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Model Hierarchy and Notations

θ {p1 . . . p21}
type II/III

type I

{x1 . . . x5}
h(p)
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f(x, d)
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θ = {θ1,1, . . . , θ1,8, θ2,1, . . . , θ2,7, . . .} - set of epistemic
parameters

θ → p - Uniform, Gaussian, Beta distributions (for type II/III
parameters)

p → x is computationally cheap

x → g is computationally expensive
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Problem A - Model Calibration

Employ a Bayesian framework to characterize the epistemic
variables for the input parameters of submodel h1

p(θ1|D) = LD(θ1)p(θ1)/p(D)

Posterior Likelihood Prior Evidence

uniform priors for all parameters with bounds specified by
the problem setup

Data D consists of either 25 or 50 independent samples of
x1 values.

Likelihood LD(θ1) =
∏Nd

i=1 p(x1,i |θ1)

The posterior probability is sampled using a Markov Chain
Monte Carlo algorithm
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Likelihood Construction

Input: θ1 = {θ1,1, . . . , θ1,8}, Algorithm knobs: Nspl,Nbin

Output: LD(θ1)
1 Generate Nspl sets of (p1, . . . , p5):
2 foreach k = 1, . . . ,Nspl do
3 p1,k ∼ Beta(α(θ1,1, θ1,2), β(θ1,1, θ1,2))
4 p2,k = θ1,3

5 p3,k ∼ U[0, 1]
6 (p4,k, p5,k) ∼ N[µ(θ1,4, θ1,5),Σ(θ1,6, θ1,7, θ1,8)]

7 end
8 {x1|θ1} = {h1(pk), k = 1, . . . ,Nspl}

9 Evaluate p(x1,i), i = 1, . . . ,Nd by binning the {x1|θ1} ensemble
10 Evaluate LD(θ1) =

∏Nd
i=1 p(x1,i |θ1)
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Posterior Distributions-1D and 2D marginals
While computationally expensive, the Bayesian framework allows the
computation of full posterior distributions based on available data
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1D Posterior Marginals Based on 25 and 50 x1 Values

Generally, more data points lead to sharper PDF’s for the parameters
that are informed by the data
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Approximate Bayesian Computations

Full calibration is expensive - each likelihood evaluation
requires 105 h1 model evaluation for approximately 105 − 106

MCMC samples.

LD(θ) ∝
1
ǫ

K

(

‖s(D∗(θ))− s(D)‖

ǫ

)

‖s∗ − s‖ =

√

√

√

√

Ns
∑

i=1

(s∗i − si)
2

s - summary statistics based
on provided data

s∗ - summary statistics based
on simulated data
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Approximate Bayesian Computations

Comparison of summary
statistics based on ABC

computations
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The ABC methodology is about two orders of magnitude less
expensive compared to the full Bayesian approach.
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Problem B - Sensitivity Analysis

Employ variance-based Global Sensitivity Analysis (GSA) to
understand the effects of the epistemic variables θ and the
aleatoric parameters p on the intermediate variables x and the
Quantities of Interest (QoI) J1 and J2.

Use Sobol indices to understand the connectivities
between p and x and between θ and x, and address
question B1

Employ a cut-HDMR approach to answer B2 and B3 about
J1 and J2.
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Sobol Indices

First order sensitivity:

Si =
Var[E(h(p)|pi)]

Var[h(p)]
,

Total order sensitivity:

ST
i =

E[Var(h(p)|p−i)]

Var[h(p)]

Joint sensitivity:

Sij =
Var[E(h(p)|pi , pj)]

Var[h(p)]
− Si − Sj ,
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Sobol Indices p → x = h(p)

h1
Si ST

i

p1 95.80 97.20
p2 0.20 0.01
p3 0 0
p4 3.00 0
p5 3.40 4.00

h2
Si Sij

p7 p8 p9 p10

p6 7.57 82.50 0.22 0.08 0.01
p7 6.66 - 0.28 0.14 0.01
p8 0.27 - - 0.01 0
p9 0.11 - - - 0
p10 0 - - - -

h3
Si Sij

p12 p14 p15

p11 1.07 0.88 0.03 0
p12 92.53 - 2.97 0.19
p14 2.22 - - 0
p15 0.20 - - -

h4
Si Sij

p17 p18 p20

p16 42.76 28.02 1.63 0.17
p17 11.17 - 0.40 0.03
p18 14.42 - - 0.05
p20 0.36 - - -

Some parameters have negligible effect on select sub-model
variances
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Sobol Indices θ → Ap−box

“Area” of a p-box is defined as

∫ maxi(xi)

mini(xi)
(max

θi

F(xi |θi)− min
θi

F(xi |θi))dxi

h1:
p1 p2 p5

θ1,1 θ1,2 θ1,3 θ1,5 θ1,7

0.67 0.42 0.35 0.33 0.33 0.32 0.47 0.56 0.38 0.35

h2:
p6 p7 p8

θ2,1 θ2,2 θ2,3 θ2,4 θ2,5

0.27 0.52 0.23 0.05 0.04 0.04 0.03 0.03 0.03 0.03

h3:
p12 p13 p14 p15

θ3,1 θ3,2 θ3,3 θ3,4 θ3,5 θ3,6 θ3,7

0.95 0.11 0 0 0 0 0 0 0 0 0 0 0 0

h4:
p16 p17 p18

θ4,1 θ4,2 θ4,3 θ4,4 θ4,5

0.25 0.83 0.02 0.01 0.01 0.01 0.03 0.01 0.01 0.01
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High-Dimensional Model Representation (HDMR) to
Examine the Relative Impact of θ on J1 and J2

The model output is expressed in terms of a hierarchy of
functions that account for the interaction between model
parameters

M(θ) = f0 +
n

∑

i=1

fi(θi) +
∑

1≤i<j≤n

fij (θi , θj) + . . .

Resort to a “cut-HDMR” approach to compute the component
functions f :

f0 = M(θ0)

fi(θi) = M(θi , θ
0
−i)− f0

fij (θi , θj) = M(θi , θj , θ
0
−ij )− fi(θi)− fj(θj)− f0

. . .
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HDMR Component Functions approximated via
Polynomial Chaos Expansions

We adopt a Polynomial Chaos (PC) representation for the
HDMR component functions. For univariate components:

fi(θi) ≈
K
∑

k=0

ci
kΨk(ξi(θi))

while for bi-variate components the PC approximations are
given by

fij (θi , θj) ≈
∑

0≤k1,k2
k1+k2≤K

cij
k1,k2

Ψk1(ξi(θi))Ψk2(ξj(θj))

Since θ have bounded support, we choose a Legendre-Uniform
basis with ξi ∼ U[−1, 1] and Ψk the Legendre polynomial of
order k.
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PC Expansion Coefficients Computed via Galerkin
Projection

Using the orthogonality of basis terms:

ci
k =

〈(M(θi , θ
0
−i)− M0)Ψk〉

〈Ψ2
k〉

For univariate coefficients, 5 model M evaluations are
necessary for a 3rd order expansion

Each model evaluation requires about 5 × 104 g(x)
evaluations to obtain converged values for M = J1 and
about 104 evaluations for converged M = J2 values.
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Rank p(θ) based on Fractional Contribution to the Total
Variance of J1 and J2

Fractional contribution of each input parameter to the total
variance of the model:

Vi =
K
∑

k=1

(ci
k)

2〈Ψ2
k〉

Rank J1 J2

p Vp/max(Vp) p Vp/max(Vp)

1 p21 1 p1 1
2 p1 0.17 p12 0.26
3 p5 0.02 p5 0.14
4 p7 0.02 p14 2 × 10−3
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Problem C - Uncertainty Propagation

Employ a nested sampling approach to quantify the probability
distributions for the Quantities of Interest (QoIs) J1 and J2

Sample epistemic
space θ

Sample aleatoric
space p

J1(θ), J2(θ)

PDF(J1)

PDF(J2)

Nθ = 5, 000 and Np = 1, 000 samples in the outer and inner
loop, respectively
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Histograms of J1 and J2 based on Original Epistemic
Information
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Histograms of J1 and J2 based on Improved Epistemic
Information
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Problem E - Robust Design

Extend the nested sampling approach to determine the optimal
values for design variables d

Find optimal values of

d ∈ R
14 resulting in minimal

upper bound of J1

Find bounds on J1

given epistemic

parameters θ ∈ R
30

Determine J1 given

p ∈ R
21
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Problem E - Algorithm Choices in Dakota
Design Optimization

Tailored approach: exploit well-behaved functionals, use
gradient-based optimization or adaptive GP
surrogate-based optimization (e.g. efficient global
optimization, EGO).
Fallback approach: genetic algorithm or pattern search.

Epistemic Uncertainty

Tailored approach: Adaptive Gaussian-Process based
interval optimization methods (variant of EGO). Can also
use gradient-based optimization to determine bounds.
Fallback approach: LHS.

Aleatory Uncertainty

Tailored approach: exploit solution smoothness of
response, use Polynomial Chaos Expansions with
Compressed Sensing to reduce dimensionality.
Fallback approach: LHS sampling. Reason: aggregation of
8 performance metrics and selecting the max results in
nonlinear behavior and possible discontinuities
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Summary

Employed probabilistic methodologies to handle inverse and
forward UQ studies for the models posed by the NASA LaRC
UQ challenge.

The calibration exercise is performed in a Bayesian framework.
Posterior distributions are compared with results based on
Approximate Bayesian Computation concepts.

Variance-based Global Sensitivity Analysis for the effects the
epistemic and aleatoric inputs have on models h and on the
statistics J1 and J2.

Double-nested sampling loop for forward UQ. Methodology
challenged by the computational expense and the multi-modal
behavior in the computation of QoIs.

Proof-of-concept triple-nested loop for the design optimization
exercise.
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