SAND2013- 5738C

Exceptional service in the national interest National
Laboratories

Estimation of the Critical Time Step
for Peridynamic Models

12t U.S. National Congress on Computational Mechanics
22 July 2013

Jesse Thomas
David Littlewood

Timothy Shelton
SAND2013-XXXXX
£y v V Y AL oy
‘\@;j EN ERGY ///’VA'D’% Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
A National Nuclear Securlty Administration Corporatio f the U.S. D epartment of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP



Sandia
Advancing Computational Simulation with Peridynamics i)t

PERIDYNAMICS IS UNIQUE IN ITS ABILITY TO CAPTURE PERVASIVE MATERIAL
FAILURE
= Potential to enable rigorous simulation of failure and fracture

= Directly applicable to Sandia’s national security missions

SIERRA CODE SUITE

= Engineering mechanics simulation code suite supporting the
nation’s nuclear weapons mission as well as other customers

= Advanced Simulation and Computing (ASC) code
=  Peridynamic modeling for explicit transient dynamics (ETD)

IMPORTANCE OF THE ETD CRITICAL TIME STEP ESTIMATE

= Necessary condition for stable simulation R
Sierra/SolidMechanics

= Directly impacts computational expense , , ,
Simulation of brittle fracture

Successful application of peridynamics for engineering analyses
- requires an accurate estimate of the critical time step
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Peridynamic Theory of Solid Mechanics L

Peridynamics is a mathematical theory that unifies the mechanics of
continuous media, cracks, and discrete particles

= Peridynamics is a nonlocal extension of continuum mechanics
= Remains valid in presence of discontinuities, including cracks
= Balance of linear momentum is based on an integral equation

p(x)u(x,t) = /,93 {T[x,t] (x' —x) — T'[x',¢] (x —x') } dVi + b(x,1)

7
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= Peridynamic bonds connect any two material points that interact directly

Divergence of stress replaced with
integral of nonlocal forces.

= Peridynamic forces are determined by force states acting on bonds
= A peridynamic body may be discretized by a finite number of elements

p(x)iy, (x, 1) Z{Tx t] (x} —x) — T'[x}, 1] (x—xfi)}AVx; + b(x,t)

S.A.Silling. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48:175-209, 2000.
Silling, S.A. and Lehoucq, R. B. Peridynamic Theory of Solid Mechanics. Advancesin Applied Mechanics 44:73-168, 2010. 3




National

Sandia
Constitutive Models for Peridynamics ) faor

MATERIAL MODEL FORMULATION STRONGLY AFFECTS CRITICAL TIME STEP

= Presence of multiple length scales differs from the classical (local) approach
= Complex deformation modes possible within a nonlocal neighborhood
=  Material failure through the breaking of bonds may alter the stable time step

Definitions
Microelastic Material * Linear Peridynamic Solid 2 x bond vector
T initial bond length
=  Bond-based constitutive model =  State-based constitutive model y  deformed bond length
s bond stretch
=  Pairwise forces are a function =  Deformation decomposed into deviatoric and e bond extension
of bond stretch dilatational components . deviatoric bond
€ extension
y—x 3 9 T w influence function
S = gza (gg)gdv deg—— 1% volume
£ H 3 H neighborhod
=  Magnitude of pairwise force =  Magnitude of pairwise force density given by m  weighted volume
denSity given by 0 dilatation
B Bke 15 14 d é horizon
18k E = — WX + — we k bulk modulus
L — —43 m m m shear modulus
o -
pairwise force
14 density

1. S.A.Silling. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48:175-209, 2000.
2. S.A.Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, Journal of Elasticity, 88, 2007. 4




Classical Material Models Can Be Applied in Peridynamics
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WRAPPER APPROACH RESULTS IN A NON-ORDINARY STATE-BASED MATERIAL MODEL 1

= Approximate deformation gradient based on initial and current locations of

material points in family

Approximate Deformation Gradient Shape Tensor

F=(Y+«+X)K! K=XxX

= Kinematic data passed to classical material model
= (Classical material model computes stress

= Stress converted to pairwise force density

T (&) =w(€) oK ¢

Suppression of zero-energy modes (optional) 2

1. S.A.Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, Journal of Elasticity, 88, 2007.
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Definitions

reference position
vector state

deformation
vector state

shape tensor

approximate
deformation gradient

bond
influence function

Piola stress

2. Littlewood, D. A Nonlocal Approach to Modeling Crack Nucleationin AA 7075-T651. Proceedings of the ASME 2011 International Mechanical Engineering

Congress and Exposition, Denver, Colorado, 2011.
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Candidate Approaches for Estimating the Critical Time Step i)t

INVESTIGATE MULTIPLE APPROACHES
= Courant-Friedrichs-Lewy (CFL) condition !
= Approach of Silling and Askari for microelastic materials (von Neumann analysis) 2
= Generalized Silling and Askari approach incorporating bond angles
= Global estimate using the Lanczos method %3
= Largest eigenvalue of 3x3 nodal stiffness matrix

MEASURES OF SUCCESS

= Accuracy of estimate
= Computational expense

STRATEGY FOR ASSESSING CRITICAL TIME STEP ESTIMATES
=  Evaluate via test simulations

= Compare against empirical result
= Stable time step determined by numerical experiment

1. Hughes, T.J.R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1987.
2. Silling, S.A. and Askari, E. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures 83:1526-1535, 2005.

3. Koteras, J.R. and Lehoucq, R.B. Estimating the critical time-step in explicit dynamics using the Lanczos method. InternationalJournal for Numerical
Methods in Engineering 69:2780-2788, 2007. 6



Sandia
Courant-Friedrichs-Lewy (CFL) condition L

Common stability condition for explicit time integration schemes

Heuristic interpretation: size of time step must be less than the time for a wave to
pass to an adjacent grid point
c At
<1

Ax —
where c is the wave speed, At is the time step, and Ax is a characteristic length of
the discretization

Wave speed computed from bulk modulus and density

k
C=4/—
P
CFL limit is given by
Az
At < —
&

For peridynamic models, what is the characteristic length scale?
= |nvestigate both the mesh spacing and the horizon
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Lanczos Global Critical Time Step Estimate ) faor

= For numerical solutions (e.g., classical FEM, peridynamics) after spatial
discretization, linearization, and global assembly

Mu+Ku=f

= Explicit transient dynamics: central difference time integration; lumped diagonal
mass matrix M; real, symmetric, and positive-definite tangent stiffness matrix K

= Global critical time step

At = —
VA

where A is the maximum eigenvalue, and x the associated eigenvector, of the
generalized eigenvalue problem

(K- AM)x =0

= This requires an efficient algorithm to find the maximum global eigenvalue.

8




Sandia
Lanczos Global Critical Time Step Estimate (ct’d) i) datoa
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= Lanczos Iteration ! : Define A=M?K, B,=0, q,=0, b = arbitrary, and q, =b/| |b]|.
Forn=1, 2,3, ..

v = Aq,
o = qlv
V=vV-—[,-1dn-1 — QnQn

n = V]
Vv
dn+1 = 5

B
= The largest eigenvalue of the tri-diagonal symmetric matrix with a,, on the

diagonal and B, on the off-diagonals converges to the largest eigenvalue of A as
n—>00,

= Implementation Efficiency: Each iteration requires Aq, = (M1K)q,,. M is diagonal,
and Kq,, is simply the (linearized) internal force. Thus for component i:

1 .
[Aqy]; = _.Fimt(qn)

(]

1. Trefethen, L.N. and Bau, D., lll. Numerical Linear Algebra. SIAM 1997.
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Estimate of Critical Time Step for Microelastic Material L

= One-dimensional analysis of Silling and Askari for microelastic material !

where p is the density, p iterates over all bonds at node j, V,, is the volume
associated with each neighbor, and C, is the micromodulus between nodes i and p

= Multiple dimensions and nonlinear materials !
of
C,, =|Clx, —x;)| = | —
p | ( p Z>| |6,’,’

where the f is the force function of each bond and n is the relative displacement
of the nodes in the bond

= The suggested multi-dimensional measure represents the worst case scenario of
all bonds being aligned.

1. Silling,S.A. and Askari, E. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures 83:1526-1535, 2005. 10
I ———————



Multidimensional Estimate of Critical Time Step for ) i,
Microelastic Material
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=  We investigate using the assembled bond structure in the critical time step
estimate

2
At, = P
‘Zp %C’LP

where the for the jk component of C;, we have

Ciplj = Cipajar

where G, is the scalar linearized bond stiffness and a; are the direction cosines
associated with the bond p orientation

= The norm we use is the maximum principal stiffness, i.e., in three dimensions the
maximum eigenvalue of the assembled 3x3 nodal stiffness




Critical Time Step Estimate Based on Probed Nodal A i,
Stiffness Matrix
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= Linearized bond-based and state-based peridynamic equation of motion %2

pii= [ Clxa)(ula,t) -~ ulx.0) AV, + blx.
i

where the two theories involve different mathematical objects but similar
formulations

= Rewriting the equation of motion
it — / C (x, q) u(q, )V, — P(x)u(x, £) + b(x,
B
where

ww=écmmﬂz

1. S.A.Silling. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48:175-209, 2000.
2. S.A.Silling. Linearized Theory of Peridynamic States, Journal of Elasticity, 99:85-111, 2010. 12




Critical Time Step Estimate Based on Probed Nodal A i,
Stiffness Matrix (ct’d)
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= P(x) is seen to be, after discretization, the denominator of the multi-dimensional
bond-based time step estimate

P(x) = /@ C(x )V, ~ 3 V,C,

p

= Given a displacement field such that at x, the displacement is e and everywhere
else it is 0, we have the following interpretation !

The value of the vector P(x,)e is therefore the force density (per unit volume)
at x, required to displace x, by the vector e, holding all other points fixed.

= |e. the internal force from a nodal probe at x, will be P(x,)e.

= Probingin all dimensions will allow recovery of P(x,), giving a bond- or state-based
version of the denominator in our multi-dimensional critical time step estimate.

=  We investigate the applicability of probing to obtain the nodal 3x3 stiffness and
subsequent time step estimate for both bond-based and state-based analyses.

1. S.A.Silling. Linearized Theory of Peridynamic States, Journal of Elasticity, 99:85-111, 2010. 13
-
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Test Case: Elastic Wave Propagation ) faor

= |nvestigate material models
= Microelastic bond-based

= Linear peridynamic solid state-based Material Parameters

=  Worapped classical elastic model Density 7.8 glcm?
= |nvestigate critical time step estimates Young’s Modulus 300.0 GPa

= Empirical (hnumerical experiment) Poisson’s Ratio 0.25

= 1D approach of Silling and Askari Horizon 0.5075 cm

= Generalized Silling and Askari
= Element time step (3x3 stiffness probe)
= Lanczos global estimate

Fixed displacement in
longitudinal direction

Slm u Iatlon Initial velocity in Velocity (cm/s)
Bar Length 10.0 cm longitudinal direction 1500
1200
Bar Width 1.0cm T ——
Initial Velocity | 10.0 m/s i
Time Step 0.48 ys =400

0

14




Microelastic Bond-Based Material Model

Time Step

Kinetic Energy

0.1 us
0.2 us
0.3 us
0.4 us
0.5 us
0.6 us
0.7 us
0.8 us
0.9 us
1.0 ps

3.51J
3.51J
3.51J
3.51J
14.1J
NaN
NaN
NaN
NalN
1.75e+299 J

ZN

Note: Lanczos estimate of critical time step
updated continuously throughout simulation

- Silling and Askari h
max. time step = 0.241 pys
max. kinetic energy = 3.51 J )
" CFL Limit (element size) |
max. time step = 0.329 us
. max. kinetic energy = 3.51 J )
4 . - . )
Generalized Silling and Askari
max. time step = 0.414 ps
. max. kinetic energy = 3.51 J y
e . . )
Nodal Stiffness Matrix
max. time step = 0.414 ps
. max. kinetic energy = 3.51 J y
N
( Empirical Observation
max. time step = 0.499 us
. max. kinetic energy = 3.51 J )
N
Global Lanczos
max. time step = 0.500 us
max. kinetic energy = 3.51 J )
CFL Limit (horizon) A
max. time step = 1.00 ys
max. kinetic energy = unstable )

Sandia
National _
Laboratories

15




Sandia
Linear Peridynamic Solid State-Based Material Model i)t

\
Nodal Stiffness Matrix
max. time step = 0.314 us
3 . . . kineti =3.51J
Time Step | Kinetic Energy max. Kinetic energy y,
4 )
0.1 ps 3.51J CFL Limit (element size)
0.2 us 3.51J max. time step = 0.329 ps
0.3 ps 351 ] /\ max. kinetic energy = 3.51 J )
0.4 us NaN ‘ 4 _ ™
Empirical Observation
0.5 ps NaN max. time step = 0.381 us
0.6 us NalN - max. kinetic energy = 3.51 J )
0.7 ps NaN ~N
0.8 s NaN G.Iobal Lanczos
max. time step = 0.381 us
0.9 us NaN max. kinetic energy = 3.51 J )
\.
1.0 ps NaN P N
\ CFL Limit (horizon)
max. time step = 1.00 ys
max. kinetic energy = unstable
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Wrapped Classical Material Model i)t

N
CFL Limit (element size)
max. time step = 0.329 ps
Time Step | Kinetic Energy max. kinetic energy = 3.51J
4 N\
0.1 ps 3.51 J Empirical Observation
0.2 us 3.51J max. time step = 0.490 us
. kineti =3.51J
0.3 s 3.51 J ) 9 max. Kinetic energy )
0.4 us 3.51J 4 )
Global Lanczos
0.5 ps 1.33e+135 J max. time step = 0.490 us
0.6 us 3.08e+151 J . max. kinetic energy = 3.51J
0.7 us 1.73e+109 J s N\
Nodal Stiffness Matrix
0.8 ps 2.17e+124 J max. time step = 0.498 us
0.9 us 2.66e+116 J . max. kinetic energy = unstable
1.0 ps 4.86e+208 J - N
\ CFL Limit (horizon)
max. time step = 1.00 ys
max. kinetic energy = unstable
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The Lanczos Estimate is a Function of Material Deformation ()

= Estimate of the critical time step varies over the course of the simulation

= Choice of material model affects behavior of critical time step estimate
= Microelastic material model exhibits greatest degree of variation

Microelastic Material Linear Peridynamic Solid Wrapped Classical Model
4.91e-07
5.005e-07
3.815e-07
4.905¢-07
5e-07
= 2 38107 =z
g 5 & 4.9¢-07
2 4995007 Z Z T e e T ey
E E 3.805¢-07 E
4.895¢-07
4.99¢-07
3.8¢-07
4.89¢-07
4.985¢-07
0 2e-05 4e-05 6e-05 8e-05 0.000 0 2e-05 4e-05 6e-05 8e-05 0.000 0 2e-05 4e-05 6e-05 8e-05 0.000
Time (s) Time (s) Time (s)
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The Influence Function Affects the Critical Time Step ) faor

=  Choice of influence function affects
critical time step

= Lanczos algorithm successfully detects
changes in critical time step

= Observation: Influence function that
decays with increasing bond length
results in reduced critical time step

Peridynamic Linear Solid

Influence Function Value

Parabolic decay
influence function

0.2 0.4 0.6 0.8 1

Distance from Node / Horizon

Influence

Constant
influence function

Wrapped Classical Material Model

Parabolic decay Constant
influence function | influence function

Parabolic decay Constant
influence function | influence function

Max. Lanczos
time step

0.381 us 0.434 ps

Max. Lanczos
time step

0.490 ps 0.549 us

Empirical result

0.381 us 0.434 ps

Empirical result

0.490 ps 0.549 us

\{ 14% Increase }/

\{ 12% Increase }/

19




Test Case: Fragmenting Ring

= |nvestigate material models
= Microelastic bond-based
= Linear peridynamic solid state-based
=  Worapped classical elastic model (nosb)

= |nvestigate critical time step estimates
= Empirical
= 1D approach of Silling and Askari
= Generalized Silling and Askari
= Element time step (3x3 stiffness probe)
= Lanczos global estimate

Simulation
Ring Diameter 4.5cm
Ring Width 1cm
Initial Radial Velocity 200.0 m/s

Material Parameters

Density 7.8 g/lcm3
Young’s Modulus 300.0 GPa
Poisson’s Ratio 0.25
Critical Stretch 0.01 cm/cm
Horizon 0.603 cm

'\I/'

Initial radial

velocity

/l\

Sandia
National
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Unstable Time Step Manifests as Increased Bond Failure i)t

Simulation results for

microelastic material U -
Time Step gercentage of | Maximum Kinetic ,_g & . .
roken Bonds | Energy (t > 10 us) % Time step = 5.0 ps
0.01 ps 143 % 3.83 kJ ﬁ % 7 46.7% of bonds broken
 0lps | 445% | 382k] | g & E
0.2 s 447 % 3.82 kJ - wﬁgﬁ' ;
0.3 us 45.3 % 3.82 kJ o
0.4 ps 45.3 % 3.82 kJ
0.5 us 45.4 % 3.82 kJ
0.6 us 46.7 % 3.81 kJ
0.7 ps 49.1 % 3.83 kJ
0.8 s 735 % 3.82 kJ )
0.9 us 95.3 % 4.39 kJ "
1.0 ps 99.1 % 6.40 kJ Time step = 7.5 s

* 62.7 % of bonds broken

—035




Microelastic Bond-Based O

Silling and Askari Laboratories

Material MOdEI max. time step = 0.290 ps

percentage of broken bonds = 44.7 %
max. kinetic energy = 3.82 kJ )

CFL Limit (element size) )

max. time step = 0.395 us
percentage of broken bonds = 45.3 %
max. kinetic energy = 3.51 J )

Percentage of | Maximum Kinetic

Time Step | Bioken Bonds Energy (t > 10 us) 4 Nodal Stiffness Matrix A
0.01 us 44.3 % 3.83 kJ max. time step = 0.485 ps
————————————————————————————— percentage of broken bonds = 45.4 %
0.1 ps 44.5 % 3.82 kJ \ max. kinetic energy = 3.82 J )
0.2 us 44.7 % 3.82 kJ - ~
Generalized Silling and Askari
0.3 us 45.3 % 3.82 kJ :
max. time step = 0.486 us
0.4 ps 45.3 % 3.82 kJ percentage of broken bonds = 45.4 %
0.5 us 45.4 % 3.82 kJ \_ max. kinetic energy = 3.82 kJ )
0.6 ps 46.7 % 3.81 kJ 4 Global Lanczos )
0.7 us 49.1 % 3.83 kJ Y max. time step = 0.682 ps

percentage of broken bonds = 46.0 %
\ max. kinetic energy = 3.83 kJ y

e A

Empirical Observation

= o o
o © »
T T T
w0 n n
© © =
S Gl w
= W Wt
N X X
o kW
B W 00
S O
~ o~
(APE AV AP
/
/_K

max. time step = 0.707 ps
percentage of broken bonds = 50.0 %
max. kinetic energy = 3.83 kJ

Note: Empirical observation corresponds to
the largest constant time step that results in
no more than 50% bond failure

J/
CFL Limit (horizon) )

max. time step = 1.19 ys
percentage of broken bonds = 99.1 %
max. kinetic energy = unstable )
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Linear Peridynamic Solid State-Based Material Model i)t

CFL Limit (element size) )

max. time step = 0.395 us
percentage of broken bonds =41.3 %
max. kinetic energy = 3.51 J

J
) Percentage of | Maximum Kinetic
Time Step Broken Bonds | Energy (t > 10 ,us) (" Global Lanczos )
0.01 us 40.3 % 3.43 kJ max. time step = 0.494 us
_____________________________ z 0
01 s 40.2 % 343 kJ percentagg of proken boEds =42.8%
\ max. kinetic energy = 3.43 kJ )
0.2 us 40.4 % 3.43 kJ
0.3 ps 41.6 % 342 kJ ( Nodal Stiffness Matrix
0.4 s 42.0 % 3.44 kJ max. time step = 0.505 ps

percentage of broken bonds = 44.8 %
% max. kinetic energy = 3.82 kJ )

(" )

Empirical Observation

max. time step = 0.509 pys
percentage of broken bonds = 50.0 %
\ max. kinetic energy = 3.46 kJ )

4 CFL Limit (horizon) A

max. time step = 1.19 ys
percentage of broken bonds = 99.1 %
max. kinetic energy = unstable

o O O O
o N o ot
T T T T
nw n »n !
© O© O©
o I O
S W O
X N X X
ot e W
O R Ot W
NS
~ o~ xx
R

. J
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Conclusions i) Natona

= There are a number of potentially useful ways to estimate the Explicit Transient
Dynamics critical time step with peridynamics

= Any estimate should be material-type dependent (or else excessively conservative)
= The most accurate and reliable is the Lanczos method

= Efficient implementation

= Extremely accurate for all material types

= QOperates on the global linear system and is independent of underlying theory

= May be applicable to mixed FEM-peridynamic analyses

= Bond-based nodal estimates (1D or multi-dimensional) are accurate for bond-
based materials

= Probed nodal estimate is accurate for bond-based and ordinary state-based
materials but extremely expensive

= Element size CFL limit is conservative but fails to account for material type
= Horizon size CFL limit is non-conservative and fails to account for material type

1. S.A.Silling. Linearized Theory of Peridynamic States, Journal of Elasticity, 99:85-111, 2010. 24
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