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Outline

• RITS-6 Accelerator.

• SMP diode Configuration with typical current profiles.

• Study of different materials-based changes to ‘standard’ Reynold’s foil baseline design:

• Al-coatings on Ta surface

• Silver emulsion paint on cathode tip replaced by various materials

• ‘Limited’ anode targets

• ‘Large’ and ‘Small’ cathode radii lead to differing results

• Summary
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SMP Diode Research Has Been Conducted on the RITS-61

Pulsed-Power Accelerator
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Radiographic Integrated Test Stand (RITS-6)

[1] D. Johnson, et al., in Proc. 15th IEEE Int. Pulsed Power Conf (IEEE, Jun. 13-17, 2005) pp. 314–317.
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RITS-6 is a 8-12 MV 
Marx driven six-stage 
Inductive Voltage 
Adder (IVA) capable 
of driving a variety of 
diode configurations



Schematic View of Load and SMP Diode Region
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• Negative Polarity

• Current here measured at 3 
locations: IFEED (before field 
shaper), IBEAM (R > 
cathode), and IDIOD (total 
current)

• ‘Standard’ diode hardware:

• Silver-painted cathode

• Al ‘Reynold’s’ foil over 1 
mm Ta plate, separation 
0.8 mm

• Al beam stop

Anode materials
• Al foil
• 1 mm Tantalum 

plate
• 16 mm Aluminum 

beam stop (3 
spaced-out 
layers) 

Cathode materials
• Al tubular cathode 

with hollowed out 
end

• Silver emulsion 
paint applied to tip

• ‘SMALL’ and 
‘LARGE’ cathode OD 
designs

RITS Output / ‘Dustbin’ 

Close-Up of Diode Region
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Photograph of anode in place



Goal of this work: improve impedance and decrease focal spot size 
by changing anode and cathode materials
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• SMP Zload(t) affected by evolution of high-energy electrons and ions, as well 
as by plasma evolution from anode and cathode 

• (Above) Typical current evolution: IBEAM and IFEED increase gradually 
through power pulse, IFEED reaches IBEAM at end of pulse. For Z collapse, 
IBEAM shows inflection, followed by jump in IFEED.

• ‘Large’ cathode: little evidence of overt A-K collapse. ‘Small’ cathode: 50% of 
shots show this. 

• ‘Limited’ anode: use small High-Z spot surrounded by low-Z, w/ and w/o foil.
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Diode Parameters

• 6-8.5 MV

• 150 kA (~15% ions)

• 50  Impedance

• 70ns Electrical Pulse

• 45ns Radiation Pulse

• A-K gap ~ 10mm, hollow 
cathode           

• 2Rc/d ~ 1 for optimal 
operation
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Study of contaminant evolution off ‘Reynold’s foil
suggests replacement with cleaner foil could extend Z lifetime

• Samples of UHV-grade Al foil and 
Reynold’s Wrap (10 cm long ~few 
mm wide) mounted in RITS and 
pumped down, removed and each 
mounted separately in offline 
vacuum tank. Base pressure ~ 2e-7 
Torr (several days). 

• Foil strip subjected to ~ 3A heating 
current for ~ 5 sec. 

• (LEFT) Screen captures of RGA 
response. Vertical axis (all) peak 
1e-7 Torr for partial pressures. 
AMU scan (horizontal) 1 - 49. 

• (TOP) UHV Foil: NO CHANGE in 
RGA profile after heating. 

• (BOTTOM) Reynold’s Wrap: H, H20 
double, N2 5x 1 minute after 
heating. Total partial pressure up 
by 5X. N2, O2, and CO2 back to 
normal after 2 mins (below), H2O 
only after 5 mins. 

UHV Foil before 5 sec heating UHV Foil after 5 sec heating

Reynolds Foil before 5 sec 
heating

Reynolds Foil 1 min after 5 sec heating

2 mins



Materials Study are a Work in Progress. Summary of results so far

• ‘Large’ cathode:

• Replace ‘Reynold’s’ Al with UHV foil. Based upon DC heating results (previous slide). Result: 
slight reduction in x-ray dose and pulsewidth.

• Replace Reynold’s Foil-bare Ta plate with Al coating (~ 1µm thick) directly on Ta surface. 
Result: 40% reduction in x-ray yield, slight reduction in pulsewidth. Little evidence of A-K 
gap closure.

• ‘Small’ cathode:

• Replace Reynold’s Foil-bare Ta plate with Al coating (~ 1µm thick) directly on Ta surface. 
Result: Best shots equivalent to Reynold’s baselines. Average: reductions in x-ray 
pulsewidth. Clear evidence in every configuration of A-K gap closure on ~ 50% of shots.

• Remove Reynold’s Foil, leave bare Ta plate as-provided (one datapoint).                         
Result: slight reduction in x-ray dose, reduction in pulsewidth. Longer pulsewidth than Al-
coated Ta. 

• ‘Limited’ anode:

• Ta center buttons of 1, 2, and 3mm diameter within Al or C substrates, behind foil.        
Result: reductions in spot size, equivalent impedance to Reynold’s baseline.

• Ta or W center buttons of 1-3 mm diameter within Al substrates, no foil.                          
Result: reductions in spot size, good impedance behavior. 

• Ta or W center buttons of 1-3 mm diameter within C substrates, no foil.                           
Result: as-provided C, early impedance collapse. Al-Coated C, impedance behavior              
as good or better than Reynold’s baseline.
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Summary of results so far (continued)

• Cathode paint changes:

• Replace paint with carbon suspension. Result: early impedance collapse.

• Remove paint (as-provided Al surface). Result: early impedance collapse.

• Replace paint with deposited silver coating. Result: early impedance collapse.

• Replace paint with deposited carbon coating. Result: early impedance collapse.

• Summary of summaries:

• Al-coating on Ta cathodes produces same performance at best, average worse performance 
compared to Reynold’s foil baseline. 

• A bare Ta cathode provides reasonable impedance performance.

• Al-Coating a carbon substrate (limited anodes) produces clear benefit as compared to as-
provided carbon substrate.

• Every substitute for silver paint emulsion on cathode tip produces inferior impedance 
performance. 
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Reynold’s Baseline cathode compared to 
1) Al-coated Ta and 2) Bare Ta cathode

Pulsed Power Sciences, Sandia National Laboratories
TJR 7/30/2010

• (LEFT): IDIODE(ave) and scaled P-I-N output 
(PIN4) waveforms compared for three Small 
cathode shots

• Shot 1032 - Reynold’s baseline 

• Shot 1028 - Al-coated Ta

• Shot 1030 - Bare Ta as-provided

• 1032 IDIOD (Blue) shows flat-top current, 
longest duration PIN4 (green) 

• 1030 IDIOD (red) shows late-time rise, 
correlated with earlier drop in PIN4 compared 
to 1032

• 1028 IDIOD (white) rises sooner than 1030, 
and PIN4 drops sooner. 1028PIN4 has 
shortest duration of the 3 shots. 

• IBEAM and IFEED comparisons similar to 
IDIOD

• High-frequency oscillations caused by cavity 
oscillations in ‘Dustbin’, not connected with 
impedance performance



Imaging Streak Camera data for 1032 Reynolds (left) and

1028 Al-coated Ta show tighter cathode pinch on 1032
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Al-coating on carbon substrate improves impedance lifetime
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• (LEFT): IDIODE(ave), IFEED(ave) and 
scaled P-I-N output (PIN4) waveforms 
compared for two Large Cathode shots:

• Shot 1071 - Ta button 2mm on carbon 
as-provided substrate, Ta protrudes 0.5 
mm out of surface

• Shot 1019 - W button 2 mm on Al-
coated carbon substrate, W protrudes 
0.5 mm out of surface

• 1019IFEED increases quickly late in pulse, 
and DIOD shows similar late-time rise

• 1071IFEED rises quickly ~ 20 ns before 
1019IFEED increase. 1071IDIOD has similar 
quick rise ~ 20 ns earlier than 1019IDIOD 

• Both PIN4 signals drop before these features 
(above) appear on their respective 
waveforms. 

• 1019PIN4 - triangular in shape, indicates 
beam wander off 2 mm W button

• 1071PIN4 - drop is much quicker after peak.

Raised Limited
Target (0.5mm)

Photograph of 
Limited Target



Pure Ag-coated cathode tip produces much shorter impedance 
history than Reynold’s silver emulsion paint baseline
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• (LEFT): IDIODE(ave) and scaled P-I-N output 
(PIN4) waveforms compared for:

• Shot 1032 - (Small cathode) Reynold’s 
Baseline

• Shot 1072 - Silver emulsion paint 
replaced with pure silver coating ~ 1 
micron thick 

• 1032IDIOD shows faster turn-on and rise 
intially, then overtaken by 1072IDIOD 

• 1072PIN4 early-time rise matches 1032PIN4, 
but drops quickly after



Summary and future work

• Coatings if successful have the potential for improved diode dimensional control and 
repeatability compared to emulsion paints and foils. 

• Experiments to date show mixed performance for coatings tested. At best, they can 
duplicate baseline performance. At worst, performance shows significant deterioration. 

• So far, only clear superiority of (Al) coatings is on carbon substrate for limited anode. 

• Neither current diagnostic data nor simulations can explain this difference in 
performance. 

• Future diagnostic fielding and intercorrelation of data, as well as improved simulations 
(including contaminant characterization, temperature thresholds for surface emission, 
etc), is best hope for understanding behavior reported here. 
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