
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Estimation of the Critical Time Step 
for Peridynamic Models

12th U.S. National Congress on Computational Mechanics

22 July 2013

Jesse Thomas

David Littlewood

Timothy Shelton

SAND2013-XXXXX

SAND2013-5738C



Advancing Computational Simulation with Peridynamics 

 Engineering mechanics simulation code suite supporting the 
nation’s nuclear weapons mission as well as other customers

 Advanced Simulation and Computing (ASC) code

 Peridynamic modeling for explicit transient dynamics (ETD)
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SIERRA CODE SUITE

Successful application of peridynamics for engineering analyses 
requires an accurate estimate of the critical time step

Sierra/SolidMechanics

Simulation of brittle fracture

IMPORTANCE OF THE ETD CRITICAL TIME STEP ESTIMATE

PERIDYNAMICS IS UNIQUE IN ITS ABILITY TO CAPTURE PERVASIVE MATERIAL 
FAILURE  
 Potential to enable rigorous simulation of failure and fracture

 Directly applicable to Sandia’s national security missions

 Necessary condition for stable simulation

 Directly impacts computational expense



Peridynamic Theory of Solid Mechanics

 Peridynamics is a nonlocal extension of continuum mechanics

 Remains valid in presence of discontinuities, including cracks

 Balance of linear momentum is based on an integral equation
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Peridynamics is a mathematical theory that unifies the mechanics of 
continuous media, cracks, and discrete particles

 Peridynamic bonds connect any two material points that interact directly

 Peridynamic forces are determined by force states acting on bonds

 A peridynamic body may be discretized by a finite number of elements

S.A. Silling.  Reformulation of elasticity theory for discontinuities and long-range forces.  Journal of the Mechanics and Physics of Solids, 48:175-209, 2000.

Silling, S.A. and Lehoucq, R. B.  Peridynamic Theory of Solid Mechanics.  Advances in Applied Mechanics 44:73-168, 2010.



Linear Peridynamic Solid 2

 State-based constitutive model

 Deformation decomposed into deviatoric and 
dilatational components

 Magnitude of pairwise force density given by

Microelastic Material 1

 Bond-based constitutive model

 Pairwise forces are a function 
of bond stretch

 Magnitude of pairwise force 
density given by

Constitutive Models for Peridynamics
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1. S.A. Silling.  Reformulation of elasticity theory for discontinuities and long-range forces.  Journal of the Mechanics and Physics of Solids, 48:175-209, 2000.

2. S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, Journal of Elasticity, 88, 2007.

 Presence of multiple length scales differs from the classical (local) approach

 Complex deformation modes possible within a nonlocal neighborhood

 Material failure through the breaking of bonds may alter the stable time step

MATERIAL MODEL FORMULATION STRONGLY AFFECTS CRITICAL TIME STEP 

Definitions



Classical Material Models Can Be Applied in Peridynamics

 Approximate deformation gradient based on initial and current locations of 
material points in family

 Kinematic data passed to classical material model

 Classical material model computes stress

 Stress converted to pairwise force density

 Suppression of zero-energy modes (optional) 2
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1. S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, Journal of Elasticity, 88, 2007.

2. Littlewood, D.  A Nonlocal Approach to Modeling Crack Nucleation in AA 7075-T651.  Proceedings of the ASME 2011 International Mechanical Engineering 
Congress and Exposition, Denver, Colorado, 2011.

Approximate Deformation Gradient Shape Tensor

WRAPPER APPROACH RESULTS IN A NON-ORDINARY STATE-BASED MATERIAL MODEL 1

Definitions



Candidate Approaches for Estimating the Critical Time Step

 Courant-Friedrichs-Lewy (CFL) condition 1

 Approach of Silling and Askari for microelastic materials (von Neumann analysis) 2

 Generalized Silling and Askari approach incorporating bond angles

 Global estimate using the Lanczos method 1,3

 Largest eigenvalue of 3x3 nodal stiffness matrix
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1. Hughes, T.J.R.  The Finite Element Method: Linear Static and Dynamic Finite Element Analysis.  Prentice-Hall, Inc., Englewood Cliffs, NJ, 1987.

2. Silling, S.A. and Askari, E.  A meshfree method based on the peridynamic model of solid mechanics.  Computers and Structures 83:1526-1535, 2005.

3. Koteras, J.R. and Lehoucq, R.B.  Estimating the critical time-step in explicit dynamics using the Lanczos method.  International Journal for Numerical 
Methods in Engineering 69:2780-2788, 2007.

INVESTIGATE MULTIPLE APPROACHES

MEASURES OF SUCCESS

STRATEGY FOR ASSESSING CRITICAL TIME STEP ESTIMATES

 Accuracy of estimate

 Computational expense

 Evaluate via test simulations

 Compare against empirical result

 Stable time step determined by numerical experiment



 Common stability condition for explicit time integration schemes

 Heuristic interpretation:  size of time step must be less than the time for a wave to 
pass to an adjacent grid point

where c is the wave speed, Δt is the time step, and Δx is a characteristic length of 
the discretization

 Wave speed computed from bulk modulus and density

 CFL limit is given by

 For peridynamic models, what is the characteristic length scale?

 Investigate both the mesh spacing and the horizon

Courant-Friedrichs-Lewy (CFL) condition 
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 For numerical solutions (e.g., classical FEM, peridynamics) after spatial 
discretization, linearization, and global assembly

 Explicit transient dynamics: central difference time integration; lumped diagonal 
mass matrix M; real, symmetric, and positive-definite tangent stiffness matrix K

 Global critical time step

where λ is the maximum eigenvalue, and x the associated eigenvector, of the 
generalized eigenvalue problem 

 This requires an efficient algorithm to find the maximum global eigenvalue.

Lanczos Global Critical Time Step Estimate
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Lanczos Global Critical Time Step Estimate (ct’d)

 Lanczos Iteration 1 :  Define A = M-1K, β0 = 0, q0 = 0, b = arbitrary, and q1 = b/||b||.  
For n = 1, 2, 3, …

 The largest eigenvalue of the tri-diagonal symmetric matrix with αn on the 
diagonal and βn on the off-diagonals converges to the largest eigenvalue of A as 
n.

 Implementation Efficiency:  Each iteration requires Aqn = (M-1K)qn. M is diagonal, 
and Kqn is simply the (linearized) internal force.  Thus for component i:

91. Trefethen, L.N. and Bau, D., III.  Numerical Linear Algebra.  SIAM 1997.



Estimate of Critical Time Step for Microelastic Material

 One-dimensional analysis of Silling and Askari for microelastic material 1

where ρ is the density, p iterates over all bonds at node i, Vp is the volume 
associated with each neighbor, and Cip is the micromodulus between nodes i and p

 Multiple dimensions and nonlinear materials 1

where the f is the force function of each bond and η is the relative displacement 
of the nodes in the bond

 The suggested multi-dimensional measure represents the worst case scenario of 
all bonds being aligned.

101. Silling, S.A. and Askari, E.  A meshfree method based on the peridynamic model of solid mechanics.  Computers and Structures 83:1526-1535, 2005.



Multidimensional Estimate of Critical Time Step for
Microelastic Material

 We investigate using the assembled bond structure in the critical time step 
estimate

where the for the jk component of Cip we have

where Cip is the scalar linearized bond stiffness and aj are the direction cosines 
associated with the bond p orientation

 The norm we use is the maximum principal stiffness, i.e., in three dimensions the 
maximum eigenvalue of the assembled 3x3 nodal stiffness
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Critical Time Step Estimate Based on Probed Nodal 
Stiffness Matrix

 Linearized bond-based and state-based peridynamic equation of motion 1,2

where the two theories involve different mathematical objects but similar 
formulations

 Rewriting the equation of motion

where
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1. S.A. Silling.  Reformulation of elasticity theory for discontinuities and long-range forces.  Journal of the Mechanics and Physics of Solids, 48:175-209, 2000.

2. S.A. Silling. Linearized Theory of Peridynamic States, Journal of Elasticity, 99:85-111, 2010.



Critical Time Step Estimate Based on Probed Nodal 
Stiffness Matrix (ct’d)

 P(x) is seen to be, after discretization, the denominator of the multi-dimensional 
bond-based time step estimate

 Given a displacement field such that at x0 the displacement is e and everywhere 
else it is 0, we have the following interpretation 1

The value of the vector P(x0)e is therefore the force density (per unit volume) 
at x0 required to displace x0 by the vector e, holding all other points fixed.

 I.e. the internal force from a nodal probe at x0 will be P(x0)e.  

 Probing in all dimensions will allow recovery of P(x0), giving a bond- or state-based 
version of the denominator in our multi-dimensional critical time step estimate.

 We investigate the applicability of probing to obtain the nodal 3x3 stiffness and 
subsequent time step estimate for both bond-based and state-based analyses.

131. S.A. Silling. Linearized Theory of Peridynamic States, Journal of Elasticity, 99:85-111, 2010.



Test Case:  Elastic Wave Propagation
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Density 7.8 g/cm3

Young’s Modulus 300.0 GPa

Poisson’s Ratio 0.25

Horizon 0.5075 cm

Material Parameters

Bar Length 10.0 cm

Bar Width 1.0 cm

Initial Velocity 10.0 m/s

Time Step 0.48 μs

Simulation

Fixed displacement in 
longitudinal direction

Initial velocity in 
longitudinal direction

 Investigate material models

 Microelastic bond-based

 Linear peridynamic solid state-based

 Wrapped classical elastic model

 Investigate critical time step estimates

 Empirical (numerical experiment)

 1D approach of Silling and Askari

 Generalized Silling and Askari

 Element time step (3x3 stiffness probe)

 Lanczos global estimate



Microelastic Bond-Based Material Model

15

Silling and Askari

max. time step = 0.241 μs
max. kinetic energy = 3.51 J

Generalized Silling and Askari

max. time step = 0.414 μs
max. kinetic energy = 3.51 J

Global Lanczos

max. time step = 0.500 μs
max. kinetic energy = 3.51 J

Empirical Observation

max. time step = 0.499 μs
max. kinetic energy = 3.51 J

Nodal Stiffness Matrix

max. time step = 0.414 μs
max. kinetic energy = 3.51 J

Note:  Lanczos estimate of critical time step 
updated continuously throughout simulation

CFL Limit (element size)

max. time step = 0.329 μs
max. kinetic energy = 3.51 J

CFL Limit (horizon)

max. time step = 1.00 μs
max. kinetic energy = unstable



Linear Peridynamic Solid State-Based Material Model
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Global Lanczos

max. time step = 0.381 μs
max. kinetic energy = 3.51 J

Empirical Observation

max. time step = 0.381 μs
max. kinetic energy = 3.51 J

Nodal Stiffness Matrix

max. time step = 0.314 μs
max. kinetic energy = 3.51 J

CFL Limit (element size)

max. time step = 0.329 μs
max. kinetic energy = 3.51 J

CFL Limit (horizon)

max. time step = 1.00 μs
max. kinetic energy = unstable



Wrapped Classical Material Model
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Global Lanczos

max. time step = 0.490 μs
max. kinetic energy = 3.51 J

Empirical Observation

max. time step = 0.490 μs
max. kinetic energy = 3.51 J

Nodal Stiffness Matrix

max. time step = 0.498 μs
max. kinetic energy = unstable

CFL Limit (element size)

max. time step = 0.329 μs
max. kinetic energy = 3.51 J

CFL Limit (horizon)

max. time step = 1.00 μs
max. kinetic energy = unstable



The Lanczos Estimate is a Function of Material Deformation
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Microelastic Material Linear Peridynamic Solid Wrapped Classical Model

 Estimate of the critical time step varies over the course of the simulation

 Choice of material model affects behavior of critical time step estimate

 Microelastic material model exhibits greatest degree of variation 



The Influence Function Affects the Critical Time Step
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Peridynamic Linear Solid Wrapped Classical Material Model

Parabolic decay 
influence function

Constant 
influence function

Max. Lanczos 
time step

0.381 μs 0.434 μs

Empirical result 0.381 μs 0.434 μs

Parabolic decay 
influence function

Constant 
influence function

Max. Lanczos 
time step

0.490 μs 0.549 μs

Empirical result 0.490 μs 0.549 μs

 Choice of influence function affects 
critical time step

 Lanczos algorithm successfully detects 
changes in critical time step

 Observation:  Influence function that 
decays with increasing bond length 
results in reduced critical time step
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Test Case:  Fragmenting Ring
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Material Parameters

Simulation

Ring Diameter 4.5 cm

Ring Width 1 cm

Initial Radial Velocity 200.0 m/s

Density 7.8 g/cm3

Young’s Modulus 300.0 GPa

Poisson’s Ratio 0.25

Critical Stretch 0.01 cm/cm

Horizon 0.603 cm

Initial radial 
velocity

 Investigate material models

 Microelastic bond-based

 Linear peridynamic solid state-based

 Wrapped classical elastic model (nosb)

 Investigate critical time step estimates

 Empirical

 1D approach of Silling and Askari

 Generalized Silling and Askari

 Element time step (3x3 stiffness probe)

 Lanczos global estimate



Unstable Time Step Manifests as Increased Bond Failure
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Time step = 5.0 μs
46.7% of bonds broken

Time step = 7.5 μs
62.7 % of bonds broken

Simulation results for 
microelastic material



Microelastic Bond-Based
Material Model
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Silling and Askari

max. time step = 0.290 μs
percentage of broken bonds = 44.7 %

max. kinetic energy = 3.82 kJ

Generalized Silling and Askari

max. time step = 0.486 μs
percentage of broken bonds = 45.4 %

max. kinetic energy = 3.82 kJ

Global Lanczos

max. time step = 0.682 μs
percentage of broken bonds = 46.0 %

max. kinetic energy = 3.83 kJ

Empirical Observation

max. time step = 0.707 μs
percentage of broken bonds = 50.0 %

max. kinetic energy = 3.83 kJ

Nodal Stiffness Matrix

max. time step = 0.485 μs
percentage of broken bonds = 45.4 %

max. kinetic energy = 3.82 J

Note:  Empirical observation corresponds to 
the largest constant time step that results in 

no more than 50% bond failure

CFL Limit (element size)

max. time step = 0.395 μs
percentage of broken bonds = 45.3 %

max. kinetic energy = 3.51 J

CFL Limit (horizon)

max. time step = 1.19 μs
percentage of broken bonds = 99.1 %

max. kinetic energy = unstable



Linear Peridynamic Solid State-Based Material Model
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Global Lanczos

max. time step = 0.494 μs
percentage of broken bonds = 42.8 %

max. kinetic energy = 3.43 kJ

Empirical Observation

max. time step = 0.509 μs
percentage of broken bonds = 50.0 %

max. kinetic energy = 3.46 kJ

Nodal Stiffness Matrix

max. time step = 0.505 μs
percentage of broken bonds = 44.8 % 

max. kinetic energy = 3.82 kJ

CFL Limit (element size)

max. time step = 0.395 μs
percentage of broken bonds = 41.3 %

max. kinetic energy = 3.51 J

CFL Limit (horizon)

max. time step = 1.19 μs
percentage of broken bonds = 99.1 %

max. kinetic energy = unstable



Conclusions

 There are a number of potentially useful ways to estimate the Explicit Transient 
Dynamics critical time step with peridynamics

 Any estimate should be material-type dependent (or else excessively conservative)

 The most accurate and reliable is the Lanczos method

 Efficient implementation

 Extremely accurate for all material  types

 Operates on the global linear system and is independent of underlying theory

 May be applicable to mixed FEM-peridynamic analyses

 Bond-based nodal estimates (1D or multi-dimensional) are accurate for bond-
based materials

 Probed nodal estimate is accurate for bond-based and ordinary state-based 
materials but extremely expensive

 Element size CFL limit is conservative but fails to account for material type

 Horizon size CFL limit is non-conservative and fails to account for material type

241. S.A. Silling. Linearized Theory of Peridynamic States, Journal of Elasticity, 99:85-111, 2010.



Questions?
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Jesse Thomas
jdthom@sandia.gov

Advanced Simulation and Computing (ASC)

http://www.sandia.gov/asc/
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