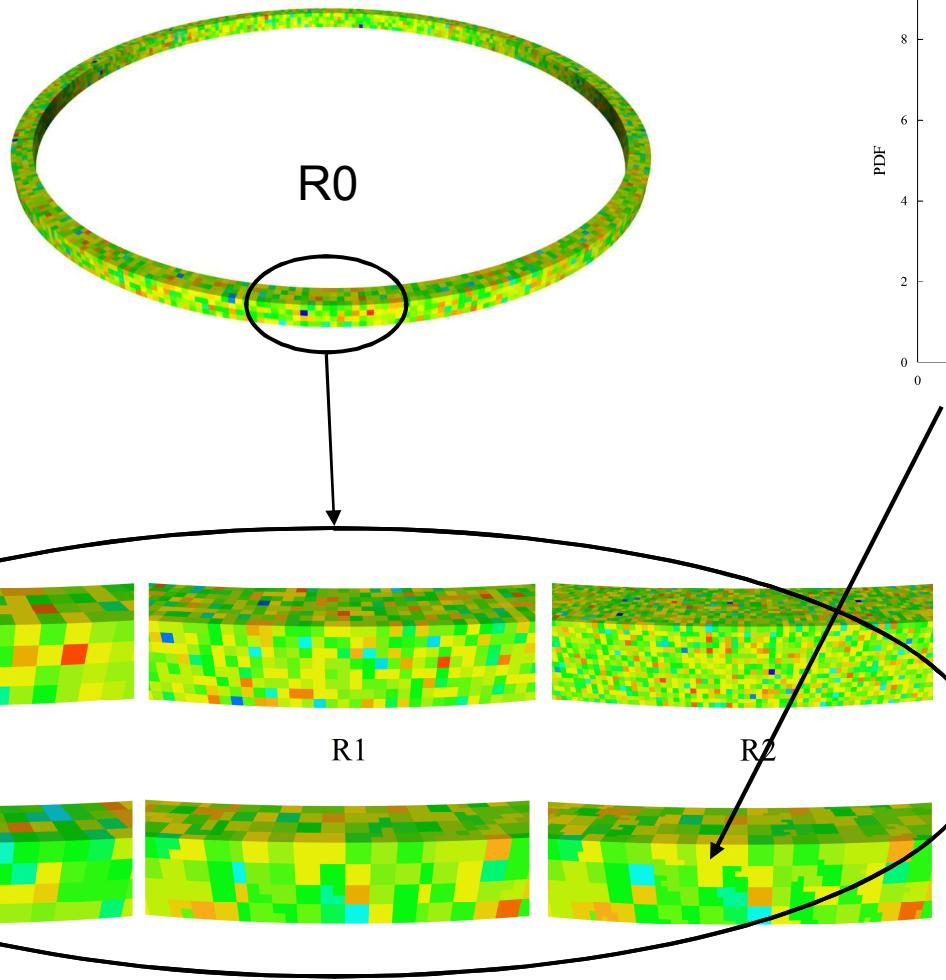
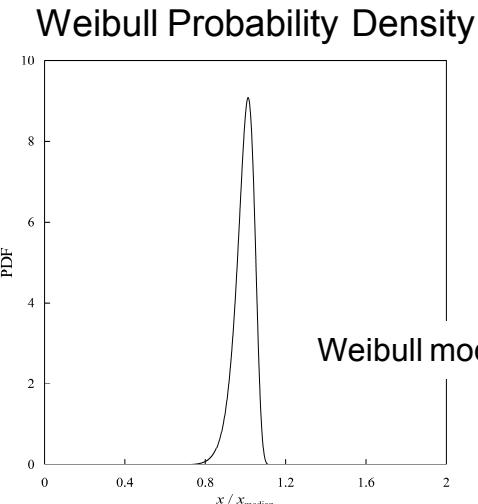
8 elements through thickness

R3

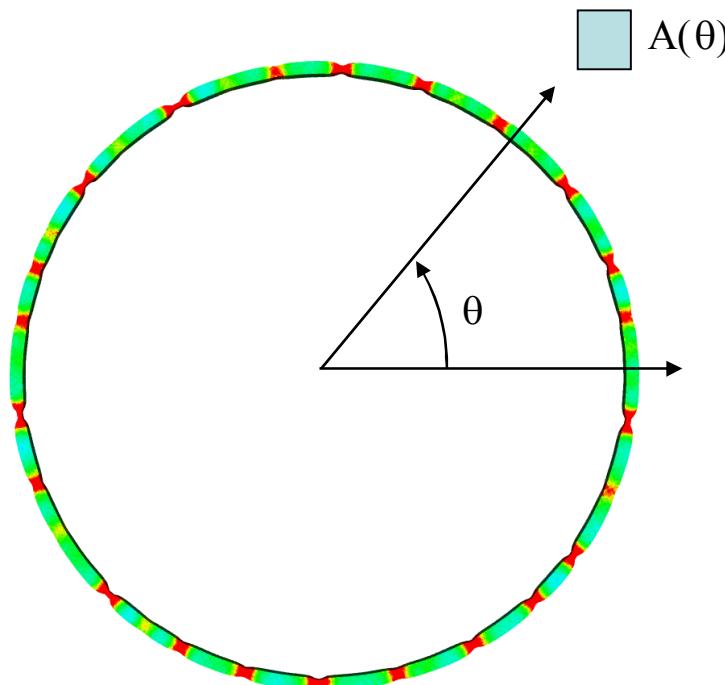
32 elements through thickness

Spatial Material Variability in Initial Yield Stress

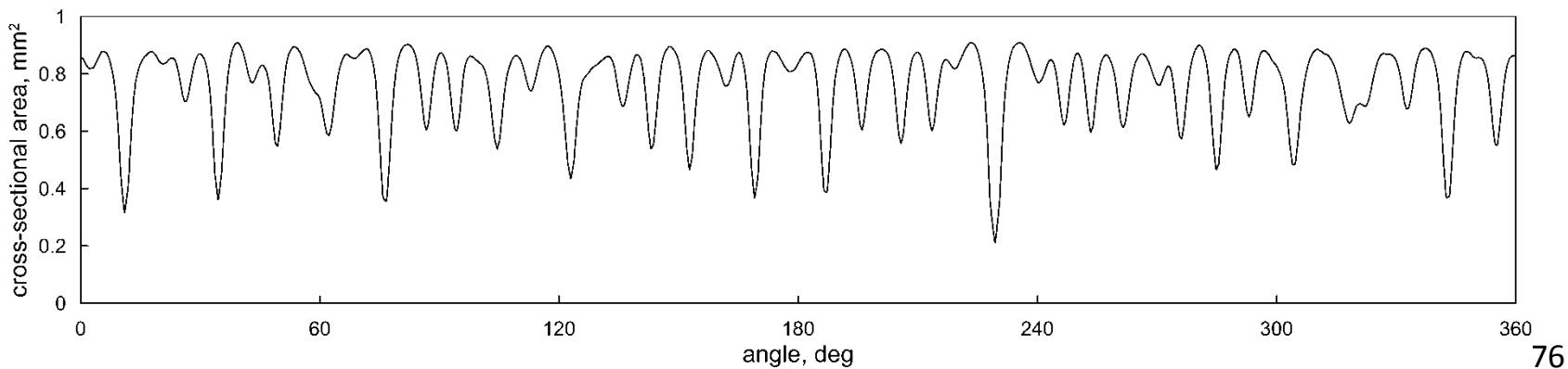
(power-law hardening)



Cross-Sectional Area

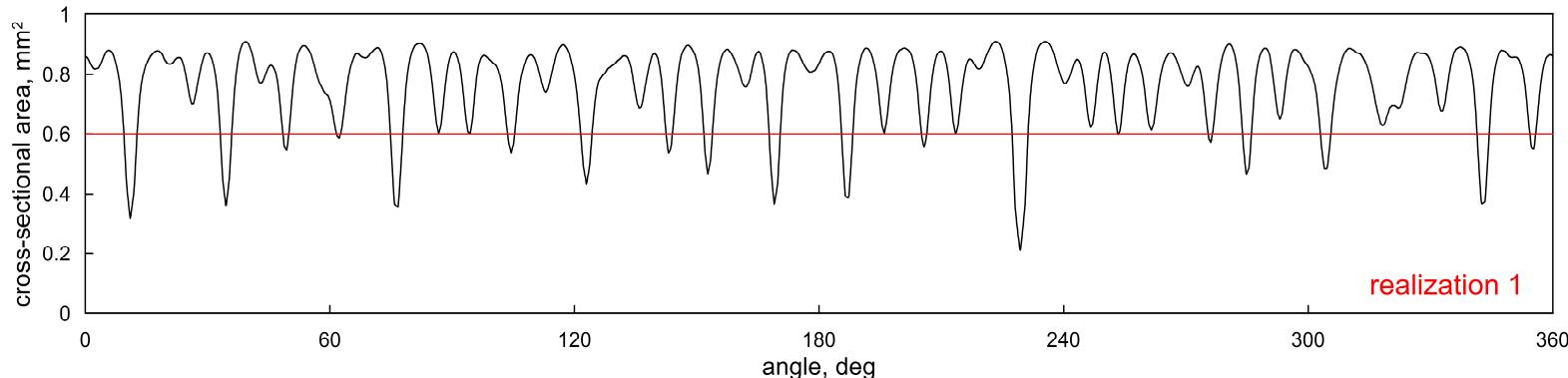


Reduce 3D random field to 1D random field.

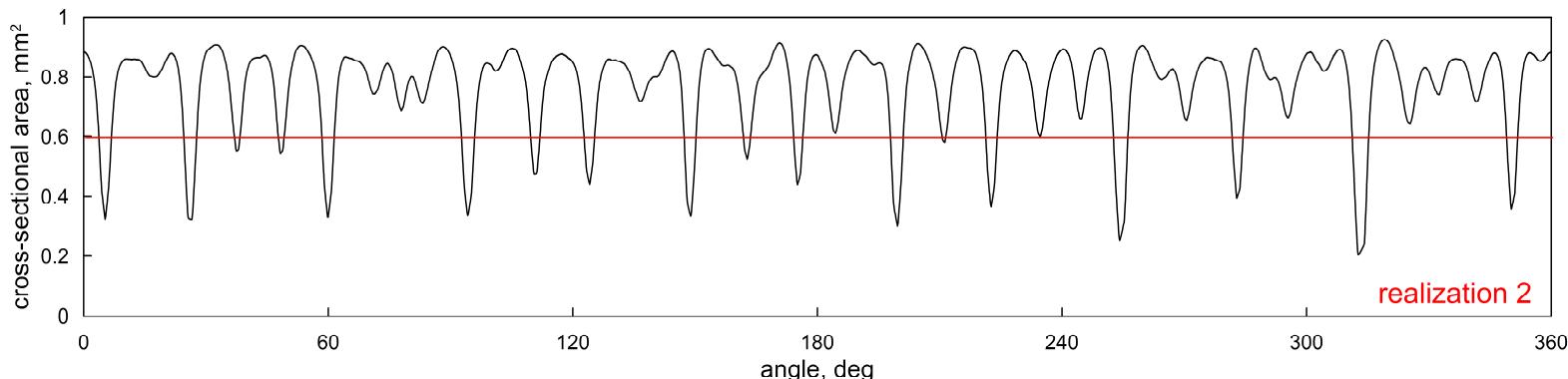


Neck Identification

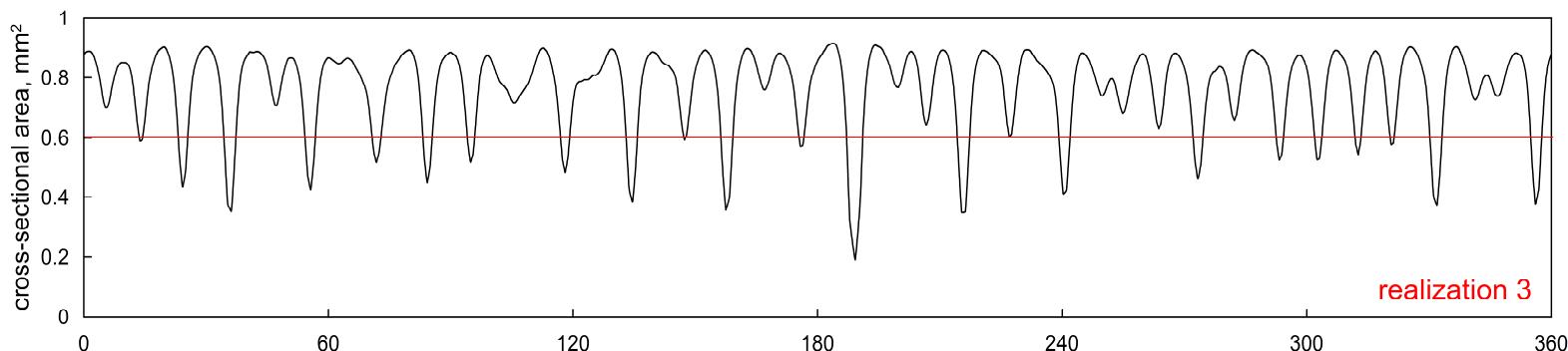
ring cross sectional area at time = $40\mu\text{s}$, mesh refinement 1



realization 1

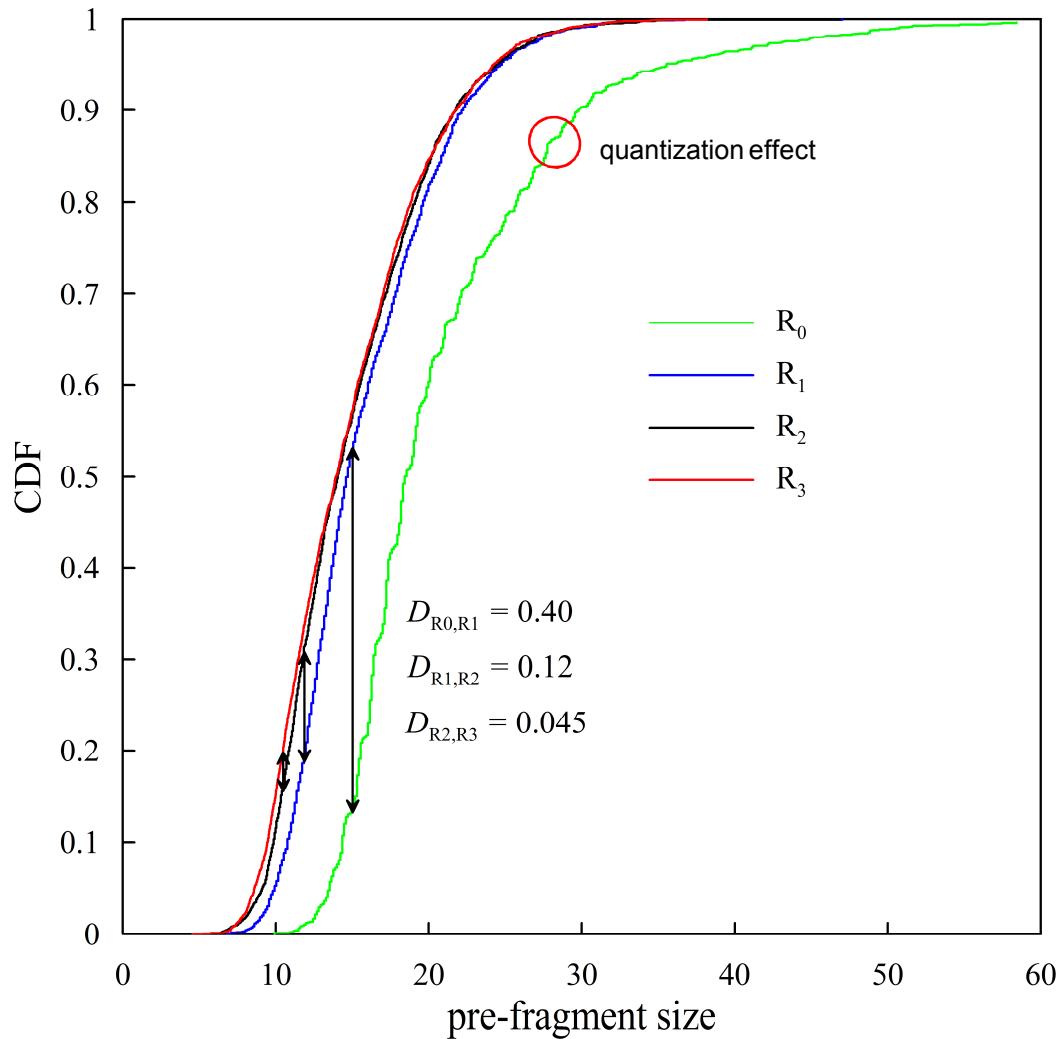


realization 2



realization 3

Convergence-in-Distribution?

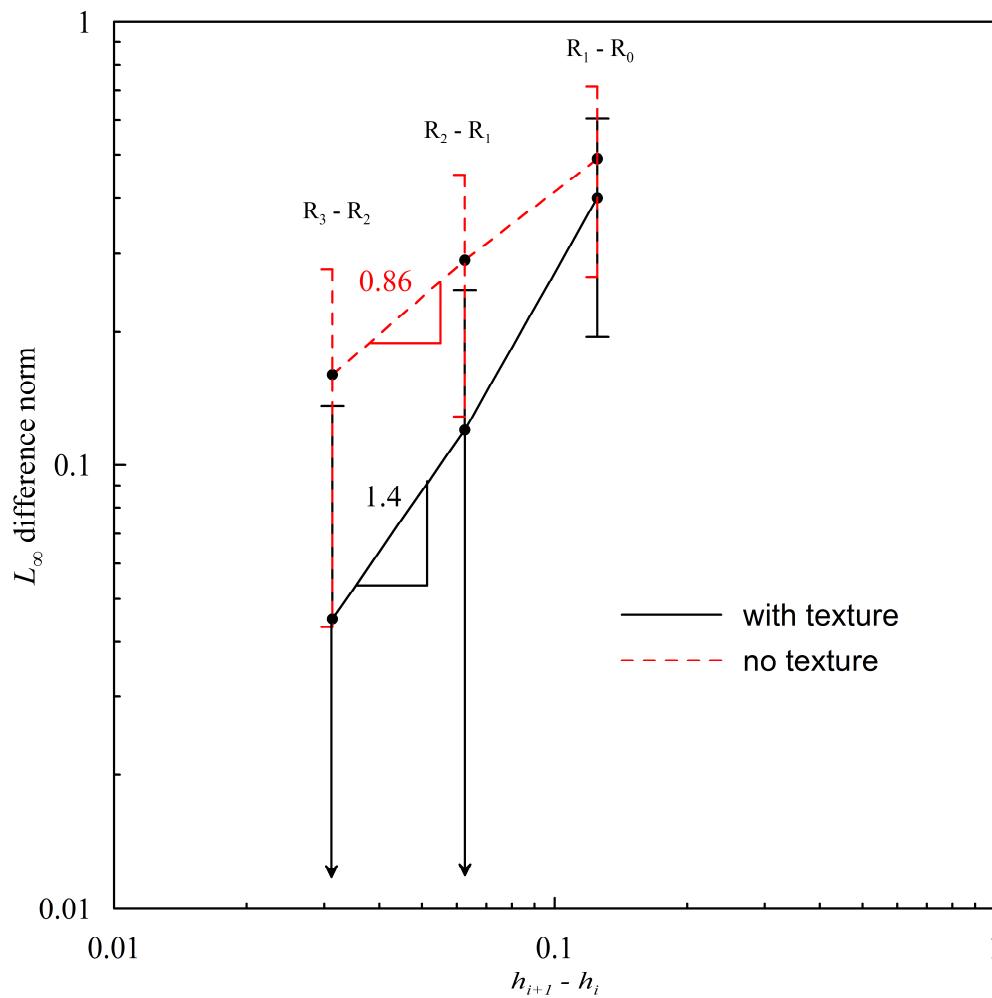


100 simulations
ensemble statistics

number of pre-fragments
(sample sizes)

$$\begin{aligned}N_0 &= 1714 \\N_1 &= 2274 \\N_2 &= 2386 \\N_3 &= 2421\end{aligned}$$

Convergence-in-Distribution?



Outline

1. Pervasive fracture and fragmentation
2. Random meshes and a polyhedral finite-element formulation
3. Assessing mesh convergence in a probabilistic sense
4. Example of statistical convergence using dynamic ring expansion
5. **What is material variability (multi-scale)?**
6. Summary

Summary

1. Presented a finite-element method for modeling pervasive fracture in materials and structures based on random meshes.
2. Presented a polyhedral finite-element formulation for both convex and nonconvex elements.
3. If engineering quantities-of-interest are extremely sensitive to initial conditions and system parameters, need to embrace a probabilistic description.
4. Presented a statistical-method for verifying and validating nonlinear dynamical systems in this regime including pervasive fracture.

Bishop, J., 2009, "Simulating the Pervasive Fracture of Materials and Structures using Randomly Close Packed Voronoi Tessellations," *Computational Mechanics*, 44, p. 455-471.

Bishop, J. and Strack, O., 2011, "A Statistical Method for Verifying Mesh Convergence in Monte Carlo Simulations with Application to Fragmentation," *International Journal for Numerical Methods in Engineering*, 88, p. 279-306.

Bishop, J., VanGoethem, D., Sweetser, J., (submitted) "On the Propagation of Uncertainty in Nonlinear Dynamical Systems," *International Journal for Uncertainty Quantification*.

Bishop, J., Martinez, M., Newell, P. (submitted) "A Finite-Element Method for Modeling Fluid-Pressure Induced Discrete-Fracture Propagation using Random Meshes," *46th US Rock Mechanics / Geomechanics Symposium*