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Model

Model Hierarchy and Notations

max g
[fF—— ype W ‘ {p1...pa} }@,{ {x1...%s} }—' 9 {01...08} }—":1”‘8

@ 0={011,...,018,021,...,027,...} - set of epistemic
parameters

@ 0 — p - Uniform, Gaussian, Beta distributions (for type II/IlI
parameters)

@ p — xis computationally cheap
@ X — gis computationally expensive
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Problem A - Model Calibration

Employ a Bayesian framework to characterize the epistemic
variables for the input parameters of submodel h;

P(01/D) = Lp(61)p(61)/p(D)
A / AN ™

Posterior  Likelihood Prior Evidence

@ uniform priors for all parameters with bounds specified by
the problem setup

@ Data D consists of either 25 or 50 independent samples of
X; values.

@ Likelihood Lp(61) = T, p(xi|61)

The posterior probability is sampled using a Markov Chain
Monte Carlo algorithm
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Likelihood Construction

Input: 01 = {611, ..., 018}, Algorithm knobs: Nsp|, Npin
Output: Lp(61)

1 Generate Nsp sets of (pg,...,Ps):

2 foreachk=1,...,Nsp do

3 | pik~ Betaa(f11,012),8(011,012))

4 Pok = 013

5 psk ~ U[0,1]

6 | (Pak, Psk) ~ N[u(014,015),3(016,017,018)]

7 end

8 {xulo,} = {h(pi), k=1,...,Nepi}

9 Evaluate p(xq), i = 1,...,Ng by binning the {x;|61} ensemble

10 Evaluate Lp(61) = [T, p(x1i]61)
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probA

Posterior Distributions-1D and 2D marginals
While computationally expensive, the Bayesian framework allows the
computation of full posterior distributions based on available data

011 | E[p1]
012 | V[pi]
013 | P3
01,4 | E[p4]
015 | E[ps]
016 | V[p4]
017 | VIps|
— ' f18 | p[P4, Ps]
By

Results based on 50 x; values
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probA

1D Posterior Marginals Based on 25 and 50 x; Values

Generally, more data points lead to sharper PDF'’s for the parameters
that are informed by the data

91,1 91,2 01,3

2014-1497 C. Safta (csafta@sandia.gov) NASA UQ Challenge



probA
Approximate Bayesian Computations

Full calibration is expensive - each likelihood evaluation
requires 10° h; model evaluation for approximately 10° — 106
MCMC samples.

=
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@ s- summary statistics based
on provided data

@ s' - summary statistics based
on simulated data
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probA

Approximate Bayesian Computations

Comparison of summary Comparison of 1D marginal

statistics based on ABC PDFs
computations . .

Quantiles

5000 6000 7000

( 000 2000 3000 4000
sample id

The ABC methodology is about two orders of magnitude less
expensive compared to the full Bayesian approach.
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Problem B - Sensitivity Analysis

Employ variance-based Global Sensitivity Analysis (GSA) to
understand the effects of the epistemic variables ¢ and the
aleatoric parameters p on the intermediate variables x and the
Quantities of Interest (Qol) J; and J,.

@ Use Sobol indices to understand the connectivities
between p and x and between 6 and x, and address
guestion B1

@ Employ a cut-HDMR approach to answer B2 and B3 about
J; and J.
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probB
Sobol Indices

First order sensitivity:

Total order sensitivity:

Joint sensitivity:
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probB

Sobol Indices p — x=h

hy hy
S S S 5
p7 Ps Po P10
p1 | 95.80 | 97.20 Ps 757 | 8250 022 008 001
p2 0.20 0.01 p7 6.66 - 0.28 014 001
ps 0 0 ps | 0.27 - - 0.01 0
P4 3.00 0 Po 0.11 - - - 0
ps 3.40 4.00 P10 0 - - - -
hs hy
S Si S S
P12 P1a P1s P17 P1s P20
P11 1.07 | 0.88 0.03 0 pis | 42.76 | 28.02 163 0.17
p12 | 92.53 - 297 0.19 p1z | 11.17 - 0.40 0.03
P1a 2.22 - - 0 Pis 14.42 - - 0.05
P1s 0.20 - - - P20 0.36 - - -

Some parameters have negligible effect on select sub-model
variances
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probB
Sobol Indices 6 — Ay_pox

“Area” of a p-box is defined as

maxi () _
/ (max F(x|6;) — minF(xi|6;))dx
mini(x) 0 o
P1 P2 Ps
h]_: 011 012 013 015 01,7
0.67 [ 0.42 | 0.35 [ 0.33 [ 0.33 [ 0.32 | 0.47 [ 0.56 [ 0.38 | 0.35
Ps p7 Ps
ho: 02,1 02, 023 02,4 025
0.27 | 0.52 | 0.23 [ 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 [ 0.03
P12 P13 P14 P1s
ha: 031 03,2 033 03,4 035 036 037
095]/011|0Jo[oJoJoJo[OoJOoJoOoJO|O]O
P1e P17 Pis
ha: 041 (2% 043 04,4 04,5
0.25 \ 0.83 | 0.02 \ 0.01 | 0.01 \ 0.01 | 0.03 \ 0.01 | 0.01 \ 0.01
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probB

High-Dimensional Model Representation (HDMR) to

Examine the Relative Impact of § on J; and J,

The model output is expressed in terms of a hierarchy of
functions that account for the interaction between model
parameters

M@O) =fo+ > fiB)+ > f(6i,6)+...
i=1

1<i<j<n

Resort to a “cut-HDMR” approach to compute the component
functions f:

f.(6;) = M(6;,6°,) — fo
fij (61, 6,) = M(6;,6;,0%) —fi(65) — §(6) —Fo
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probB

HDMR Component Functions approximated via

Polynomial Chaos Expansions

We adopt a Polynomial Chaos (PC) representation for the
HDMR component functions. For univariate components:

K
SDBCAGICH)
k=0
while for bi-variate components the PC approximations are
given by
f” 0|, 0] Z Ckl kZ\IIkl £| ))\Ijkz (5] (01))
0<ky ks
ki+ko <K

Since ¢ have bounded support, we choose a Legendre-Uniform
basis with & ~ U[—1,1] and ¥y the Legendre polynomial of
order k.
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probB

PC Expansion Coefficients Computed via Galerkin

Projection

Using the orthogonality of basis terms:

~((M(6;,6%) — Mo) W)
K (T2)

@ For univariate coefficients, 5 model M evaluations are
necessary for a 3rd order expansion

@ Each model evaluation requires about 5 x 10* g(x)
evaluations to obtain converged values for M = J; and
about 10* evaluations for converged M = J, values.
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probB

Rank p(@) based on Fractional Contribution to the Total

Variance of J; and J,

Fractional contribution of each input parameter to the total
variance of the model:

K
Vi = Z(CL)ZOI’@
k=1

Rank Ji Jo

P | Vp/max(Vp) | p | Vp/ max(Vp)
1 P21 1 P1 1
2 o1 0.17 P12 0.26
3 Ps 0.02 Ps 0.14
4 974 0.02 pua| 2x10°8
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Problem C - Uncertainty Propagation

Employ a nested sampling approach to quantify the probability
distributions for the Quantities of Interest (Qols) J; and J,

PDF(J;)
PDF(J,)

@ Ny = 5,000 and N = 1,000 samples in the outer and inner
loop, respectively
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Information

probC/D

Histograms of J; and J, based on Original Epistemic
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probC/D

Histograms of J; and J, based on Improved Epistemic

Information
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@ Results based on Ny = 5,000 and N, = 10,000 samples in
the outer and inner loop, respectively
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Problem E - Robust Design

Extend the nested sampling approach to determine the optimal
values for design variables d

Find optimal values of
d € ;™ resulting in minimal
upper bound of J;

Find bounds on J;
given epistemic

parameters 9 € R

2014-1497 C. Safta (csafta@sandia.gov) NASA UQ Challenge



Problem E - Algorithm Choices in Dakota

@ Design Optimization
@ Tailored approach: exploit well-behaved functionals, use
gradient-based optimization or adaptive GP
surrogate-based optimization (e.g. efficient global
optimization, EGO).
o Fallback approach: genetic algorithm or pattern search.
@ Epistemic Uncertainty
@ Tailored approach: Adaptive Gaussian-Process based
interval optimization methods (variant of EGO). Can also
use gradient-based optimization to determine bounds.
@ Fallback approach: LHS.
@ Aleatory Uncertainty
@ Tailored approach: exploit solution smoothness of
response, use Polynomial Chaos Expansions with
Compressed Sensing to reduce dimensionality.
@ Fallback approach: LHS sampling. Reason: aggregation of
8 performance metrics and selecting the max results in
nonlinear behavior and possible discontinuities
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Summary
Summary

@ Employed probabilistic methodologies to handle inverse and

forward UQ studies for the models posed by the NASA LaRC
UQ challenge.

The calibration exercise is performed in a Bayesian framework.
Posterior distributions are compared with results based on
Approximate Bayesian Computation concepts.

Variance-based Global Sensitivity Analysis for the effects the
epistemic and aleatoric inputs have on models h and on the
statistics J; and J,.

Double-nested sampling loop for forward UQ. Methodology
challenged by the computational expense and the multi-modal
behavior in the computation of Qols.

Proof-of-concept triple-nested loop for the design optimization
exercise.
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