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Outline

1. Pervasive fracture and fragmentation

2. Random meshes and a polyhedral finite-element formulation

3. Assessing mesh convergence in a probabilistic sense

4. Example of statistical convergence using dynamic ring expansion

5. What is material variability?

6. Summary



blast induced structural collapse

dynamic pervasive fracture

USS Cole

Pervasive Fracture

• crack branching
• crack coalescence
• tortuous crack paths 

(sensitivity to material heterogeneity)
• stochastic behavior

bird strike
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Geomechanics Applications

Engineered Geothermal
Nuclear Waste Isolation

Source: NTS Smart Grid Blog
Derek Sept. 2009

CO2 Sequestration

Compressed Air Energy 
Storage

http://www.hydraulicfracturing.com

Hydraulic Fracturing
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spectrum of fracture problems

• well defined deterministic propagation path
• analytical solutions
• enrichment methods (GFEM, XFEM, . . .)

• crack branching
• crack coalescence
• tortuous crack paths 

(sensitivity to material heterogeneity)
• stochastic behavior

single crack pervasive fracture

Spectrum of Fracture Problems

How far can we extend the computational tools 
used for one end of the spectrum to the other?

impact, fragmentation
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Computational Challenges to Allowing 
Cracks to Grow Arbitrarily

What about 3D?

• Do we restrict branching?
• Do we restrict initiation?

- from surface only?
- from crack tips only?
- from existing cracks only?

• Constraints on turning angles?
• Constraints on crossing angles?
• Constraints on minimum fragment size?
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Computational Approach

• Random Voronoi tessellation (mesh)

• Polyhedral finite-elements

• Fracture only allowed at element edges. 

• Dynamic mesh connnectivity

• Insert cohesive tractions on new fracture surfaces (fracture energy).

TI,II,III

u

TI,II,III

changing mesh connectivity

cohesive tractions at 
crack tip

Pandolfi, A. and M. Ortiz, 2002, Engineering with 
Computers, 18: p. 148-159.
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• need to use ‘random’ 
discretizations

• statistically isotropic 
(distribution of edge orientations 
passes KS test against the 
uniform distribution)

Why a Random Voronoi Mesh?

Structured grids can result in 
strong mesh induced bias 
(nonobjective).

Voronoi tesselation of 
with random seeding

Bolander, J.E. and S. Saito, 1998, Fracture analyses using spring networks with random 
geometry. Engineering Fracture Mechanics, 61(5-6): p. 569-591.



9

Voronoi Texture Augments Material Variability

Probability Density
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Voronoi Mesh Generation

dual VoronoiDelaunay triangulationPoisson process

• constraint on min. dist.
• seed until ‘max’ packing

Bolander, J., Saito, S., 1998, ‘Fracture Analyses using Spring Networks with Random Geometry,’ 
Engineering Fracture Mechanics, 61, 569-591

• Note that each Voronoi junction is randomly oriented.
• Most Voronoi junctions are triples. 
• Average interior angles are 120.
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3D Element Formulation

nodal shape function
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Harmonic Functions

02 

A harmonic function is a solution of Laplace’s equation.
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A subset of a broader notion of “energy minimizing” functions.

or

example in 2D
example in 3D

Can solve efficiently using 
BEM, or can just use FEM.
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Construction of Harmonic Shape Functions in 3D
(Joshi, 2007, “Harmonic coordinates for character articulation”)

0 I
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Harmonic Shape Function  Properties

• partition of unity and reproduce space

• Kronecker delta property at nodes

• linear on edges (low order)

• shape functions defined on original 
configuration (no mapping to ‘parent’ shape)

xxxx   I
I

I
I

I )(,1)(

even for the discrete harmonic solution

IJJI  )(x

xxxx   I
I

h
I

I

h
I )(,1)(

shape functions
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Harmonic Shape Function Examples

Only need to store shape functions and derivatives at integration points.

Discard everything else.
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Element Integration

• Due to computational expense of plasticity models, want to minimize the 
number of integration points.

• Follow approach of Rashid and Selimotec, 2006.

• Each node is associated with a “tributary” volume, connected to the 
centroid. 

• Number of integration points is equal to the number of vertices. 

centroid of element

integration point xk = centroid of tributary volume

tributary volume for node I

integration point weight wk = tributary volume

centroid of face

midpoint of edge

• Integration is only first order accurate.
• Sufficient to eliminate any zero energy modes.



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M

k
kk

e fwdf
e 1

)(x
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“Engineering” Patch Test

On an “arbitrary” patch of elements, a linear displacement field should be produced 
on interior nodes when such a field is prescribed on the boundary nodes.

The patch test verifies “completeness”, a necessary condition for convergence.

Conversely, a constant stress field should be produced within each 
element when such a field is prescribed on the boundary surface.

and, stress field should be constant.

and, strain field should be constant.

patch of elements

Failed patch test!
(result of low-order integration)

(Displacement field can represent rigid body motions and a constant strain state.)



Element Stiffness Matrix (Linear Example)
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III

ddd zJxIyJxIxJxI

I

I = support of node I

KIJ = global stiffness matrix

J

Row I column J of KIJ contains terms like:

For patch test, 
need 

4321),,( azayaxazyxu x 

4321),,( bzbybxbzyxu y 

4321),,( czcycxczyxu z 

to be a solution of Ku = F when applied as boundary conditions.

I
J
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Requirements to Pass the Patch Test

global equilibrium 
equations:

(Krongauz and Belytschko, 1997)

For interior nodes I need  0IF0uK 
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(Krongauz and Belytschko, 1997)
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These integration properties 
of the shape function 
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order to pass the patch test.

But what about numerical integration? 



ip

I

N

k
kxIkxI wd

1
,, )(x

wk = integration weight

xk = integration point

Requirements to Pass the Patch Test
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Integration Consistency
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ee

dnd xIxI ,

I

n

volume integration point at xk

with weight wk
surface integration point at
xj with weight w

j

Approximate integration will 
cause failure of patch test for 
first-order integration.

Would need a large number 
of integration points to satisfy 
patch test.

. . . too expensive!

Instead, let’s “tweak” the 
shape function derivatives 
to satisfy the patch test.

Divergence Theorem

Satisfaction of discrete form of 
Divergence Theorem requires “=“
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Let’s “tweak” the Shape Function Derivatives
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Modified Shape Function Derivatives
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3D Verification:  Engineering Patch Test

random patch

without derivative correction with derivative correction

strain error = (10-1) strain error = (10-5)
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Patch Test with Nonconvex Elements



26

3D exact linear elasticity solution, (Barber, 2010)

From this stress field → strain field → integrate to get 
displacement field using compatibility equations.

Von Mises stress field

Verification Test: Beam with a Transverse 
End-Load
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Randomly Close-Packed Voronoi Meshes

point spacing = 0.5

beam dimension 
= 1  1  5

point spacing = 0.25 point spacing = 0.125

point spacing = 0.0625

minimum edge 
to diameter 
ratio = 104
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Randomly Close-Packed Voronoi Meshes

mesh statistics

median 24 nodes per element median 14 faces per element median 5 nodes per face
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Randomly Close-Packed Voronoi

deformed shape, Von Mises stress

Verification Test:  Beam with a Transverse End-Load

 = 0.3
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Verification Test:  Beam with a Transverse End-Load

No reduction in convergence 
rate as  → 1/2.

Standard mean-dilation 
formulation for nearly 
incompressible behavior 
(Nagtegaal, 1974)
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Dynamic Mesh Connectivity
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Quasi-Brittle Material Impact



33

Impact Example



Time

10-15 second

103 years
(or more)

102 m10-1 m10-5 m10-9 m

Field ScaleContinuum ScalePore ScaleNanoscale

Focus Area 1 Focus Area 2 Focus Area 3 Focus Area 4

CFSES: Center for Subsurface Energy Security
( www.utcfses.org )



injection wellabandoned well fault

caprock
storage 
zone

caprock jointing

Potential Leakage Paths for CO2

1 kmScale:

Primary CO2 trapping mechanism is structural. 

35
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Hydromechanical Coupling in Fractured Rock

Fractured Porous Rock

• scale dependence
• history dependence
• precipitation
• dissolution

crack-tip cohesive properties

fracture contact properties

s
us

′n = n − p

un

s

us

′n

′n

un
},{

},{

nsnn

nsss

uu

uu





bulk constitutive properties
(Sandia GeoModel
Fossum & Brannon, 2004)

TI,II,III

u

TI,II,III

additional challenges
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(Ebeida, M.,  Knupp, P., Vitus Leung, Sandia National Laboratories)

Fractured Rock

MeshingGenie (Trilinos)
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increasing stress



39

p(x, t)

q(t)

CO2 injection

p1(t)

q(t)

p2(t)

caprock

leak rate

pore pressure

Fluid Flow in 2D Discrete Fracture Networks
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Q = flow rate
P = pressure
 = viscosity
T = transmissibility

21

2
2

2
1 1

6 hhL

hh
T


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Fluid Link

length L
1 2

Solve fluid network to get nodal pressures and flow rates.

Fluid Flow in 2D Discrete Fracture Networks

h1
h2

Qin

Qout

Reynold’s lubrication equation
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h1
h2

Qin

Qout

Fluid Flow in Discrete Fracture Networks

Reynold’s lubrication equation
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p(t)

t

Hydraulic Fracture Simulation
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p(t)

t

Hydraulic Fracture Simulation

Coupled fluid flow in 
fracture networks
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increasing stress

play movie

44



Outline

1. Pervasive fracture and fragmentation

2. Random meshes and a polyhedral finite-element formulation

3. Assessing mesh convergence in a probabilistic sense

4. Example of statistical convergence using dynamic ring expansion

5. What is material variability?

6. Summary
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Example: Explosively Loaded Cylinder

p(t)

p(t)

t
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t = 0
t = 2 ms t = 20 ms
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Short Time View, 2ms
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Long Time View, 20ms
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realization 1 realization 2
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h=32 h=16 h=8

converging ?

Mesh Convergence?
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20.0 m/s

20.1 m/s

20.01 m/s

20.001 m/s

20.0001 m/s

Crack patterns are qualitatively similar but distinctly different.

Extreme Sensitivity to Initial Conditions
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Nonlinear Dynamical Systems

turbulence

Rayleigh-Taylor instability

pervasive fracture

buckling

shear banding
necking

• These deterministic systems can exhibit extreme sensitivity to initial conditions and system parameters.
• What about verification of mesh convergence?
• Need a way to quantify convergence in a statistical sense using random sampling.

piecewise-smooth dynamical systems
• stick-slip
• contact-impact
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Deterministic Horizon (Predictability Horizon)

result of extreme sensitivity to initial conditions

tet 
0~)( δδ 














 0
horizon ln

1
~

δ

a
Ot

t = thorizon

two initial conditions 
nearly identical

t = 0
Deterministic prediction fails out 
here due to finite precision.

trajectories in phase space

 = Liapunov exponent

x1(t)

x2(t)

(t) = x1(t) – x2(t)

a = acceptable accuracy



g
)sin( t

Example: A Contact-Impact System, (Bouncing Ball)

1 degree of freedom (up and down)

initial drop height
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Sensitivity to Initial Conditions
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Sensitivity to Initial Conditions



bounce 1,2,3, and 4 bounce 5,6, and 7

1% variation on initial drop height

Height between Bounces



bounce 8 and 9 bounce 10 bounce 11

Height between Bounces

• Each bounce stretches and folds phase space (position and velocity).
• Correlation of bounce height with input height decreases with each 
bounce.

• Information is lost (entropy is created) with each bounce.
• There exists a deterministic time-horizon beyond which only a 
statistical description is appropriate.
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Single trajectory, 80000 bounces

Beyond the predictability horizon, only statistical descriptions are appropriate.

phase space, density of states

fractal structure



61

Single trajectory, 80000 bounces

histogram cumulative distribution

Despite extreme sensitivity to initial conditions, statistical behavior is “stable”.
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)(xf probability distribution function

X = random variable 

)(xF cumulative distribution function

(an engineering quantity of interest)

PDF

CDF

dx

dF
xf )(

Review of Probability

f 
(x

)
F

 (
x))(Pr)( xXxF 


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x

xdxfxF )()(
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Definitions of Statistical Convergence

  0Prlim
0




xxh
h

convergence in probability
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0

xFxFh
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
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convergence in distribution
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0




r

h
h

xxE

convergence in r-mean

increasing
strength

almost sure convergence
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)2cos(1)( xnxfn 

)2sin(
2

1
)( xn

n
xxFn 




xxFn
n




)(lim

sequence of random variables Xn , n = 1, 2, 3, 

Example 

convergence-in-probability:

convergence-in-distribution: for each x (pointwise)

  0Prlim 


XX n
n

?   )(
2

Pr 


 XX n

for all n

PDF

CDF

YES
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n = 1 n = 2 n = 3 n = 4
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)()(lim
0

xFxFh
h


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How to Assess Convergence-in-Distribution?

|)()(|sup),( xFxFFFL h
x

h 

use L norm:

use L norm:

?

engineering quantity-of-interest
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What about finite sampling effects?

empirical CDF, )(xSN

NSDN

Strong Law of Large Numbers:

)()(lim xFxSN
N


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Finite Sampling Fluctuations in CDF

)()(sup xFxSD N
x

N 
What is the distribution for DN?

continuous CDF
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Kolmogorov-Smirnov Statistic
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1.36

%95
36.1

Pr 









N
DN

%90
19.1

Pr 









N
DN

%99
63.1

Pr 









N
DN

)()(sup xFxSD N
x

N 

(conservative to within 2% for N > 50) 
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Kolmogorov-Smirnov Statistic

N = 50 N = 500

95% confidence bounds
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How to use KS-statistic to assess convergence-
in-distribution with finite sample sizes?

j
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i
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 ,.

Also, joint probability reduces confidence level.



Outline

1. Pervasive fracture and fragmentation

2. Random meshes and a polyhedral finite-element formulation

3. Assessing mesh convergence in a probabilistic sense

4. Example of statistical convergence using dynamic ring expansion

5. What is material variability?

6. Summary



Example:  Ductile Thin Ring Expansion

Grady, D. and D. Benson,1983, "Fragmentation of metal rings by electromagnetic loading." 
Experimental Mechanics 23(4): 393-400.
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Simulation



Four Levels of Mesh Refinement

R0

R1

R2

R3

4 elements through thickness

8 elements through thickness

16 elements through thickness

32 elements through thickness



Spatial Material Variability in Initial Yield Stress

with texture
each “cell” is iid

without texture
each element is iid

(independent, identically distributed)

R0

Weibull Probability Density

Weibull modulus = 25

(power-law hardening)
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Cross-Sectional Area

)A(



Reduce 3D random field to 1D random field.
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Neck Identification
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number of pre-fragments
(sample sizes)

N0 = 1714
N1 = 2274
N2 = 2386
N3 = 2421

Convergence-in-Distribution?

100 simulations
ensemble statistics

quantization effect
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Convergence-in-Distribution?



Outline

1. Pervasive fracture and fragmentation

2. Random meshes and a polyhedral finite-element formulation

3. Assessing mesh convergence in a probabilistic sense

4. Example of statistical convergence using dynamic ring expansion

5. What is material variability (multi-scale)?

6. Summary
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Summary

1. Presented a finite-element method for modeling pervasive fracture 
in materials and structures based on random meshes.

2. Presented a polyhedral finite-element formulation for both convex 
and nonconvex elements.

3. If engineering quantities-of-interest are extremely sensitive to initial 
conditions and system parameters, need to embrace a probabilistic 
description.

4. Presented a statistical-method for verifying and validating nonlinear 
dynamical systems in this regime including pervasive fracture.

Bishop, J., 2009, “Simulating the Pervasive Fracture of Materials and Structures using Randomly Close Packed Voronoi Tessellations,” 
Computational Mechanics, 44, p. 455-471.

Bishop, J. and Strack, O., 2011, “A Statistical Method for Verifying Mesh Convergence in Monte Carlo Simulations with Application to 
Fragmentation,” International Journal for Numerical Methods in Engineering, 88, p. 279-306.

Bishop, J., VanGoethem, D., Sweetser, J., (submitted) “On the Propagation of Uncertainty in Nonlinear Dynamical Systems,” International 
Journal for Uncertainty Quantification.

Bishop, J., Martinez, M., Newell, P. (submitted) “A Finite-Element Method for Modeling Fluid-Pressure Induced Discrete-Fracture Propagation 
using Random Meshes,” 46th US Rock Mechanics / Geomechanics Symposium


