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Pervasive Fracture i) tora

USS Cole

crack branching
crack coalescence
tortuous crack paths
(sensitivity to material heterogeneity)
stochastic behavior

dynamic pervasive fracture




Geomechanics Applications ) i,

CO, Sequestration

Nuclear Waste Isolation

Engineered Geothermal

geothermal reservoir

Trestable Groundwater Aquifers = Private Well

Municipal Water Well:
< 1,000 ft.

Compressed Air Energy
Storage

Additional steel casing
and cement to protect
aroundwater

OT TO SCALI =
L] SCALE % Approximate distance
from surface: 8,000 feet
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Spectrum of Fracture Problems ) feuea_

~ impact, fragmentation

P , —_% T

spectrum of fracture problems

Sing|e crack ‘E’ pervasive fracture

 crack branching
 crack coalescence
* tortuous crack paths
(sensitivity to material heterogeneity)
 stochastic behavior

» well defined deterministic propagation path
 analytical solutions
» enrichment methods (GFEM, XFEM, . . .)

O A<= = = - — = O

How far can we extend the computational tools
used for one end of the spectrum to the other?




Computational Challenges to Allowing ) e,
Cracks to Grow Arbitrarily

» Do we restrict branching?

» Do we restrict initiation?
- from surface only?
- from crack tips only? What about 3D?
- from existing cracks only?

 Constraints on turning angles?

» Constraints on crossing angles?

« Constraints on minimum fragment size?
6
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Computational Approach ) .

 Random Voronoi tessellation (mesh)
* Polyhedral finite-elements

* Fracture only allowed at element edges. .40 A and M. Ortiz, 2002, Engineering with

«  Dynamic mesh connnectivity Computers, 18: p. 148-159.

» Insert cohesive tractions on new fracture surfaces (fracture energy).

(eopha o)

changing mesh connectivity

T, LIrii

cohesive tractions at /
crack tip




Why a Random Voronoi Mesh? ) s,

Bolander, J.E. and S. Saito, 1998, Fracture analyses using spring networks with random
geometry. Engineering Fracture Mechanics, 61(5-6): p. 569-591.

Voronoi tesselation of

with random seeding

Structured grids can result in
strong mesh induced bias
(nonobjective).

* need to use ‘random’
discretizations

« statistically isotropic

(distribution of edge orientations
passes KS test against the
uniform distribution)
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Voronoi Texture Augments Material Variability

Probability Density

obability Density, 5 =25

Weibull Pr
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Voronoi Mesh Generation i) st

Bolander, J., Saito, S., 1998, ‘Fracture Analyses using Spring Networks with Random Geometry,’
Engineering Fracture Mechanics, 61, 569-591

Poisson process

* constraint on min. dist.
* seed until ‘max’ packing

* Note that each Voronoi junction is randomly oriented.
* Most Voronoi junctions are triples.
» Average interior angles are 120°.

2 3 4 5 6 7 8 9 10

number of edges
10




3D Element Formulation

nodal shape function

"
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Harmonic Functions

A harmonic function is a solution of Laplace’s equation.

2 2 2
qu) = or 0°¢ + 0'¢ + o'¢ = (0 Can solve efficiently using
ox> oy’ oz BEM, or can just use FEM.

example in 3D

example in 2D

~’

A subset of a broader notion of “energy minimizing” functions.




Construction of Harmonic Shape Functions in 3D (i) i

(Joshi, 2007, “Harmonic coordinates for character articulation™)

Laboratories

Vi, =0

¢, =0 boundary
conditions

< node/ o, linear
¢, linear ®, =0
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Harmonic Shape Function Properties

- partition of unity and reproduce space D v,(X)=1, > v,(x) x, =x
1 1

even for the discrete harmonic solution Z\p’}(x) =1, Z\p’}(x) X, =X
1 1

- Kronecker delta property at nodes ,(X,) =0,
* linear on edges (low order)

 shape functions defined on original
configuration (no mapping to ‘parent’ shape)

QPO

shape functions




Harmonic Shape Function Examples () g
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Only need to store shape functions and derivatives at integration points.
Discard everything else. 15




Element Integration rih) i

Laboratories

» Due to computational expense of plasticity models, want to minimize the
number of integration points.

» Follow approach of Rashid and Selimotec, 2006.

» Each node is associated with a “tributary” volume, connected to the
centroid.

« Number of integration points is equal to the number of vertices.

tributary volume for node /

centroid of face

midpoint of edge centroid of element

M integration point x, = centroid of tributary volume
[ a3 w, f(x)
k=1

o integration point weight w, = tributary volume

* Integration is only first order accurate.
« Sufficient to eliminate any zero energy modes.

16
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“Engineering” Patch Test ) o,

The patch test verifies “completeness”, a necessary condition for convergence.
(Displacement field can represent rigid body motions and a constant strain state.)

On an “arbitrary” patch of elements, a linear displacement field should be produced
on interior nodes when such a field is prescribed on the boundary nodes.

and, stress field should be constant.

Conversely, a constant stress field should be produced within each
element when such a field is prescribed on the boundary surface.

and, strain field should be constant.

Failed patch test!

(result of low-order integration)

patch of elements 17




Element Stiffness Matrix (Linear Example) (i) &=

Laboratories

From the weak form we getthe g _ _[BTDB dO 0, 0 0]
element stiffness matrix o 0 0
(pl,y
D contains elastic material constants. 0 0 ®

1,z

0 (pl,z (pI y

Oy, 0 o,
(pl,y (pl,x 0

N,,= number of element nodes

e e Z nodal submatrix
k" = k21 kzz

3N,, x 3N,

Contains terms Iike:_[(Pz,x(PJ,x dqQ, I(Pl,x(PJ,y dqQ, I(Pl,x(PJ,zdgﬂ
o

Q° Q°
M
But IfdQ = ;Wk f(X)  What’s the effect of this approx.?
o -




Requirements to Pass the Patch Test (i) &=,
(Krongauz and Belytschko, 1997)

global equilibrium > K,u, =F,
equations: !
K, ;= global stiffness matrix
For patch test, u(x,y,z)=a x+a,y+a,z+a,
need u,(x,y,z2)=bxAb,y+b,z+0,

u(x,y,z)y=ch+c,y+c,z+c,

, to be a solution of Ku = F when applied as boundary conditions.

Row 7 column J of K, cghtains terms like:
(), = support of node /

\ I(Plﬂx(PJ»x d<, IQI,x(PJ,y dQ, I(Pl,x(PJ,z dQ
Q, 3, 3,

)

For example, need Z I(Pl,x(PJ,z (ayx, +ayy, +a;z, +a,)dQ2=0
J Q




Requirements to Pass the Patch Test )i

Laboratories
(Krongauz and Belytschko, 1997)
& D>

Z I(Pl,x(PJ,z (ali Ty, a3z, + a4) dQQ=0

JQI @

I(PI,XZ(PJ,z(ali +a,y, +a;z, +a,)dQ=0

T r

N N N N
recall ZxJ(PJ,z =0 ZyJ(PJ,z =0 ZZJ(PJ,Z =1 and ;(PJ,Z =0
J=1 J=1 J=1 =

—> Jo.d=0
Q, These integration properties

of the shape function

I(p,y dQ =0 j(plz dO =0| derivatives must hold in
o o order to pass the patch test.

similarly

w, = integration weight
X, = integration point

Ny
But what about numerical integration?f ¢, dQ = Zwk 0, (x;)




Integration Consistency i) e

Q,= support of node /

volume integration point at x,
with weight w,

x; with weight w',

is equivalent to

Laboratories

Divergence Theorem
I(Pl,x dQ - I(PI nxdr
Q° re

1

(=2,

Satisfaction of discrete form of
Divergence Theorem requires “=*

Approximate integration will
cause failure of patch test for
first-order integration.

Would need a large number

of integration points to satisfy
patch test.

surface integration point at

. . . too expensive!

Instead, let’'s “tweak” the
shape function derivatives
to satisfy the patch test. g




Let’s “tweak” the Shape Function Derivatives ()&

discrete form of Divergence Theorem Zwk‘ Zw ¢,(x)n(x)=0  I=1,..N
k=1

M

gk gl gl ‘Zw ¢, (x;)n,(x;)=0 I=1, ..., N,

x 27y 27z k=1
are the new shape function

M T
derivatives for the I-th shape W o (x )7 (x) =0 PP
function at integration point «. Z‘ ‘Z; J @ ( J) ( J) en

How to calculate a’*. a’*. a’* 2

x’y’z

Minimize the sum of the squares of the ™\
difference w.r.t to the original derivatives.
Ny, M e
L= ;;(@”x(xk) e ) > solve use Lagrange
multipliers
with “integration constraints”
Zwk Zw o, (x;)n(x)=0 I=1..,N,
_J 22




Modified Shape Function Derivatives

Introduce Lagrange multipliers A, I=1, ...,
N,,and form the augmented Lagrangian L,

40, I=1-N,, k=l-M
necessary condition for oa,’
local minimum
120, I=1N,
O\,

same for (), and (), , only need to factor once for each element

Sandia
National
Laboratories

23




3D Verification: Engineering Patch Test (i,

random patch

without derivative correction with derivative correction

strain error = O(10-") train error = O(10°) 54




Patch Test with Nonconvex Elements




Verification Test: Beam with a Transverse i
End-Load

Von Mises stress field

A

3D exact linear elasticity solution, (Barber, 2010)

Ozx = Oyy=0zy=0
Fy
o = —yz
zz _[I J
S 2F,a®> v i (—1)" sin( nma sinh(224)
e w2l 1+v = n? a Cosh(?]
e |1, I | 7 22 v = (-1)" . nmz, sinh(2ZY
oy, = =246 —y?) +=(32° —a?) =i Z (' 2) sin(—-) ( ab]
' Iy | 2 6 l+v w2 1+v et a "cosh(™ )

From this stress field — strain field — integrate to get
displacement field using compatibility equations. 26
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Randomly Close-Packed Voronoi Meshes 1.

«

point spacing = 0.5 point spacing = 0.25 point spacing = 0.125

beam dimension
=1x1x5

minimum edge
to diameter
ratio = 104

point spacing = 0.0625



Randomly Close-Packed Voronoi Meshes  ([#) &=.,,

mesh statistics

350 350,
10000 -
300t
2 %) 8000 |
c 2501 -
@ © @
£ E O
D 200} o B 6000t
[} © b
M
© 5] =
o 1501 ul
@ 2 2 000t
o o £
£ = S
S 100f 5 £
o c
2000
50} |
H T TI y IIF T | 0
0 4 8 12 16 20 24 28 32 36 40 44 0 2 4 6 8 10 12 14 16 18 20 22 24 0 1 2 3 4 5 6 7 8 9 10 11 12

number of nodes number of faces number of nodes

median 24 nodes per element  median 14 faces per element median 5 nodes per face
48
I ———————



" g . . Sandia
Verification Test: Beam with a Transverse End-Load ()t

Data shown for 20 randomly .
close-packed Voronoi meshes. v=0.3

Randomly Close-Packed Voronoi 0.1

2
MN 0.01 E_
=
’q(\!
_ 0.001 F
deformed shape, Von Mises stress . o :
e o o ith derrivative correction
o o o without derrivative correction
0.0001 : ' S —
0.1 0.2 0.4 0.6 0.8 1

max element diameter
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Verification Test: Beam with a Transverse End-Load h fj;j:mes

0.1 F e——e——= v=0.49
i ——— v=0.499 Standard mean-dilation
formulation for nearly
incompressible behavior
(Nagtegaal, 1974)

2
N 1.9 o
0.00] L Data is average of 20 randomly No reduction in convergence
Tk close-packed Voronoi meshes. rate as v — 1/2.
0.0001 - - L
0.1 0.2 0.4 06 08 1

max element diameter

30
-



Dynamic Mesh Connectivity ) i,

(a) before mesh modification
Q e =edge

I = intact
F = fractured
» = glohal node

=1

(e) after mesh modification




Quasi-Brittle Material Impact ) e,

Time = 0.0000
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Impact Example Li [

Time = 0.00000
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CFSES: Center for Subsurface Energy Security ..

( www.utcfses.org )

CO, Injection

Field Scale
103 years

(or more)

10-1° second

10°m 10 m 10-'m 102m

Focus Area 1 Focus Area 2 Focus Area 3 Focus Area 4

Nanoscale Pore Scale Continuum Scale Field Scale




caprock

Potential Leakage Paths for CO, T

Primary CO, trapping mechanism is structural.

1 km

Scale: |_|

abandoned well injection well fault

caprock jointing

-

storage /V\\

zone / !

l4
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Hydromechanical Coupling in Fractured Rock i) teons

Fractured Porous Rock

bulk constitutive properties fract tact "
(Sandia GeoModel racture contact properties
Fossum & Brannon, 2004) ’
G,=0C, P
v g VI

crack-tip cohesive properties  ©=
T,
EEED 6, =0, {Au, Au )

| T
LILII Au, o, =0 {Au,,Au,}

Gy
Au

&= additional challenges A

* scale dependence

* history dependence

* precipitation 36
* dissolution
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MeshingGenie (Trilinos)

(Ebeida, M., Knupp, P., Vitus Leung, Sandia National Laboratories)

Fractured Rock
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increasing stress




. . . Sandia
Fluid Flow in 2D Discrete Fracture Networks () e

CO, injection

leak rate

q(?) q(?)

caprock

p(x, 1) pi(®)  py()
pore pressure

| N
222




Fluid Flow in 2D Discrete Fracture Networks  (rh) i

Laboratories

Solve fluid network to get nodal pressures and flow rates.

e ot 1 B P

—_— ] h, =% l e —
Q. : Qout length L Q) nl-L T
P, L1
, o . 6L h +h,
Reynold’s lubrication equation

V(pQ)=0 Q = flow rate

3 P = pressure

h . .
Q= —E(Vp - pgh) 1L = viscosity

0=0 T = transmissibility

S~
~a
-~

= —
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Fluid Flow in Discrete Fracture Networks

— 1 h, Q'
Qin ot
0.8
Reynold’s lubrication equation -
a9}
|
v(>Q)=0 < o
n 5
Q=-——(Vp-pgh) T
12p X
a9
504
0 E
R — 02
> Ky T
— . , ,

0 0.2 0.4 0.6 0.8 1

Position along link, x/L




Hydraulic Fracture Simulation Sandia
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Hydraulic Fracture Simulation

Coupled fluid flow in
fracture networks

max_p

5.00
3.75
250

1.25 43
0.00




increasing stress

=~

g v

[

JY I -
‘ N

play movie

max_p

8.00
6.00
4.00
200
0.00
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Outline

Pervasive fracture and fragmentation

Random meshes and a polyhedral finite-element formulation
Assessing mesh convergence in a probabilistic sense

Example of statistical convergence using dynamic ring expansion
What is material variability?

Summary
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Explosively Loaded Cylinder

Example

46
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Short Time View, 2ms ) e,
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Long Time View, 20ms
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realization 1

realization 2




Mesh Convergence? i) s

Laboratories
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Extreme Sensitivity to Initial Conditions

20.0 m/s

20.01 m}/s
A

20Q.O]01S m{s
2
20.0001 m/s

P

Crack patterns are qualitatively similar but distinctly different.

52




Nonlinear Dynamical Systems i) i

04 04 04 0s
03 03 03 03
02 02 02 2f ™ =
P d

I3 o1 o1 A

N 4
o -0 -0 ~ o & )
a1 a1 @ aff 4
02 02 a2 a2 ¢
03 03 03 s
04 04 <4 04
p 08 5,
%% a1 07 %0 a1 w2z %0 a1 o0z Mo a1 o

Rayleigh-Taylor instability

VW

piecewise-smooth dynamical systems buckling
« stick-slip
» contact-impact

o rgld

pervas

turbulence

» These deterministic systems can exhibit extreme sensitivity to initial conditions and system parameters.
« What about verification of mesh convergence?

—. * Need a way to quantify convergence in a statistical sense using random sampling.



Deterministic Horizon (Predictability Horizon) (™ i

result of extreme sensitivity to initial conditions

trajectories in phase space

! = Thorizon xl(t)

Deterministic prediction fails out
here due to finite precision.

t=0

two initial conditions
nearly identical X,(1)

8(6) = x,(t) — x,(1)
1 a
[3()] ~ 80| ™ frorizon = O(Ilnmj

A = Liapunov exponent a = acceptable accuracy

54
-
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Example: A Contact-Impact System, (Bouncing Ball@ s

’ J ‘ sin( ®t)

bounce height

==\

1 degree of freedom (up and down)

initial drop height

28

24

20

-
»
I

N
N
U

(00]
T

bounce 4




Sensitivity to Initial Conditions

o o
N »

displacement, mm
o
N

shaker table, 60 Hz
ball with initial height = 750 pm
ball with initial height = 751 pm

it

—

Sandia
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Sensitivity to Initial Conditions ) e,

1.2
shaker table, 60 Hz
ball with initial height = 750 pm
1 ball with initial height = 750.001 pum

0.8
£
e 0.6
- /"
c
0}
E 04 1
O}
O
£
Q
» 0.2 1
©

|
bounce 1 2 3 4 5 6 7
-0.2 1
'04 ) ) ) ) ) ) ) T )

0 0.02 004 006 0.08 0.1 012 014 016 018 0.2

[N D —

FiAY A

57
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Height between Bounces

bounce 1,2,3, and 4 bounce 5,6, and 7

28 + 28 |
24 24 |
bounce 7
bounce 4

20 F bounce 6
5 5
D 16 F -a
< <
8 8
S 1l bounce 3 b
> >
o o
o o

g L bounce 5

bounce 2
4 -
4 -
bounce 1
0 -
0 -
1 1 1
2.000 2.005 2.010 2.015 2.020 2.000 2.005 2.010 2.015 2.020
initial height initial height
\ . 4
V

1% variation on initial drop height



bounce height
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Height between Bounces

bounce 8 and 9 bounce 10 bounce 11

28

24

28

24

|

bounce 8

bounce 9

bounce height

bounce height
) N >
————

2,005 2010 2015 2020 2.000 2.005 2.010 2.015 2.020 2,000 2.005 2,010 2,015 2.020

initial height initial height

initial height

« Each bounce stretches and folds phase space (position and velocity).

« Correlation of bounce height with input height decreases with each
bounce.

* Information is lost (entropy is created) with each bounce.

* There exists a deterministic time-horizon beyond which only a
statistical description is appropriate.
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Single trajectory, 80000 bounces

phase space, density of states

fractal structure

normalized post impact velocity, v/Aw

0 01 02 03 04 05 06 07 08 09 1
normalized impact phase, (8 / 21 + 0.5)

Beyond the predictability horizon, only statistical descriptions are appropriate.

60
-
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Single trajectory, 80000 bounces

histogram cumulative distribution
0.06 1
097}
005 | 0s|
u% 0.7
2 004
% 06
o o
% 003 : av 05
= i 0.4
< 002}
= 037}
0.2
0.01
0.1
H 0]

1001 23 45 6 7 8 91 100123 456 7 8 910
normalized post impact velocity, v/Aw normalized post impact velocity, v/Aw®
Despite extreme sensitivity to initial conditions, statistical behavior is “stable”.

61
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Review of Probability )

X = random variable

(an engineering quantity of interest)

PDF 2,
f(x) probability distribution function
dF =
J(x)=— b
dx
0 . .
0 0.5 1
X
CDF 5
F(x) cumulative distribution function
F(x)=Pr(X <x) = g5
Iz,
P 0 : .
F(x)= [ f(x)dx o 05

62
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Definitions of Statistical Convergence

almost sure convergence

Pr(limxh =xj=1

h—0
convergence in »-mean /\

r):O

convergence in probability

limE (‘xh —X

h—0

increasing
strength

lim Pr(x, - > €)= 0

———————————————————————————

convergence in distribution
lim 7, (x) = F (x)




Example ) i,

Laboratories

sequence of random variables X,,n=1, 2,3, ...

n=1 n=>2 n=3 n=4
2_ - - -
PDF
f,(x) =1-cos(2nnx) 21 ] ] LA dob -t
0 Y
0 0.5 1 0 0.5 1 0 0.5 1 0 05 1
X X X X

CDF 1

F(x)=x- Lsin(27mx) 5 05
27n =

YES convergence-in-distribution: lim £ (x)=x for each x (pointwise)

n—oo

NO convergence-in-probability:  lim Pl’(‘Xn — X‘ > 8)2 0 Pr(‘Xn — X‘ > 8)= % + O(e)

n—o

for all n 64
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How to Assess Convergence-in-Distribution?

?
lim 7, (x) = F(x)

CDF

engineering quantity-of-interest

use L, norm: L (F,,F)=sup|F,(x)—F(x)]




What about finite sampling effects? &

empirical CDF, S, (x)

0, x<Xx
L Sy(x)=4— x,<x<x,, r=1...,N-1
8 1 Xy <X

Strong Law of Large Numbers:

]lvl_r}}o Sy(x)=F(x) (almost surely)
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Finite Sampling Fluctuations in CDF

1

08 |
5 06 F
O Dy = sup|Sy (x) - F(x) | o
El R 2 | What is the distribution for D,?
S 04
02 F continuous CDF
sample, N, =50
sample, N, =50
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Kolmogorov-Smirnov Statistic

Dy =sup|S, (x)— F(x)

]{]15)130 Pr(D, <z//N)=1- 25:(—1)j_1 exp(—2j°z") = p(2)

0.95 -~

Pr(DN < 163N 99%

0.8 \/N
Pr[DN <1361 _gs0, | confidence

06 \/N bounds

] 1.19

04 L Pr[DN < W) =90%

“2r - independent of distribution
« only for continuous CDFs

0 | | |

(conservative to within 2% for N > 50)

(tabulated for N < 50) 63




0.9

0.8

0.7

0.3

0.2

0.1

Kolmogorov-Smirnov Statistic h

95% confidence bounds

0.9

it 0.8

0.3

_ —— Weibull 0.2
, —— eCDF,N=50
I e — 95% confidence band 0.1

N = 500

————— — — — — ]

—— Weibull
eCDF, N =500

— — — — 95% confidence band

e
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Sandia
How to use KS-statistic to assess convergence- ) e,
in-distribution with finite sample sizes?

— F)
— sample L ——c=—-—-
_ _ _ _  confidence /7
08 band , F;(y)
N./(y)
. 0.6 J J <D D - Z, Zj
\E ij  YNON;| = N, T Nj_\/ﬁ""\/ﬁ
- i J
QO
04
02 | Also, joint probability reduces confidence level.
0 |
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Example: Ductile Thin Ring Expansion

Grady, D. and D. Benson,1983, "Fragmentation of metal rings by electromagnetic loading."
Experimental Mechanics 23(4): 393-400.

Fig. 5—Photograph of fracture
and arrested-neck reglon from
dynamic expansion of an
aluminum ring

 lmm—
® FRACTURE ® ARRESTED NECK

—1 mn—f

EXPANDING RING SPECIMEN ( 1100-0 ALUMINUM }




SimUIation m IL%EEE?JE?IINES

Time = 0.000000

0.38
0.25
0.12
0.00
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Four Levels of Mesh Refinement

4 elements through thickness 16 elements through thickness

8 elements through thickness 32 elements through thickness




Spatial Material Variability in Initial Yield Stress @&

(power-law hardening)

Weibull Probability Density

Weibull modulus = 25

without texture

each elementis iid
(independent, identically distributed)

with texture
each “cell’ is iid




Cross-Sectional Area ) s,

Laboratories
A(0)
Reduce 3D random field to 1D random field.

1
't
E_ 08 F
o
T o6t
e
% 04 b
g 0.2
o
(&) 0 | | |

0 60 120 180 240 300 360
angle, deg 76



Neck ldentification )

at time = 40us, mesh refinement 1

éﬁﬁwwmwwvmmmmmvwwmwvww

realization 1

gﬁwwmmwmmvmmvmmmwwwqﬁww

realization 2

gggggggg

?wmmmmwwvwwymwmwwmmww

realization 3
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Outline

Pervasive fracture and fragmentation

Random meshes and a polyhedral finite-element formulation
Assessing mesh convergence in a probabilistic sense

Example of statistical convergence using dynamic ring expansion
What is material variability (multi-scale)?

Summary
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Summary

1. Presented a finite-element method for modeling pervasive fracture
in materials and structures based on random meshes.

2. Presented a polyhedral finite-element formulation for both convex
and nonconvex elements.

3. If engineering quantities-of-interest are extremely sensitive to initial
conditions and system parameters, need to embrace a probabilistic
description.

4. Presented a statistical-method for verifying and validating nonlinear
dynamical systems in this regime including pervasive fracture.
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