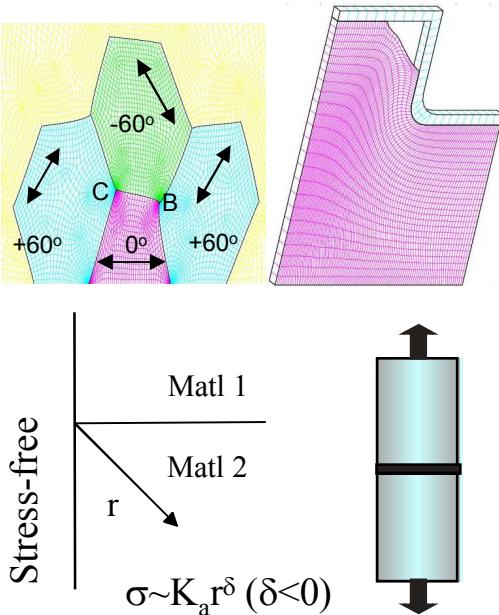


A Simple Mode-mixity Dependent Cohesive Zone Model with Application to Illustrative Interfacial Fracture Problems



Sandia
National
Laboratories

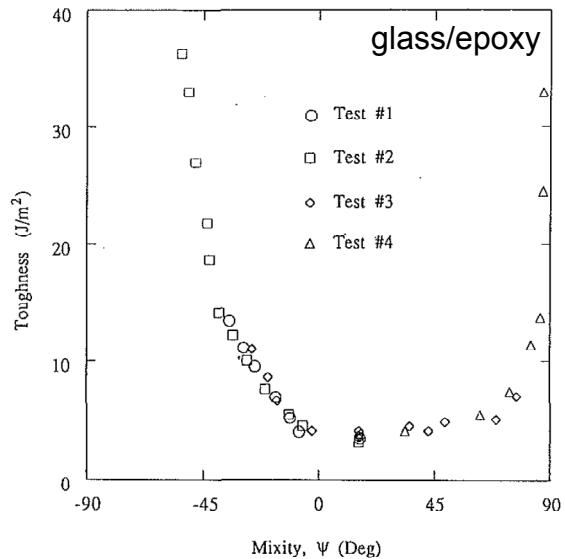
*Exceptional
service
in the
national
interest*

U.S. DEPARTMENT OF
ENERGY

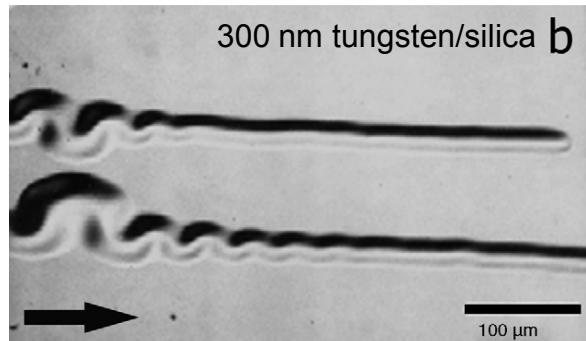
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Background: mode-mixity dependent toughness

- The toughness of a polymer/solid interface increases with increasing mode-mixity.
- Behavior important in many problems.
- Widely used cohesive zone models do not include a mode-mixity dependent toughness (Tvergaard and Hutchinson, 1993, Xu and Needleman, 1994).
- Extension to include a mode-mixity dependent toughness has proved difficult.
 - A polynomial-based potential formulation defined by eight fracture parameters (Park and Paulino, 2011).
 - A nonpotential-based method that defines Mode I and Mode II response independently coupled by a mixed-mode failure condition (Yang and Thouless, 2001).



Liechti, K.M. and Chai, Y.S., Journal of Applied Mechanics, 1992. 59: p. 295-304.

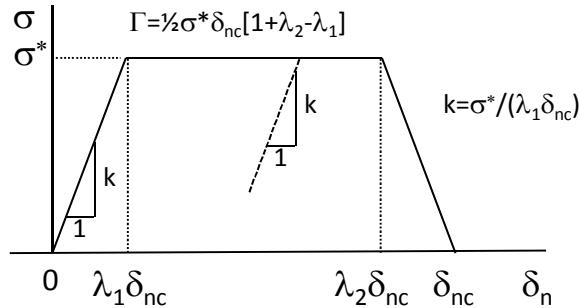


Cordill, M.J., et al., Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2007. 443(1-2): p. 150-155.

Simple CZ models that include mode-dependent toughness

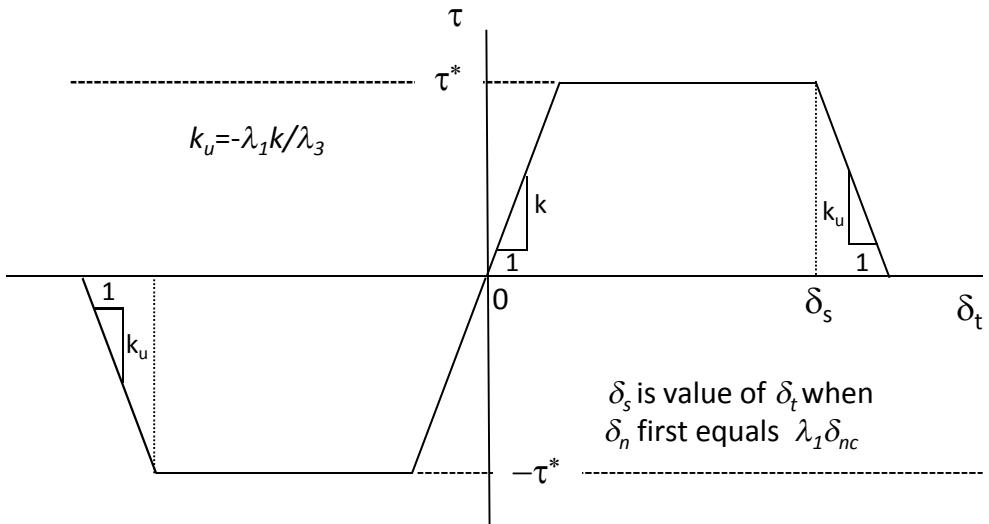
- Motivated by the recent development of the Adhesion/Atomistic Friction (Ad/AF) surface interaction model (Reedy, IJSS 2013).
 - Cohesive zone model includes all crack-tip dissipation generated within the process zone where:
 - Mode I dissipation is defined by a simple traction-separation law relating normal stress and opening.
 - Mode II (III) dissipation is associated with interfacial shear yielding (slip) that occurs in front of the region where Mode I softening occurs.
 - the amount of shear dissipation is not defined by a traction-separation law --- the extent of the slip zone is determined by the level of interfacial shear in front of the Mode I cohesive zone.

Mode-dependent toughness cohesive zone model (MDGc CZM)



Plane strain cohesive zone model for mode I opening (when $\delta_n < 0$; can define a multiple of k to penalize penetration)

Key parameters: interfacial strength σ^* and the intrinsic work of separation/unit area of interface Γ .



Plane strain cohesive zone model for mode II shear yielding prior to mode I softening (i.e., when $\delta_n < \lambda_1\delta_{nc}$).

Key parameter: shear yield strength τ^* .

To generalize to 3D with anti-plane mode III slip δ_s in addition to the in-plane mode II slip δ_t , define effective shear stress τ_e and effective slip rate, $\dot{\delta}_e$.

$$\tau_e = (\tau_t^2 + \tau_s^2)^{1/2} \text{ and } \dot{\delta}_e = (\dot{\delta}_t^2 + \dot{\delta}_s^2)^{1/2}$$

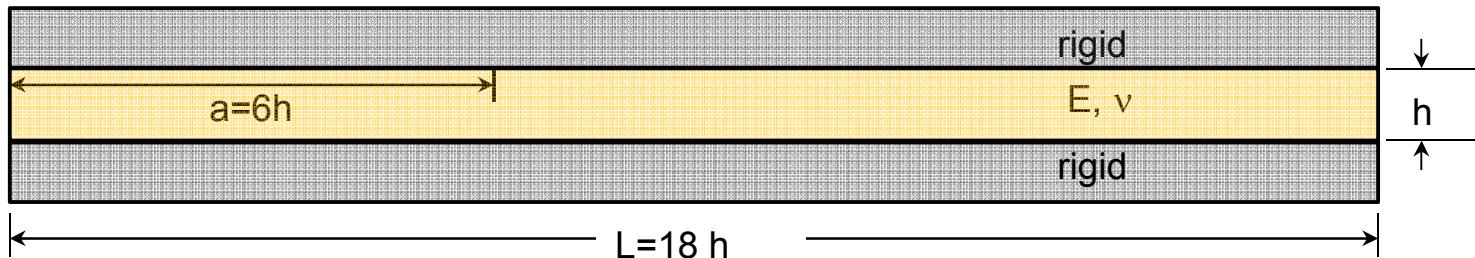
when $|\tau_e| < \tau^*$

$$\dot{\tau}_t = k\dot{\delta}_t \text{ and } \dot{\tau}_s = k\dot{\delta}_s$$

when $|\tau_e| = \tau^*$

$$\tau_t = \frac{\dot{\delta}_t}{\dot{\delta}_e} \tau^* \text{ and } \tau_s = \frac{\dot{\delta}_s}{\dot{\delta}_e} \tau^*$$

Simple problem that illustrates nature of MDG_c predictions



- Edge-cracked elastic layer that is sandwiched between rigid adherends.
- Apply uniform edge normal and tangential displacements (plane strain).
- Strip sufficiently long so that large region in central portion of ligament is uniformly stressed.
- Highly refined mesh in the region surrounding the initial crack tip ($\Delta h=0.0025$).
- Geometry similar to that used by Swadener and Liechti to measure mode-mixity dependent interfacial toughness (JAM 1998).

Definition of effective toughness and applied mode-mixity

- Energy release rate/unit area as the interfacial crack begins to propagate.

$$\Gamma_e = \frac{h}{2E_u} (\bar{\sigma}^c_{yy})^2 + \frac{h}{2G} (\bar{\sigma}^c_{xy})^2$$

- $\bar{\sigma}^c_{yy}$ and $\bar{\sigma}^c_{xy}$ are critical stresses in uniformly stressed ligament.
- $E_u = (1-\nu) E / ((1+\nu)(1-2\nu))$ and G is the shear modulus.

- Applied mode-mixity as

$$\psi_a \equiv \tan^{-1} (2\bar{\sigma}^c_{xy} / \bar{\sigma}^c_{yy})$$

- Crack tip mode-mixity at a distance l_o for same problem (Hutchinson and Suo, 1992) is

$$\psi_{r=l_o} = \gamma + \omega + \varepsilon \ln(l_o / h)$$

when $\alpha=1.0$ and $\beta=0.25$ (i.e., $\nu=1/3$), $\omega=-17^\circ$ and $\gamma=\psi_a$.

Edge-cracked elastic layer sandwiched between rigid grips

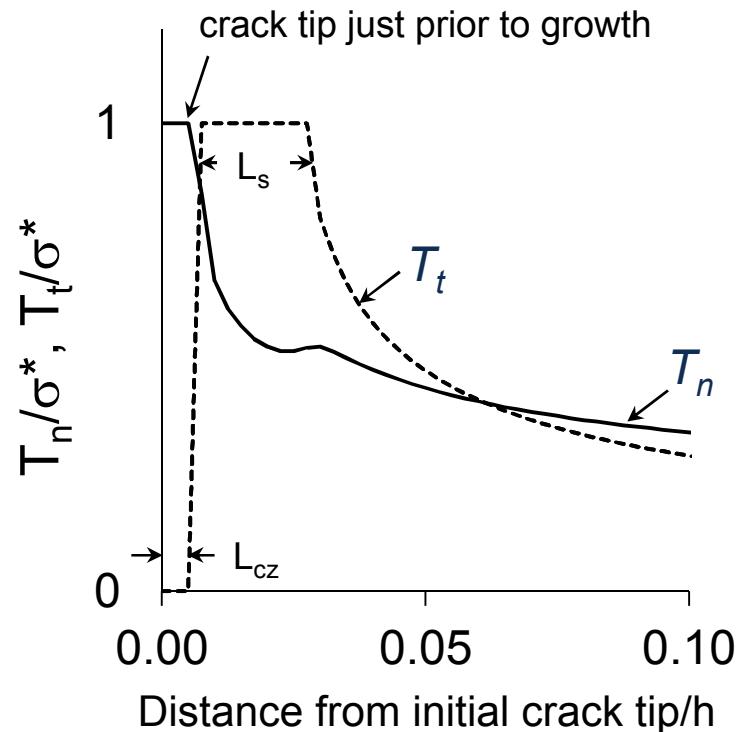
- Nondimensional dependencies
 - Bulk properties: E , ν
 - MDGc properties: σ^* , τ^* , Γ , λ_1 , λ_2 , λ_3
 - Geometry: h
 - Loading: $\bar{\sigma}_{yy}^c$, $\bar{\sigma}_{xy}^c$ (Γ_e and ψ_a are defined in terms of these stresses)
- Choose primary dimensions Γ , and σ^*

$$\Gamma_e / \Gamma = f\left(\frac{\bar{\sigma}_{xy}^c}{\bar{\sigma}_{yy}^c}, \frac{\sigma^*}{E}, \frac{\tau^*}{\sigma^*}, \frac{\Gamma}{\sigma^* h}, \nu, \lambda_1, \lambda_2, \lambda_3\right)$$

- In the base line calculation
 - $\sigma^*/E=0.01$, $\tau^*/\sigma^*=1.0$
 - $\Gamma/(\sigma^*h)=1e-4$, $\nu=1/3$
 - $\lambda_1=0.1$, $\lambda_2=0.9$, and λ_3 was typically set to 0.01
 - Use mesh with $\Delta \sim 10-20\delta_{nc}$ (as used by Tvergaard and Hutchinson, 1993; relatively coarse since not trying to resolve stress within the process zone).

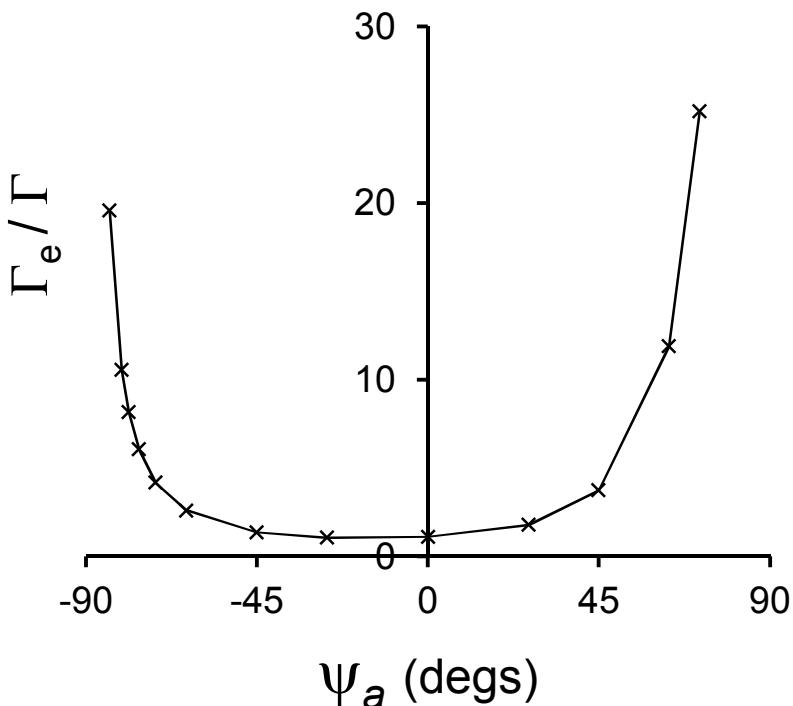
MDG_c interfacial normal T_n and tangential T_t tractions

- Example of tractions in front of the initial crack tip as generated by MDG_c CZ model.
 - plotted results for $\psi_a=45^\circ$ at time just prior to crack propagation
 - Crack tip => point where the T_n first equals σ^* .
 - Length of the cohesive zone L_{cz} => region where $T_n=\sigma^*$.
 - Length of the plastic slip zone L_s => region where $T_t=\tau^*$.
 - Note that $T_t=0$ inside the cohesive zone since $\delta_n > \lambda_1 \delta_{nc}$.



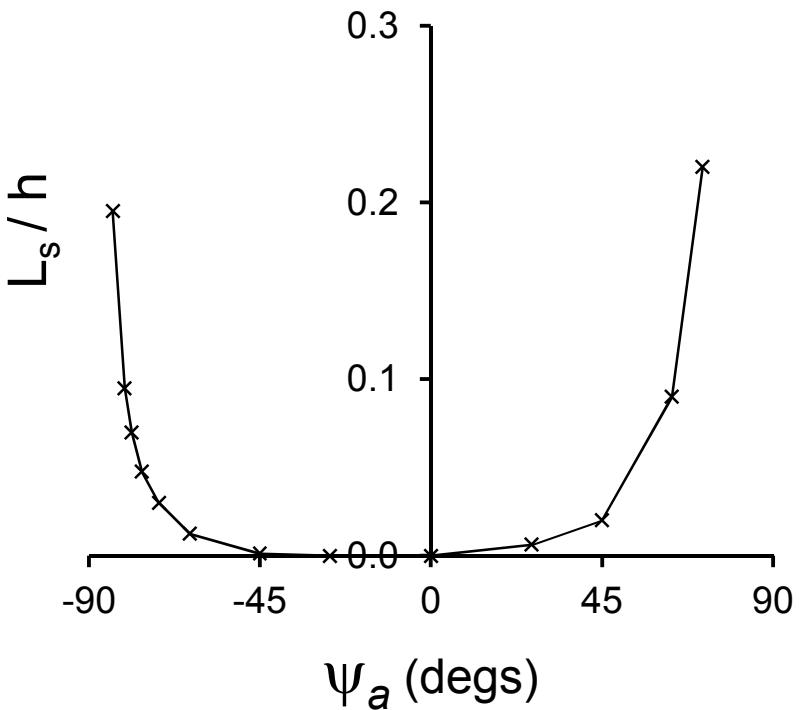
Effective toughness vs. applied mode-mixity $\psi_a \equiv \tan^{-1}(2\sigma^c_{xy} / \sigma^c_{yy})$

- The MDG_c CZ model generates an effective toughness that increases rapidly with $|\psi_a|$.
 - $\Gamma_e/\Gamma=25$ when $\psi_a=+72^\circ$
 - $\Gamma_e/\Gamma=20$ when $\psi_a=-84^\circ$
- Calculated Γ_e/Γ displays asymmetry wrt ψ_a
 - $\Gamma_e/\Gamma=11.9$ when $\psi_a=+63^\circ$
 - $\Gamma_e/\Gamma=2.6$ when $\psi_a=-63^\circ$



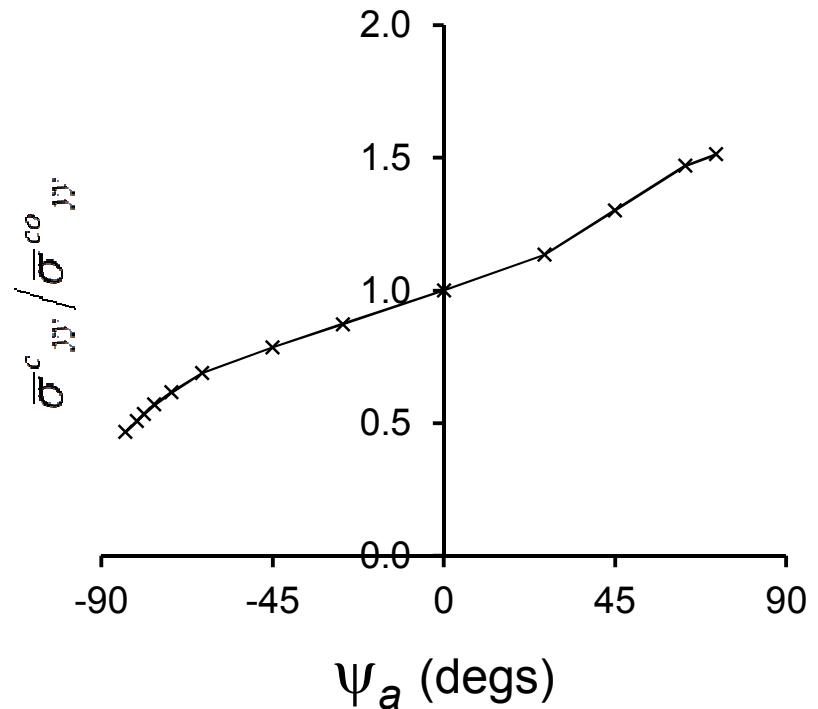
Length of slip zone at propagation vs. ψ_a

- L_s/h when crack begins to propagate.
 - similar dependence on ψ_a as Γ_e/Γ
 - ~ 0 when $-27 < \psi_a < 0$.
 - increases rapidly with $|\psi_a|$.
 - a sizable fraction h as $|\psi_a|$ increases.
- L_s/h and Γ_e/Γ both display an asymmetric dependence on ψ_a .
 - $L_s/h=0.22$ $\psi_a=72^\circ$.
 - $L_s/h=0.03$ $\psi_a=-72^\circ$.
- Note: length of the cohesive zone L_{cz} is relatively insensitive to ψ_a .
 - $0.005 < L_{cz}/h < 0.009$ for $-84 < \psi_a < 72$



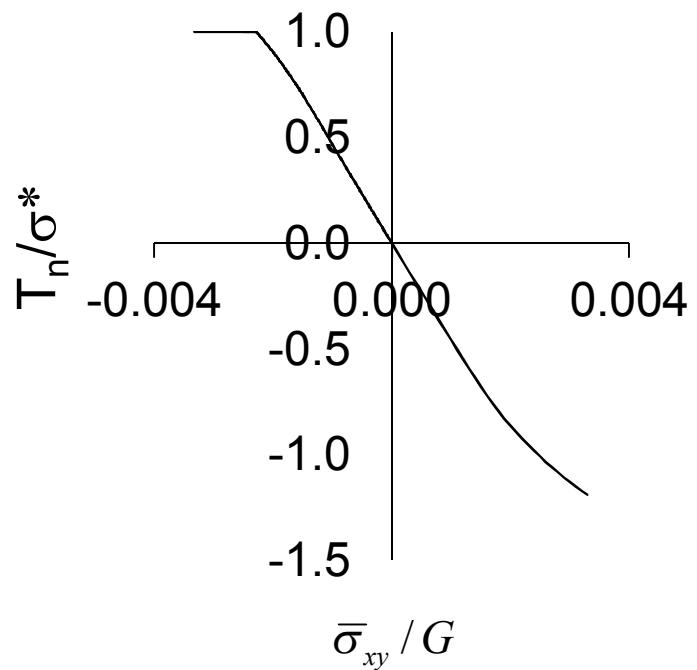
Discussion: Asymmetry in Γ_e/Γ vs. ψ_a

- Re-plotted results show how $\bar{\sigma}^c_{yy}$ depends on the Ψ_a .
 - $\bar{\sigma}^c_{yy}$ is strongly dependent on Ψ_a .
 - significant asymmetry wrt ψ_a .
 - when $\psi_a = -72^\circ$, $\bar{\sigma}^c_{yy}/\bar{\sigma}^{co}_{yy} = 0.62$
 - when $\psi_a = +72^\circ$, $\bar{\sigma}^c_{yy}/\bar{\sigma}^{co}_{yy} = 1.51$

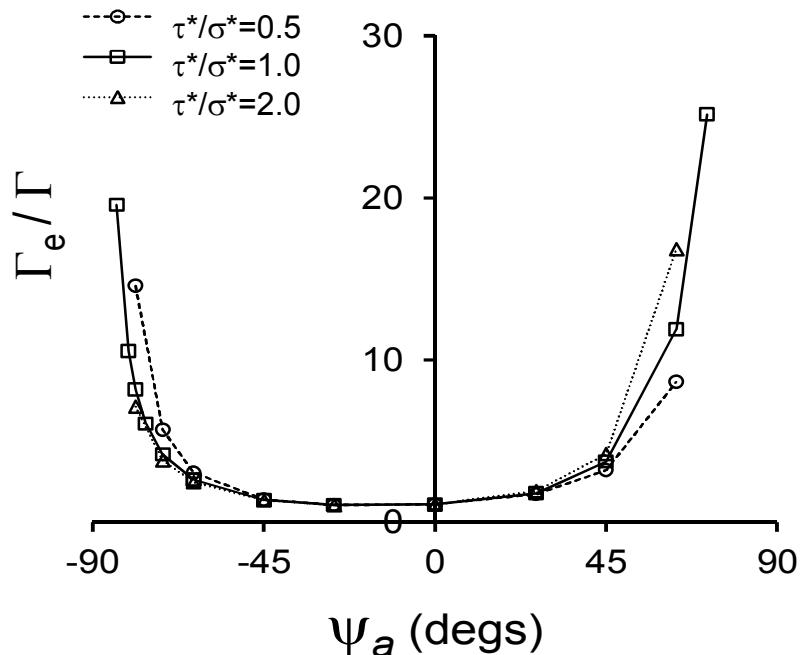


Discussion: Asymmetry in Γ_e/Γ vs. ψ_a

- Consider case where only +/- tangential edge displacement ($\Psi_a = \pm \infty$).
 - plot normal traction T_n at tip of initial crack tip vs. applied $\bar{\sigma}_{xy}$.
 - when $\Psi_a = +\infty$, $T_n < 0$
 - must overcome compression before normal edge displacement can open the interface.
 - when $\Psi_a = -\infty$, $T_n > 0$
 - only need to augment tension already induced by $\bar{\sigma}_{xy}$ to open the interface.
 - Similar response observed in experiments, Liechti and Chai (1992).



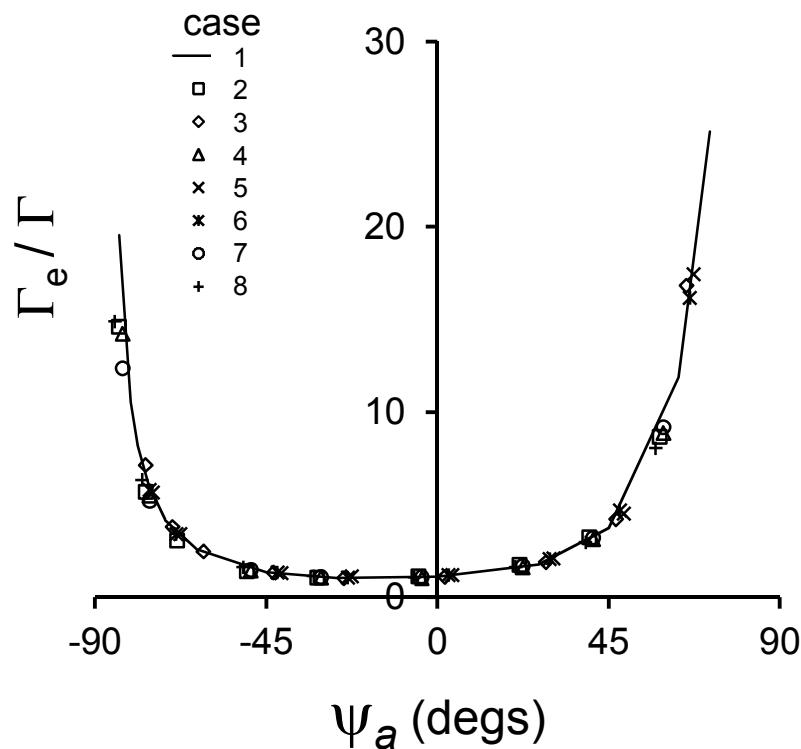
Dependence of Γ_e/Γ vs. ψ_a relationship on τ^*/σ^*



- Baseline ($\Gamma/(h\sigma^*)=1e-4$, $\sigma^*/E=0.010$) but vary τ^*/σ^* .
- Doubling or cutting τ^*/σ^* in half does not alter the basic shape.
- The $\tau^*/\sigma^*=0.5$ and $\tau^*/\sigma^*=2.0$ curves can be aligned with the $\tau^*/\sigma^*=1.0$ curve by shifting the corresponding curve by -5° ($+2^\circ$).

Discussion: A constant Ψ_a offset ~aligns calculated Γ_e/Γ vs. ψ_a

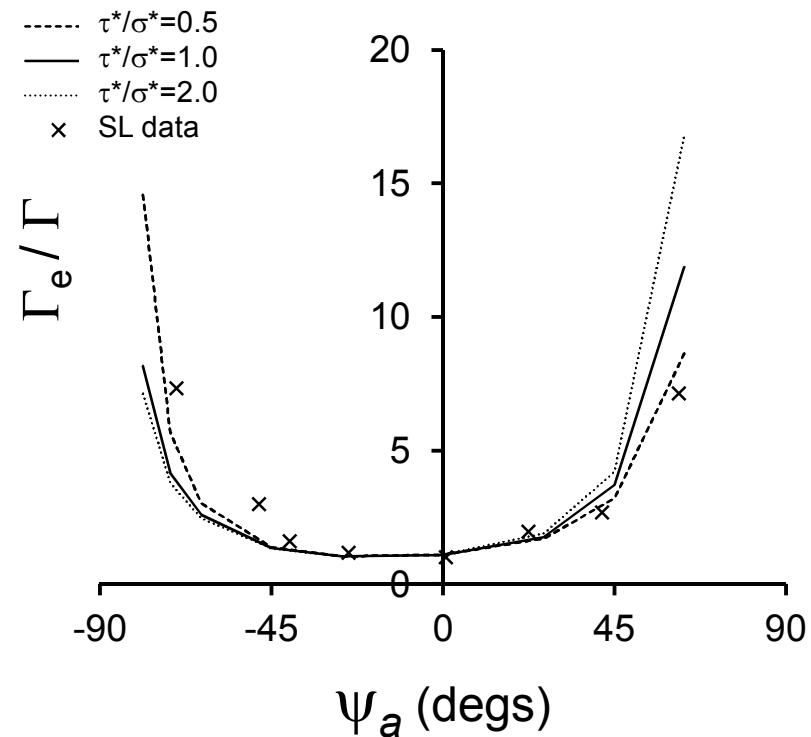
Case	τ^*/σ^*	σ^*/E	$\Gamma/(\sigma^*h)$	$\Delta\Psi_a$ (deg)
1	1.0	0.010	1e-4	-
2	0.5	0.010	1e-4	-5
3	2.0	0.010	1e-4	+2
4	1.0	0.005	1e-4	-4
5	1.0	0.020	1e-4	+4
6	1.0	0.010	5e-5	+3
7	1.0	0.010	2e-4	-4
8	1.0	0.025	1e-3	-6



- Apply a separate mode-mixity offset $\Delta\Psi_a$ to each of the calculated Γ_e/Γ vs. ψ_a relationships.
 - this is simply an observation

Discussion: comparison with experimental observation

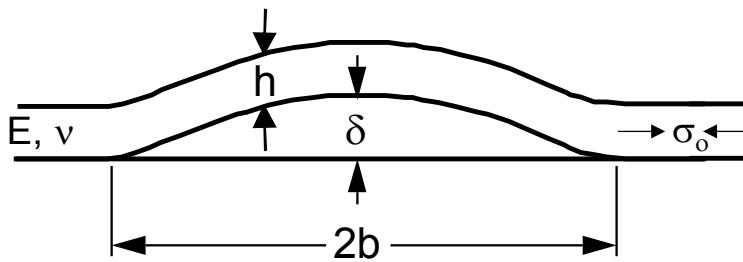
- Compared calculated results to Swadener and Liechti (SL) data
- test geometry similar to that analyzed.
 - glass/epoxy interface with an ~ 0.25 mm thick epoxy bond.
- Data in good agreement with calculated baseline results ($\tau^*/\sigma^*=0.5$).
 - MDGc CZM generates the Γ_e/Γ vs. ψ_a similar to that measured.
 - displays similar asymmetric response.
- Shape of calculated Γ_e/Γ vs. ψ_a relationship is not predefined.
 - shape of the relationship could differ if one analyzes a different type of specimen (not SCY).



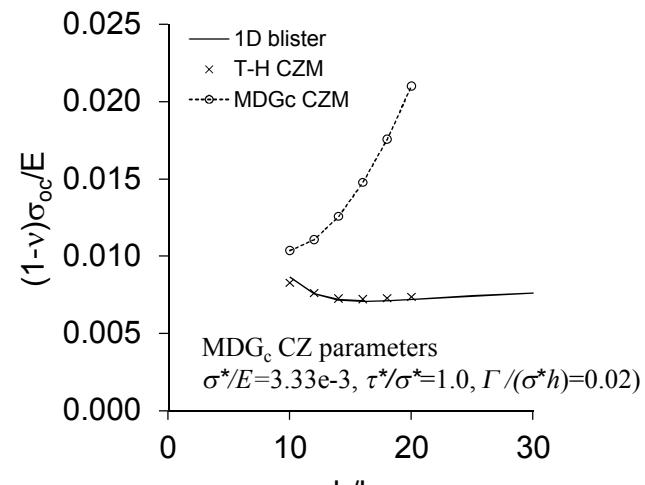
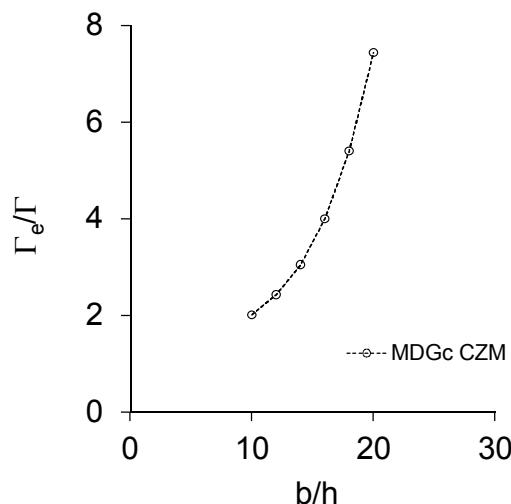
Swadener, J. G. and Liechti, K. M., "Asymmetric Shielding Mechanisms in the Mixed-Mode Fracture of a Glass/Epoxy Interface", Journal of Applied Mechanics 65(1998), pp. 25-29.

Normalize data, convert to applied mixity with "rigid" glass as "material 1".

2nd example: buckle-driven growth of 1-D blister on rigid substrate



- Film subjected to increasing compressive biaxial stress reaches until reaches critical value σ_{oc} and initial buckled delamination extends.
- Results for mode-mixity independent T-H CZM compared to mode-mixity dependent MDG_c CZM.
- MDG_c CZM predictions consistent with observation, sidewalls arrest.



Summary

- Conceptually simple MDG_c CZM is composed of two elements.
 - Mode I dissipation is defined by a simple traction-separation law relating normal stress and opening.
 - Mode II (III) dissipation is associated with interfacial shear yielding (slip) that occurs in front of the region where Mode I softening occurs.
- Analyzed an edge-cracked elastic layer sandwiched between rigid grips
 - MDG_c CZ model generates an Γ_e/Γ vs. ψ_a relationship that increases rapidly with $|\psi_a|$.
 - Calculated results for Γ_e/Γ vs. ψ_a are in good agreement with published data and display a similar asymmetric response.