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Abstract. Resilience is a major challenge for large-scale systems. Inner-outer
solvers such as Flexible Generalized Minimal Residual Method (FGMRES) are
widely-used for scientific applications, playing a key role in performance and re-
silience. Though FGMRES is robust to soft error, we show that single bit flip er-
rors can lead to high computation overhead or even divergence (failure). Informed
by these results, we design and evaluate several strategies for fault tolerance in
both inner and outer solvers appropriate across a range of error rates. We im-
plement them, extending Trilinos FGMRES solver library with the Global View
Resilience (GVR) programming model, which provides multi-stream snapshots,
multi-version data structures with portable and rich error checking/recovery. Ex-
perimental results validate correct execution with low performance overhead un-
der varied error conditions.

1 Introduction

The scaling of semiconductor technology and increasing power concerns combined
with system scale make fault management a growing concern in high performance com-
puting systems [15, 12, 14, 13]. Soft errors and higher error rates all expected. Just as
they played an important role in achieving scalable, high performance, we expect that
widely-used numeric solvers such as Flexible Generalized Minimal Residual Method
(FGMRES) will play an important key role in achieving resilience and performance for
large-scale applications in future “exa” scale systems.

Flexible GMRES with restarting (see Fig. 1 [1,2]) is robust to soft errors due to
three aspects. First, the inner solver in Step 3 is inexact, and the outer solver can tolerate
large changes to inner solver. Second, the minimal residual procedure can reduce the
impact of error on inner solver and keep the residual decreasing (see Step 11). Third,
FGMRES restarts the computation after m outer iterations (see Step 17). While the
major purpose of restarting is to address the performance and memory usage, restarting
can also eliminate errors in outer solver data structures. However in our experiments
some bit-errors are still problematic. Errors in inner solver can incur high computational
overhead for convergence. Errors in outer solver can even lead to divergence failure.

With these insights, we design and evaluate error checking and recovery strategies
for inner-outer solver. Our experiments employ the Trilinos library [6], extending FGM-
RES inner-outer solver with the Global View Resilience (GVR) framework [5], use 5
matrices from the Florida sparse collection [7], running on up to 128 processes. Specific
contributions include:

— Characterizing situations where bit-errors cause resilience problems for both inner
and outer solvers in FGMRES.



— Define error rate regimes where recovery with different methods (cost, granularity)
is appropriate.

— Employ GVR programming model to implement portable and rich error check-
ing/recovery strategies.

— Evaluate each recovery method, empirically validating that they are efficient and
that each is best for regime of error rates.

The rest of the paper is organized as follows. Section 3 explores the impact of errors
in key data structures. Section 2 introduces the background of GVR and Trilinos for our
implementation. Section 4 presents error checking and recovery methods. Section 5 dis-
cusses experimental results, and Section 6 surveys related work. Finally, we summarize
and discuss future directions in Section 7.

Input:Linear system Ax = b and initial guess zo.
Output: Approximate solution .

I: ro:= Az — b, 8 :=||ro||2,q1 :=10/8

2: forj=1,...,mdo
Inner solver for inexact solution z; in ¢; = Az;
Vj41 = AZJ'
fori=1,...,5do

H(i, j) = (vj+1, @)
vjt1 := 41 — @ H(3, j)

end for

9: H(j+1,7) = [lvj4]l2

100 gj1 =v+1/H(j +1,7)

11:  y; :=argming||H(1:j+1,1: j)y — Beil||2
12: zj:=z0+ [21,---,25]Y;
13: end for

14: if converged then
15:  return z,,
16: else

17: To = T, goto 1
18: end if
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Fig. 1: Flexible GMRES with Restarting

2 GVR and Trilinos

Our implementation of fault tolerance inner-outer solver is based Global View Re-
silience (GVR) [5] and Trilinos[6]. Trilinos is an object-oriented software framework
for solving big complex science and engineering problems. Kernel classes of Trilinos
include vector, matrix, and map. It provides common abstract solvers, such as itera-
tive linear solvers and preconditioners. Based on the kernel class and solvers, Trilinos
provides comprehensive algorithmic packages such as stochastic PDEs.

GVR is a novel programming model to enable sophisticated, application-specific
fault tolerance in parallel computing. It enables the application to create global data



store (GDS) objects and design flexible, portable and efficient fault management for
each GDS object. We extend the kernel classes of Trilinos using GVR APIs. Based on
the extended kernel classes, we implement GVR enabled inner-outer solver package,
which can be directly used for other Trilinos applications. Especially, GVR facilitates
our inner-outer solver in the following aspects.

1. GDS objects are created for distributed basis vectors and solution vectors. Each
GDS object can periodically take snapshots at application specified stable point
such as the end of iteration.

2. Multiple older versions of the GDS object remain available for access. The multi-
version scheme is motivated for latent error, i.e., errors that retain undetected for
some iterations.

3. The application can provide each GDS object with specific callback routines for
error checking and error-recovery in a uniform framework. Error-recovery routines
can respond to errors raised by either the application or by the underlying system,
such as uncorrectable ECC signal from operating system.

4. Tt is flexible to configure different versioning, error-checking, and error-recovery
schemes to each GDS object. It is helpful to customize the explored strategies thus
adapting to different error rates.

In this paper, we only use limited GVR features (1 and 4) to address soft errors. We
will explore using more features in the future.

3 Error Impact on an Inner-Outer Solver

In this study, we presume that the inner solves takes most of execution time and arbi-
trarily set 30 iterations inner solver. In this scenario, the inner solver takes more than
90% execution time, which is a key factor to make trade-off between system reliability
and inner solve reliability. We will study other scenarios as a future work.

To study the impact of errors on Flexible GMRES, we inject errors randomly into
key data structures. For the inner solver, we focus on the result vector z; as the most
important data visible to the outer solver. For outer solver, we focus on the basis vectors
[v1,v2,...,0], [#1, 22, - - ., zj—1] and Hessenberg matrix H.

In this study, we focus on double precision floating-point data, which consists of 1
sign bits, 11 exponent bits, and 52 bits for mantissa. For both inner and outer solvers,
bit-flips not in the first 2 bytes only introduce a relative error <= 274 [9], thus having
little impact on execution correctness and convergence. Instead, a bit error in the first 2
bytes has high impact on the solver behaviors. Here we define the errors in the first 2
bytes of the double precision data as significant error.

3.1 Inner solver

The inner solver takes longest execution time and thus has the highest probability of
experiencing a data corruption. However, inner solver result is approximate, so error
impact is minimal if the error occurs in less significant bits. However, as shown in Fig. 2,
a significant bit error from inner solver increases the number of outer solver iterations
generally incurred 2 or 3 additional inner-outer solver iterations, which is consistent
with the study in [9]. In extreme cases, as many as 48 additional inner-outer solver
iterations can be required. Further, the error impact can accumulate. As the increasing
of errors, we observe 8 x number of inner-outer iterations in extreme cases.
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Fig.2: Distribution of additional inner-outer solver iterations incurred by significant
inner solver errors.
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Fig.3: An example of outer solver error impact on residual; a single error may cause
convergence failure.

3.2 Outer solver
The outer solver typically consumes less execution time, but errors in outer solver are

more critical for correctness and performance. In most cases, if significant errors occur
in the basis vectors or Hessenberg matrix H, the residual may increase or stay constant
for several iterations (see Fig. 3). Even a single bit-flip may lead to divergence no matter
at which iteration the bit-flip occurs.

4 Error Checking and Recovery in an Inner-Outer Solver

4.1 Inner solver: outside

First, we study outside error checking and recovery; such coarse-grained recovery is
relevant even in current-day error environments, and applies to many inner solvers such
as GMRES and CG. We exploit two symptoms to identify significant error: 1) residual
increase (vs previous iteration) and 2) the matrix H(1 : 4,1 : j) is not full rank [2]. For
these methods, checking overhead is low. Explicit residual checks can be calculated by
outer solver, as well as checks for errors in A and g;. In our experiments, the explicit
residual check incurs only take 0.2% overhead per iteration. Further, checking rank
deficiency of matrix H(1 : 7,1 : j) is essentially free as the SVD-based method to
calculate step-11 (see Fig. 1) computes the its rank directly.

There are two simple strategies for recovery. The first is recomputing the inner
solver [2], incurring high overhead since the inner solver is 90% of the computation.
Despite that, recomputation is still viable as the significant inner solver errors generally
introduce 2-3 more inner-outer solver iterations (see Fig. 2. The second is restarting
the whole computation as step-17 in Fig. 1 [2]. Restarting may lead to stagnation of
convergence, so it is employed only if recomputing fails.



4.2 Inner solver: inside

For higher error rates, it is necessary to handle the errors inside the inner solver. For ex-
ample, we can use GVR-enabled GMRES or ABFT based CG solver [3]. The crossover
for preference happens when the overhead of error recovery within the solver is less
than ignoring and later recomputing. In this study, we define the error probability as the
ratio between the number of iterations with errors and the total iterations. Suppose the
probability of inner solver error is P, and the overhead of ignoring error is ¢. Note that
re-computing still has the error probability of P, so the expected re-computing overhead
is

E(r,P)=) P*'(1-P)k= 1+% (1)
k=1

When E(r, P) > &, the recomputing of whole inner solver becomes non beneficial.

4.3 Outer solver

An ideal error checking and recovery mechanisms for outer solver would have low over-
head, high accuracy, high coverage, and iteration isolation. Iteration isolation means
to prevent error propagation to the next iteration — critical for performance overhead.
Achieving all three at once is difficult, so we study three different approaches.
Approachl: simple residual based checking If the residual increases signal error (the
residual of GMRES should decrease monotonically [1]). The strategy has only 0.2%
overhead and 100% accuracy, but the error may propagates across multiple iterations
causing multiple basis vectors to be corrupted. Recomputation of the whole inner-outer
solver iteration multiple times may produce high recovery overhead. Also it is difficult
to identify which iteration to rollback.

Approach2: double modular redundancy (DMR) checking [8]. Execute the outer
solver twice and compare. Reloading the result from previous iteration before the sec-
ond execution, can detect memory errors in the original execution. Much higher over-
head (2%-10%), but excellent coverage, accuracy, and iteration isolation.

Approach3: algorithm-based checking. Here we check theoretical conditions during
steps 4-13 such as the orthogonality relationship of basis vectors viTHvi = 0 [3] and
Hessenberg matrix norm bound |h; ;| < ||A||# [9]. This approach has higher overhead
than the residual based check and lower overhead than DMR based checking. For ex-
ample, our studies show calculating vﬁ_lvi = 0 incurs around 0.5% overhead However,
this fine-grained approach only provides partial coverage.

The best checking approach depends on error rate and location. Low error rates war-
rant coarse-grained methods (first approach), moderate error rates (second approach),
and at high error rates, aggressive fine-grained approaches to containment and recovery
are required. We validate these tradeoffs in our experiments in Section 5.

5 Experiments

Based on our implementation from GVR and Trilinos, we run 128 processes with 5
matrices from the Florida sparse collection. The data is the average result of 1,000 error
trials for each error probability and matrix. As the error impact studies, we mainly focus
on significant error in the first 2 bytes of double precision data.



5.1 Inner solver

To explore a range of error rates, we vary error probability in the inner solver result
vector z;. The recomputing is triggered only if the inner solver residual becomes 100 x
larger than the previous iteration. We compare the total execution time without recovery
and with a our resilience method. We calculate the slowdown as the ratio between the
total execution time with errors and the failure-free execution time.

Our results of slowdown (see Fig. 4) show that recomputing based recovery out-
performs original FGMRES without error checking for low error rates. Without restart-
ing, the recomputing-based recovery becomes non-viable when the error probability is
higher than 60% — consistent with Equation 1 — as each significant error introduces
around 200% overhead, i.e., © = 2. So when probability of significant error is > 50%,
E(r, P) > © and recomputing the whole inner solver is not beneficial.

With restarting, recomputing is infeasible for error rates higher than 40%; even
lower than without restarting. Restarting can relieve the error accumulation, especially
for the errors occurring at the end of the restart cycle.
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Fig. 4: Execution slowdown - recomputing based recovery, various approaches.

5.2 Outer solver

In the first set of experiments, we inject a single error in outer solver and study the
performance of Approach-1 and Approach-2 (residual based checking and restarting),
using FGMRES without/with restarting as baseline). The original FGMRES without
restarting does not converge (see Fig. 3). Approach-1 can guarantee the convergence
because the error is removed after restarting with 7.1% performance overhead in aver-
age. However, Approach-1 has the disadvantage of detection latency which may intro-
duce higher overhead. In one extreme case the error is detected 70 iterations after the
injection incurring 34.2% of the performance overhead.

Original FGMRES with restarting can also remove the single error. However, with-
out detection, the error remains until the end of restarting cycle incurring high overhead.
For example, matrix mhd4800b with restarting length m = 200 incurs 260.7% over-
head. Approach-1 can detect errors much earlier with only 2% of performance overhead
in average. A simple strategy for original FGMRES is to reduce restarting length and



remove errors earlier. However, short restarting length can lead to stagnation of con-
vergence since the subspace is too small. For example, FGMRES with m = 25 has
438.1% longer execution time than the case with m = 200. Therefore Approach-1 with
long restarting length outperforms the original FGMRES with short restarting length. In
addition, Approach-1 also outperforms Approach-2 for single error. Approach-2 gener-
ally introduces 11.3% of overhead, which is much higher because every outer iteration
is forced to execute twice.

In additional experiments, we inject multiple errors. In Table 1, we present the ex-
ecution overhead versus recovery strategy under various error probability for the outer
solver. For higher error rates, both original FGMRES with restarting and Approachl are
not viable as errors may occur in each restarting cycle even after restarting. In constrast,
Approach-2 successfully addresses the high error probability with relatively small over-
head because it can isolate the errors in each iteration. Approach-2 and Approach-3
shows no significant improvement over Approach-2 because the outer solver execution
time is short and Approach3 has limited error check coverage.

Table 1: Execution overhead of error checking/recovery strategies under different error
probability of outer solver.

Error Probability FGMRES w/ restarting| Approach1|Approach2|Approach2 + Approach3
10% 1682.5% 909.5% |16.4% 14.8%
20% divergence 3616.6% |17.6% 15.8%
30% divergence divergence |19.8% 17.1%
40% divergence divergence |23.4% 20.7%
50% divergence divergence |27.5% 24.1%
60% divergence divergence |34.4% 30.4%
70% divergence divergence |46.5% 42.2%
80% divergence divergence |70.3% 53.4%
90% divergence divergence [140.5%  |77.2%

6 Related work

In large-scale system, traditional studies have focused on system level checkpoint/restart
to tolerate fail-stop process failures [16]. As the growing concern around soft errors,
more recent studies have focused on application level and cross layer solutions, es-
pecially for numeric solvers. Huang and Abraham developed the checksums based
algorithm-based fault tolerance (ABFT) technique for matrix operations [11]. In [3],
Chen developed theoretical conditions based error checking for Krylov subspace iter-
ative methods. In [4], Bronevetsky analyzed soft error vulnerability for linear solvers.
In [10], fault tolerant PCG solver is presented for sparse linear systems. Du presented
encoding strategy for LU factorization based dense liner systems [17]. Unlike these
works, this study is focusing on inner-outer solver.

The studies on fault tolerant inner-outer solver are limited. In [18], Chen analyzed
flexible BiCGStab to bound the inner solver error for convergence. In [9], Elliott stud-
ied the impact of inner solver error in FGMRES. In [2] FGMRES solver was extended
to tolerate inner solver error. Distinguished from these studies, this paper presents com-
prehensive error analysis for FGMRES and develops GVR-enabled methods for both
inner and outer solvers under various error rate.



7 Conclusion

We analyze the impact of bit-flip errors on the FGMRES inner-outer solver, which
can lead to divergence failure or extreme high computation overhead. Based on the
analysis results, we design the error checking/recovery strategies for inner solver and
outer solver. We implement it by extending Trilinos solver library with our Global View
Resilience (GVR) system. Our experimental results illustrate that our GVR-enabled
inner-outer solver successfully tolerate the bit flip errors for execution convergence with
low performance overhead.
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