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Abstract. We are interested in attitude diffusion — how attitudes change
over time in groups of people. Attitudes are important to study as they
can predict behavior. Our first contribution is a new model the Multi-
Agent, Multi-Attitude (MAMA) model that captures social interaction
and the internal dynamics of attitudes predicated on the theory of cog-
nitive consistency. Using the MAMA model, we investigate the impact
of mass media based agenda setting — that is where some entity sets the
topic of discussion between individuals. Surprisingly, we show through
extensive empirical simulations, that merely influencing the conversation
through agenda setting can significantly reduce diffusion time.

1 Introduction and Motivating Example

We are interested in attitude diffusion — how attitudes change over time among
groups of people. Studying attitudes is important, as attitudes can correlate
to behavior (for instance, see theory of reasoned action and theory of planned
behavior [4] for models linking attitudes to behaviors). Understanding attitude
change can help predict behavior change.

In this work, we will present a novel model of attitude diffusion, the Multi-
Agent Multi-Attitude (MAMA) model that incorporates three influences: social
(from peer groups), cognitive (attitude interaction), and media (through agenda
setting). We show, through extensive empirical experiments, the impact of media
influence, through agenda setting in particular, on population wide attitude
change.

As a motivating example for the development of the MAMA model and the
focus on agenda setting, consider the change in attitudes and behaviors towards
immunization that has taken place over the last two decades. First, the rate
of parents refusing childhood vaccinations have nearly doubled in the 1991-2004
period [10]. Survey data has observed a correlation between non-vaccination and
attitudes toward non-vaccination — showing that attitudes can help in predicting
vaccination behavior [12].

Several studies have tried to identify the underlying attitudes and the in-
fluences on this decision. First, [6] shows that multiple information sources can
influence a parents decision, including information from peers (family, friends),
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doctors, and government entities. However, another important source of informa-
tional influence was from media sources, such as t.v. talk shows, radio, internet
and newspapers. This highlights the importance of considering both social and
media influences.

Secondly, [15] found that unvaccinated children had parents that were more
likely to have a low level of trust in the government (among other factors). This
data highlights the interconnected attitudes relevant to this behavior — ones
attitude towards the government can influence ones attitude toward vaccinations.

While our example is focused on vaccines, it is important to note that the
factors modeled here are relevant to other domains as well. For instance, solar
panel adoption has interacting attitudes (towards environmentalism, trust in
government, etc) and peer influence [13].

In this work we focus on assessing the impact of select “adopter” agents
paired with media influence (through agenda setting). Our goal is to understand
how the speed of diffusion changes as a function of media influence. This is similar
to the “influence maximization” problem, although here we will be varying media
influence rather than which agents are being influences. The problem description
is, however, similar.

Cognitive consistency The drive for cognitive consistency is a hypoth-
esized drive for individuals to have attitudes that are “consistent” with each
other. For instance, according to these theories, an individual holding a strong
positive attitude towards environmentalism should also hold a strong positive
attitude towards recycling; if they do not, the attitudes are inconsistent with
each other and could cause an uncomfortable feeling (i.e. cognitive dissonance)
which tends to result in either attitude or behavior change [20].

Cognitive consistency has long been shown to be an important factor in
attitude change [14,16] — thus to understand attitude change in a model, we
should consider the impact of this drive.

Media Effects Mass media has been studied extensively to understand its
affects on attitudes (and thus behaviors). One of the important characteristics of
media is “agenda setting” — where the media’s focus on certain stories increases
their importance in the minds of the viewers [21, 9]. Several studies have provided
evidence towards this claim [9, 8, 21].

We focus on agenda setting because of its generality — it only depends upon
the focus of the media, and not necessarily on the content of the arguments. It
is the minimal effect of media.

2 MAMA Model

To explore the impact of agenda setting we have developed a multi-level agent
based model that contains a social level — which captures interpersonal inter-
action between agents — and a cognitive level that captures the interactions of
attitudes within an agent.

Let G54 =< Vi, Es > be a undirected graph that represents the social level
of the model. Let a; € V; be the set of agents, and (a;,a;) € E; represent a
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Fig. 1. Social network. See text for de- Fig. 2. Cognitive network. See text for
tails. details.

bidirectional influencing relationship between agents i and j. Figure 1 depicts
an example social network, where each rectangle is an agent

Each agent has a cognitive network associated with it. A cognitive network
is a weighted undirected graph, G. =< V., E. > that represents cognitions and
the interactions between them. We use the term cognitions to refer to any entity
towards which an individual can have an attitude, such as people, places and
things; but also to more abstruse entities like values.

Let ¢ € V. be the set of cognitions, and (cx,¢q) € E. represents a bidirec-
tional influencing relationship between cognitions k and ¢. w(k, q) is the weight
of edge (ck,cq); the weight can either be +1, or —1: w(k,q) € {1,—1}. The
weight represents the relationship between cognitions, as we describe later on.
For convenience, we let n, = |V,|.

An attitude towards a cognition is represented as a real number, called the
value of the cognition, between —1 and +1. The sign of the value represents the
valence of the attitude; positive values indicate positive attitudes and negative
values represent negative attitudes. The size of the value represents how strongly
the individuals holds the attitude. So a value of 0.5 would be a mildly positive
attitude, whereas a value of —1.0 is a very strong positive attitude. In this work,
we limit the values to be either —1 or +1. Let v(i, k) be the value of cognition
k of agent 1.

Figure 2 depicts a cognitive network. The lines represent relationships be-
tween cognitions; dashed lines are negative relationships, solid lines are posi-
tive relationships. The bottom of each cognition contains the currently assigned
value.

Let x;(k, q) be the consistency of an edge (cx, ¢q) in the cognitive network of
agent a;. The value of x;(k, q) is:

(1)

1 if w(k,q)v(i, k)v(i,q) > 0,
xik,1) = s @peli, Byett, o)
0 Otherwise

Let the state of a cognitive network be an assignment of values to its cogni-
tions. There are m = 2" states for a cognitive network, labelled: s1 ... sp,. sp(k)
is the value of cognition k in state p.

The consistency of a cognition k for agent ¢ is:
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Z Cl,C . Xz(k7q)
Bi(k) = ZERoR (2)

where [; is the number of edges incident to concept . Intuitively, consistency
increases as a cognition has more edges that are consistent.

Cognitive networks can be viewed as bi-valued, binary constraint satisfac-
tion network [3]. A significant body of work has been developed around binary
constraint satisfaction. The problem there is finding the correct solution; our
problem is understanding when a solution diffuses across a network.

2.1 Attitude change

In our model, attitude change is initiated by interpersonal interaction, but me-
diated by the state of the cognitive network. Given no cognitive influence, the
baseline probability that an agents changes their attitude is indicated by Ppgse-
In this work we assume that Py, is the same for all agents. In the following we
describe how the state of the cognitive network modifies Pyyse-

Drive for cognitive consistency Based on the drive for cognitive consis-
tency, we assign a multiplicative weight on the baseline probability of change
that varies as a function of how consistent a cognition is with it’s neighboring
cognitions.

Let feon(k, ) represent the inclination to change cognition k of agent ¢ based
on its consistency with other cognitions. Intuitively, the more consistent the
concept is with its neighbors, the less likely it is to change.

We define f.on(k,7) as a sigmoid curve:

) 2
feon(k,1) = €+ 1+ e 10((1=6,(k)=5)) ®)

For cognitions that have more than 50% of their neighbors in an inconsistent
state, feon(k) > 1.0, thus increasing the probability they will change (with a
maximum multiplicative increase of 2). For those with less than 50% of their
neighbors in an inconsistent state, feon(k) < 1.0, decreasing the probability to
change (with a minimum of ).

While there has been significant work studying cognitive consistency between
two cognitions, there has been little or no work done between multiple cognitions.
Thus, for our purposes we assume a sigmoid curve with a center at 0.5. As new
evidence is uncovered this part may change.

Embeddedness The embeddedness of a cognition refers to how well it is con-
nected to other cognitions in the cognitive network. Embeddedness is related
to a resistance to change (see [4, Chap. 12] for a review) — a well connected
cognition is harder to change because if it did change, the drive for cognitive
consistency would cause dissonance with a larger number of other attitudes.
We represent this resistance to change as a multiplicative weight on Ppgge.
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Let faeq(k,?) be the resistance to change cognition k of agent ¢ based on
the cognitions embeddedness, which we measure through its degree (deg(k)).
Intuitively, we want fgeq(k,¢) to decrease as we increase the degree of the concept.

1.0 if deg(k) < degmaz.i/2,

4
0.5 else “)

fdeg(kai) = {

where degmqz,i is the highest degree in the cognitive network of agent i.

Probability of Change Bringing everything together, let P, qnge(k, ) be the
probability of cognition & of agent ¢ changing value, given that ¢ is interacting
with another agent with the opposite value for cognition k. Then:

Pchange(ka Z) = Pbaseline . fdegree(ka Z) : fcon(ky 7’) (5)

2.2 Agenda Setting

To model the agenda setting effect of a media source we assume that the media
can discuss issues related to the different cognitions. At any point in time the
agenda determines which cognition is the main focus of the media. We define
an agenda m = [P(c1),. .., P(cy,)] as a probability distribution over cognitions.
Currently we only consider single cognition agendas, in future work we can ex-
tend this to where media can focus on sets of cognitions.

A Time-Independent Agenda (TIA) is a fixed probability distribution over
the cognitions. A special case is the uniform distribution, where each cognition
has a probability of 1/n. of being chosen.

A Time Varying Agenda (TVA) is an agenda that changes over time. Es-
sentially, it is some number of agendas which are active at certain times. For
instance, for the cognitive network from Figure 2, we can define a time varying
agenda by specifying multiple agendas that span the timestep range from (0, co).
From timestep 0 to timestep 1000, the agenda may be w900 = [1/3,1/3,1/3],
but from 1000 onwards, the agenda may be: 7o, = [1/9,1/9,7/9].

2.3 Model Update

Algorithm 1 specifies the update process of the model. Similar to other work ([5])
we study the progressive case. Since we have multiple concepts in our model, we
designate a single state s* as the goal state. Once a cognitions switches to the
value in the progressive state, it cannot switch back.

Each iteration of t is called a single timestep, and within each timestep we
randomly and with replacement, sample N = |V;| agents. Thus on average, every
agent is chosen once per timestep.

Note that these dynamics correspond closely to a voter model [18], except the
probability of switching varies over the length of the simulation. Voter models
have a long history as a simple tool to study diffusion (see Section 4.
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Algorithm 1: Model Dynamics

for t < 1 to t,a: do
Choose a strategy m
for t; + 1 to N do
Choose a random agent a;
Choose a; a random neighbor of a;
Choose a topic cognition 7 according to .
if v(a;,7) # s*(7) and v(a;, 7) # v(aj, 7) then
| Set v(ai,7) = v(a;, ) with probability Pehange(T)
end

end
end

3 Experimental Studies

Our goal is to study how agenda setting influences the propagation of attitudes
in a population. Thus, the metric we will use is the mean diffusion time — the
number of timesteps the system takes for 90% of the population to reach the goal
state, averaged over some number of runs (we also call this time to convergence).

We assume that all agents have the same type of cognitive network, depicted
in Figure 2, and only vary in their initial state. We call this the “3-Fan” net-
work, because it has one central cognition (¢1) and two ancillary cognitions that
connect to it (cq,c3). More generally, a “n-Fan” network would have 1 central
cognition and n — 1 ancillary nodes connected to it.

The fan network, while simple, can effectively represents the interaction be-
tween attitudes. In fact, a similar topology was used to model student attitudes
to the first Persian Gulf War in [19]. To be more concrete, the central cogni-
tion can represent an attitude towards an intention — such as getting a vaccine
for your child. The ancillary cognitions would represent relevant attitudes that
impact the central cognitions — as mentioned earlier, ones attitude towards the
government and ones attitude towards the vaccines etc.

The goal state is set to s* =< +1,+1, —1 >. Initially, a random 10% of the
population is assigned the goal state. The rest of the agents are assigned the
state of s =< —1,—1,+1 >. Note that these are the only two fully consistent
states in the 3-Fan network.

We use two social networks. The first is a k-regular graph — a graph where
each vertex has degree k. We use a network with 1000 agents, and k = 4.

The second social network is a small-world network, which is a network that
features a high clustering coefficient and short average path length. Small world
networks appear in many real-world domains [22]. We used the algorithm defined
in [22], implemented in [2]. We use a network with 1000 agents, and following
[22], we set the initial number of neighbors to 10, and the rewiring probability to
0.01. This produces a small world network with clustering coefficient of 0.668519
and average path length of 6.289300.

In all the experiments we set the baseline probability to Pyqse = 0.333.
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Table 1. Mean convergence time (over 100 runs)

Adoption Mechanism Regular Small World

MAMA 1050.700 920.600
Simple Voter 30 20.800
Probabilistic Voter 70.400 61.200

3.1 Experiment 1: MAMA and the Voter Models

Since the MAMA model shares the schema of its update strategy with the voter
model, it makes sense to ask if there is any difference in the diffusion time
between a MAMA model and the voter model. To address this, we tested three
different update algorithms on the regular and small world networks:

Multi-Agent, Multi-Attitude Model The update mechanism outlined in 1,
with a time independent uniform agenda.

Simple Voter model Set P.pqnge(7) = 1.0,V7.

Probabilistic voter model Set P,pange(T) = Pogse, V7 (similar to the Het-
erogenous voter model [?]

Table 1 shows the results, which make it clear that incorporating interacting
attitudes dramatically changes the time to convergence. All pairs of expected
convergence time were statistically significant (Wilcox rank sum test, p ~ 0)

As expected from existing results [?], convergence time for the small world
networks was lower than the regular network.

These results reach the same main results as described presented in [?] which
describes the conformity-consistency model (CCM); an extension to the voter
model that represents both social and cognitive factors [?]. In the CCM, there
are N agents, each with a binary vector of size M that represents their cognitive
state. At each time step an agent is chosen and will execute the standard voter
model process on of its variables with probability p; with probability ¢ =1 —p
the agent engages in a voter model with itself, between the elements of its cogni-
tive state. The voter process within itself can be viewed as reducing dissonance
between the elements of its cognitive state — with the extremes of all variables
at 0 or all variables at 1 to be the no dissonance situations.

[?] shows that adding the dissonance reducing effects within an agent in-
creases the time to convergence — as we show in this experiment.

3.2 Experiment 2: Time Independent Agendas

In this experiment, we identify the best time-independent agenda.

We constructed agendas of the following form. Let 7* be an agenda that sets
cognition k to p € [0.3,0.9] and the other cognitions to (1 — p)/2. We have two
parameters that can vary, p and k
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Fig. 3. Mean convergence time on a regular network. The x axis indicates the probabil-
ity of choosing a particular cognition, and each line is a particular cognition (e.g., the
red line is the mean convergence time when choosing cognition 1). The bars indicate
one standard deviation.

Figure 3 show the mean convergence time (over 100 runs) for the regular
graph (the small world graph had similar results and is not shown) for k = 1,2,3
and p € {.33,.44,.55,.66,.77,.88,.99}. Notice that focusing discussion on the
central cognition does not decrease diffusion time, and in fact, it increases as p
increases.

On the other hand, a focus on the ancillary cognitions slightly reduces the
mean diffusion time, although we do see an inflection point, p*, beyond which
the diffusion time actually increases. Note that none of the runs converged for
p=.99.

A separate experiment was conducted with agendas of the form [p1, p2, p3],
with p1,pe2,ps € {.3,.4,.5,.6,.7,.8,.9} and p; + p2 + p3 = 1.0. These results sup-
ported the results shown here — the higher the probability of choosing cognition
1 as a topic, the longer the diffusion time. Results are not shown here due to
space limitations.

3.3 Experiment 3: Time Varying Agendas

Is it possible that time varying agendas can reduce diffusion time? To test this,
we considered pairs of agendas. At some time b (which we call the boundary point
we switch agendas. Let agenda 7T{f be an agenda that was used from timestep 0
to timestep b which sets cognition & to p € [0.3,0.9] and the other two cognitions
to (1 —p)/2. After timestep b, we set the agenda to 7 = [1/3,1/3,1/3]. Thus we
have three parameters to vary: p, k and b.

Figure 4,5 show the mean convergence time for p = .3,.6,.89 on the regular
graph (the results were the same for the Small World network and are omitted
for brevity), with & = 1,2. Results for k¥ = 3 were similar to & = 2 and are
omitted for space reasons. Results were averaged over 100 runs.
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Convergence time with TDNU agenda
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Fig. 4. Mean diffusion time over 100 runs with a time varying agenda. k = 1. Each
line represents a different probability p.

Convergence time with TDNU Agenda
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Fig. 5. Mean diffusion time over 100 runs with a time varying agenda. k = 2. Each
line represents a different probability p.

The results show similar patterns to the time independent agendas. Figure 4
shows that a focus on the central cognition results in higher convergence time.

Figure 5 shows the mean convergence time for agendas in which we change
the probability of cognition 2. We see that for low probabilities, the agenda does
not seem to make a difference. However, if we increase the probability to .89,
we see a dramatic change in the mean convergence time as a function of the
boundary value (the mean convergence time at b = 800 is less than the mean
time for b = 0, and is statistically significant, ¢t — test, p = 0)

3.4 Discussion

The results from Experiment 2 & 3 suggest that (1) agenda setting can reduce
diffusion time; and (3) time varying agendas have the most impact. However the
results prompt three other questions:
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1. Why does focusing on the ancillary cognitions reduce diffusion time (in con-
trast to a uniform agenda)?

2. Why does focusing on cognition 1 cause an increase in diffusion time?

3. Why is there an increase in the time to convergence after a certain boundary
value (b*) in the TVU agenda?

To explore these questions it is useful to consider a Markov Chain represen-
tation of state changes. A Markov chain is a stochastic process that varies over
time. At each time point ¢, the process is said to be in a state s € sq, ..., s, (We
have intentionally used the notation denoting states of the cognitive network)
The probability of being in state s; at time ¢ is a function only of the state the
process was in at time ¢t — 1 (this is the Markov assumption) [?]. The probability
of moving from state s, to state s; is denoted by P(s;|s,) = piq and is called the
transition probability. A Markov chain is absorbing if there are a set of states
from which the process cannot leave (p;, = 0,Vq) [?].

We can construct an absorbing Markov chain representation of an agent by
setting the states of the chain to the states of the cognitive network of the agent
(s* is an absorbing state). Figure 6 depicts the Markov chain. The edges are
labelled with Pepange () L however the actual transition probability would be:
P(si5q) = Pehange(k)- Preigh(v(j, k) = s*(k))-m(k) where k is the cognition that
changes value between s; and s; and Ppeign(v(J, k) = s*(k)) is the probability
that the value of cognition k£ of the chosen neighbor is equal to the goal states
value.

We can divide the states in the Markov chain by Hamming distance from the
start state; so Level 1 = s; = s/, Level 2 = s9, s3, and sy, Level 3 = s5, s, and s7
and Level 4 = s* = sg.

Under a TVA focused on cognitions 2 and 3 first the unequal probability
of leaving state 1 causes more agents to reach Level 2 than in the uniform
case. Figure 7 illustrates this by showing the distribution of agents across states
for a single run of Experiment 3 (per parameter setting). The red line is an
approximation of a uniform agenda: mggo1 = [.3,.35,.35], and the blue line is
for a TVA which initially starts with mggp 2 = [.89,.055,.055] and switches to a
uniform agenda at timestep 800.

In a TVA agenda, agents pool at Levels 2 and 3, then rapidly get to the
end state once the agenda changes; in a uniform agenda fewer agents leave the
start state — this is reason TVA agendas focused on ancillary cognitions perform
better.

This also answers question 3: an agenda focusing on just the central node
will result in fewer agents leaving the start state. The more time spent focused
on the central cognition (increasing boundary value in Figure 4), the longer it
takes for all the agents to make it to the end state.

The answer to the second question has to do with saturation. Once all the
agents have moved out of the start state it is useless to use an agenda that

! for clarity, self edges are not shown, but are equal to one minus the sum of the
outgoing edges
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Fig. 6. Markov chain of state transitions, with edges labeled by P.hange(i) Not ac-
counted for: the agenda 7w and the distribution of agents over states. The bottom of
each node are the values for the state.

focuses on moving agents out of the start state — which is what occurs when
b > 800

For b > 1200 we see the convergence time while using only 7, 2 = [.055, .89, .055].
This is worse than the uniform strategy because the agenda is unduly focused
on just one cognition for too long.

4 Related Work

To our knowledge, there has been no work that computationally explores the
impact of agenda setting on diffusion.

The interpersonal interaction dynamics of our model are closely related to
the wvoter model a well explored model from the physics domain [17] in which
nodes can take on the values 0 or 1. At each timestep a random nodes takes on
the value of one of its neighbors. While the choice of agents is similar, few voter
models capture multiple interacting values within an agent.

In 3.1 we described the CCM model, which has a similar structure to the
MAMA model. The main difference is that we do not assume that agents can
either communicate or modify internal attitudes — both processes can occur
simultaneously in the MAMA model.

The constraint satisfaction model of attitude interaction is based on similar
work from social psychology — where it is called a “parallel constraint satisfac-
tion” model and has been applied to a variety of domains, such as impression
formation [7], legal inference [16], and as a model of change in attitude to the
persian gulf war [19].

In Axelrod’s model of social dynamics agents have multiple cultural features
where each feature can take on a value from a small set of “traits” [1,11]. Agents
can interact only The model uses a bounded confidence in which only agents that
match on a certain percentage of features will interact.
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Fig. 7. Distribution of agents across states. Level 2 = sa + 53+ 54, Level 3= s5+s¢+s7.

Several extensions to Axelrod’s model have been proposed that incorporate
mass media. Often, this is incorporated through a virtual agent that represents
the media and which has edges connecting it to all other agents in the population
[11]. This work studies the influence effect of media, and not the agenda setting
effect.

5 Conclusions

Agent-based simulation is an important tool that allows empirically study of
complex interactions, in our case between interpersonal influence and attitudes.
In this work, we developed a novel agent based model that captures social and
cognitive factors that affect decision making (the MAMA model). We used agent-
based simulation to study the impact of agenda setting on diffusion time within
the MAMA model. We found that:

1. Agenda-setting can significantly affect diffusion time — both positively and
negatively.

2. The best agenda for the “3-Fan” network is a time varying agenda that
focuses on an ancillary attitudes first, then switches to a uniform agenda
which can reduce mean diffusion time by by a 100 timesteps (statistically
significant)

Surprisingly, merely setting the topic of discussion (not even influencing at-
titudes) can have an impact on diffusion time.
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