sAND95-026Y

Time Efficient 3-D Electromagnetic Modeling on
Massively Parallel Computers

David L. Alumbaugh and Gregory A. Newman
Sandia National Laboratories '

P.0. Boz 5800 MS 0750
Albuquerque, NM 87008

Abstract

A numerical modeling algorithm has been developed to simulate the electromagnetic re-
sponse of a three dimensional earth to a dipole source for frequencies ranging from 100Hz to
100MHz. The numerical problem is formulated in terms of a frequency domain - modified vector
Helmholtz equation for the scattered electric fields. The resulting differential equation is ap-
proximated using a staggered finite difference grid which results in a linear system of equations
for which the matrix is sparse and complex symmetric. The system of equations is solved using
a preconditioned quasi-minimum-residual method.

Dirichlet boundary conditions are employed at the edges of the mesh by setting the tangential
electric fields equal to zero. At frequencies less than 1MHz, normal grid stretching is employed
to mitigate unwanted reflections off the grid boundaries. For frequencies greater than this,
absorbing boundary conditions must be employed by making the stretching parameters of the
modified vector Helmholtz equation complex which introduces loss at the boundaries.

To allow for faster calculation of realistic models, the original serial version of the code has
been modified to run on a massively parallel architecture. This modification involves three
distinct tasks; 1) mapping the finite difference stencil to a processor stencil which allows for the
necessary information to be exchanged between processors that contain adjacent nodes in the
model, 2) determining the most efficient method to input the model which is accomplished by
dividing the input into ”global” and "local” data and then reading the two sets in differently,
and 3) deciding how to output the data which is an inherently non-parallel process.

1 Introduction

Great strides have been made over the last decade in finite difference electromagnetic (EM) modeling
of three dimensional (3-D) structures for geophysical purposes. Druskin and Knizherman (1988
and 1994), Smith (1992), Wang and Hohmann(1993), and Newman (1995) all employ some type
of staggered finite difference grid (Yee,1966) to solve for the EM fields in both the time and/or
frequency domain. However, even with these computationally efficient solutions, the complexity,
and thus the realism of the models that can be simulated on traditional serial computers is limited
by memory and flop rate of the processor.

With the rapid advancements in massively parallel computers the limitations posed by serial
computers is disapearing. This is due to the fact that the rate at which the simulations can proceed
is dramatically increased because thousands of processors can operate on the problem simultaneously.
In this paper we examine the implementation of a frequency domain-finite difference (FD-FD) scheme
on a parallel platform and demonstrate its usefulness over a wide frequency range for different types
of geophysical scenarios.

2 Theoretical Devlopment

In order to simulate the EM response of a 3-D earth, we numerically solve the frequency domain
version of the vector Helmholtz equation for the scattered electric fields using a finite difference
approximation on a staggered grid(Yee ,1966). The FD solution we shall outline has been designed
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to compute the 3-D EM response for a wide variety of earth properties for frequencies ranging
from approximately 100 hz up to 100 Mhz. This scheme is similar to those outlined in Alumbaugh
and Newman (1994) and Newman and Alumbaugh (1995a), but has been extended as described in
Alumbaugh et al.(1995) to include both variable magnetic permeability as well as absorbing boundary
conditions (ABCs). The ABCs are required to simulate the response for frequencies greater that
10 Mhz as without them erroneous results are produced. We have chosen to employ the ”perfectly
matched layer” (PML) absorbing boundary conditions originally developed by Berenger(1993) for 2-
D time-domain calculations and later modified for 3-D by Katz et al. (1994) and Chew and Weedon
(1994). This method uses a modified form of the Helmholtz equation in which the absorption is
incorporated through the use of complex grid stretching.

Because the responses we are interested in simulating, for example airborne EM simulations,
often employ a dipole source located far away from zones of anomalous electrical properties, we have
chosen to work with the scattered field versions of the governing equations. Often this allows us
to employ a coarser discretization about the source location than would be employed with a total
field solution and helps to limit storage overhead. In addition, because the scattered field versions of
Maxwell’s equations numerically decouple in the air at low frequencies (< 10MHz) we have chosen
to work with the scattered electric field version of the modified Helmholtz equation instead of the
coupled Maxwell system, which has the form
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In these equations the electrical conductivity , magnetic permeability and dielectric permitivity are
denoted by o, i, and ¢, respectively, with the ’p’ designating a whole-space background value, ES
and EP are the scattered and primary electric field whose sum is equal to the total electric field, and
e; and h; for i=x,y,z are coordinate stretching variables which stretch the x,y, and z coordinates.
As shown in Chew and Weedon (1994), when e; and h; are complex then the medium is perfectly
absorbing. Note that the terms at the end of equation (1) are ”equivalent source” terms which are
calculated wherever the properties of the medium are different from that of the assumed background.
The boundary conditions employed are Dirichlet conditions, i.e., the tangential component of ES is
set to zero on the grid boundary.

The scattered electric fields are assigned to each cell following the staggered grid scheme given
in Figure 1. For node (4,4, k), the x, y and z components of electric field are sampled at (i +
1/2,4,k), (6,5 +1/2,k) and (3, j, k+1/2), respectively. For modeling the coupled Maxwell’s equations
this corresponds to assigning the electric fields to the edges of the cell and the magnetic field to its
faces. In addition this formulation requires that the conductivity and dielectric permitivity be
computed halfway along a given cell edge in Figure 1, and the magnetic pemeability to be computed
in the center of the cell face. This is accomplished through the simple averaging schemes described
in Alumbaugh et al. (1995).
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Figure 1: Finite difference stencil for solving the scattered electric field Helmholtz equation. The
arrows represent the position of the electric fields, with the open arrows representing those unknowns
needed to form the equation for Ex.

After numerically discretizing equation (1) to form the finite difference equations a linear system
is assembled,

Af =5 (4)

where A is the stiffness matrix containing the numerical approximations to the derivatives as well as
the electrical properties of the medium, f is the unknown vector for the scattered electric field and
s is the equivalent source vector. Alumbaugh et al.(1995) show that A is complex symmetric, even
when complex grid stretching is employed. The solution vector can be obtained using the quasi-
minimum residual (QMR) (Freund ,1992) technique with preconditioning to iteratively determine
the solution within a predetermined error leveli, which is defined here to be
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Tests with different types of incomplete decomposition and polynomial preconditioners has found
that simple Jacobi scaling provides a simple, time efficient method of preconditioning.

After the scattered fields at the grid points have been determined, the fields at the receivers must
be calculated. The electric field is simply calculated using bi-linear interpolation while the magnetic
field is calculated by first taking a numerical approximation of Faraday’s law for the scattered electric
fields on the grid surrounding the receiver,

Ve x E® = —iwpHS + (p — pp)HP (6)

and then interpolating the result to the point of interest. In this expression HS and HP are the
scattered and primary magnetic fields. Note, for each new source position and/or frequency a new
system must be solved, although some time savings can be implemented by using the previous
solution vector as an initial guess.



3 Properties of the PML Absorbing Boundary Condition

Although their calculations employ the coupled modified Maxwell’s equations in the time domain,
Chew and Weedon (1994) develop theory in the frequency domain to demonstrate how lossy, non-
reflecting conditions are created along the mesh boundaries. The complex stretching parameters are
assigned a value of the form 14a — ¢b. On the internal portion of the mesh, a = b =0 such that the
modified Helmholtz equation reduces to the normal form. Near the edges of the mesh ES and EP
are allowed to vary over several cells, but only in the direction that is perpendicular to the boundary.
For example along the +z boundary e, = ey = hy = hy =1 and only e, and h; are allowed values
of a and b that are not equal to zero.

Because we are solving an implicit rather than explicit system, we have found that in order to
incorporate a given amount of loss, or attenuation, across a number of cells serving as the absorbing
boundary, it is better to set a and b constant rather than gradually increasing their value toward
the mesh boundaries as suggested by Berenger (1993); gradually increasing their value results in
a greater number of iterations needed to achieve convergence. Simple MATLAB experiments have
shown that this is due to the fact that the condition number of A increases as the ratio between
the largest cell and smallest cell in the mesh increases. Thus gradually increasing the stretching
parameters outward will produce a cell along the edge of the mesh which is effectively much larger

than any of the cells employing constant stretching. Because the smallest cell size is the same
in either case, the solution of the model that employs the gradual stretching will take longer to
converge.

Currently, we are investigating methods for choosing optimal stretching parameters for a given
frequency and background wave number, defined as

kp = \/—iwup(a'p + iwep) = a — if. (7N

where « and @ are both real. This analysis is based on the assumption that the loss that is inco-
porated through complex grid stretching is caused by ’pseudo’ electrical parameters within cells of
constant size. Through this assumption we can develop a pseudo-skin depth in each cell which is
defined by

1
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To this point we have found that for frequencies greater than 1MHz, accurate results are achieved
when a and b are chosen such that three pseudo-skin depth’s of attenuation are provided for across
the stretching region without out significatly changing the pseudo wavelength from that of the
natural background wavelength. At frequencies below 10 khz the analysis seems to become more
difficult as the manner in which the grid is stretched can significantly alter the convergence of the
system. In general at these frequencies we have obtained good results using only real grid stretching;
i.e. setting b=0 and varying only a.

4 Implementation on Massively Parallel Computers

In order to simulate larger, more realistic models than has previously been possible, the original
serial version of the code has been modified to run on massively parallel MIMD (multiple instruc-
tion multiple data ) machines which can have thousands of processors. These parallel machines are



employed by assigning a given number of processors in each direction of the model (nx in x, ny in
y and nz in z) and then breaking up the model across the processor bank such that each individual
processor is in charge of a 3-D subset. Because each processor needs only to make the necessary cal-
culations for this subset, and because all of the processors are making their appropriate calculations
simultaneously, the solution time is reduced by a factor which is approximately equal to the total
number of processors employed (nx*ny*nz).

The first step in converting the serial version of the code to a parallel version is to divide the

problem up among the processors such that it is optimally load balanced. This preprocessing step
is necessary to ensure that large banks of processors are not standing idle for long periods of time
while a single or small number of processors complete their calculations. As one would imagine,
this type of scenario is an extremely inefficient use of resources. Rather the problem is broken up
such that each processor has as close to an equal number of unknowns as possible for which to
solve. The second issue that needs to be addressed is the manner in which the model is input. To
accomplish this, we have decomposed the input data into two different sets: a global data set and
a local data set. Global data are those variables that each processor needs to know such as the
source and receiver positions, the frequencies, what type of solver is being employed, the location
of the mesh nodes, ect. These form a fairly small data set which can easily be read in by a ”lead”
processor and then ”broadcast” to all other processors. The second type of input is the local data,
or local model parameters (conductivity, dielectric permitivity and magnetic permeability) that are
assigned to each cell within the model. Because each processor needs only a small subset of this
data and contains only a small amount of local memory, the local data is broken up into multiple
files, one for each processor, which are then read in individually from a parallel disk system which
allows several files to be read in simultaneously.

After the data have been accessed, each processor constructs its own portion of the stiffness matrix
A and the source vector s, and then proceeds to solve for its portion of the solution vector. However,
each iteration within the QMR solver requires one matrix- vector multiply and several vector dot
products. These operations pose problems because in order to complete them, information must
be exchanged both between all of the processors as well as small subsets of processors. The dot
products are fairly easy to implement as they involve; 1) a local calculation in which each processor
computes the dot-product of its portion of the vector and 2) a global calculation in which all the
local calculations are ”gathered” by the lead processor, summed, and the result broadcast across
the machine.

The vector-matrix multiply is more difficult to implement because it requires that each processor
communicates with those ”neighboring” processors that are solving for the scattered electric fields in
adjacent portions of the model. Determining these neighboring processors and the actual unknowns
that need to be communicated is accomplished in the following manner. If we assume that each
processor contains only a single node, then we can imagine it as a cubic shape enclosing node (2, 4, k)
as well as all other nodes in Figure 1. Careful examination then indicates that there are two types
of communication that each processor needs to execute with its appropriate neighbors. The first
type of communication will occur across the ”faces” of the cube. For node (%, 7, k) this implies
communication with those nodes directly connected to it by the gray lines of the finite difference
stencil, i.e., nodes (¢ — 1,4, k),(i+ 1,5,k), (4,5 — 1,k), (3,7 + 1,k), (¢, 5,k — 1) and (¢, 4,k + 1). For
these communications either two or three unknowns are exchanged per nodal position. The second
type of communication occurs across certain ”"edges” of the cube, and involves those nodes which
are not directly connected to (Z, j, k) by the stencil lines, for example node (i+1, j, k—1). This type
of communication requires only one unknown per node being communicated each way. If we now
expand the idea such that each processor cube contains a 3-D distribution of nodal points, then we
can develop the processor communication stencil shown in Figure 2.

The last issue to be addressed is the data output. Because for any given source we only need
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Figure 2: Processor stencil employed for message passing in order to correctly complete the matrix-
vector multiply.

to know the results at only a limited number of receiver positions, all of which may lie on the same
processor, the data output is inherently non-parallel and is accomplished in the following steps.
1) Each processor determines which processor holds the portion of the model that contains the
receiver position. 2) This ”receiver” processor then determines if it need any values from adjacent
processors, completes the necessary point-to -point communication with those processors, and then
does the necessary bilinear interpolation. 3) The results are then sent to the lead processor which
outputs them to disk.

To this point the code has been implemented on two different MIMD machines available at Sandia
National Laboratories, the 1840 processor Intel Paragon and 1024 processor NCUBE, and run time
characteristics for the Paragon are given below. To provide for the required message passing on these
two machines we have chosen to employ the Message Passing Interface (MPI, Skjellum et al.,1993)
rather than using machine specific commands. This provides portability to the code as it will be
able to run on any parallel machine and/or distributed network of machines on which this public
domain library is available.

5 Demonstration of the Finite Difference Solution

To illustrate the versatilty and speed of the numerical solution when implemented on a parallel
platform, we have simulated two different models which represent measurement configurations that
might be employed in the field and employ a wide range of frequencies. The first simulation will be
invlove frequncies in the low GPR range while the second will simulate a portion of helicopter EM
survey. In the two cases the Krylov solver was assumed to have converged to an adequate error level
when equation (5) was found to be less than or equal to 10~7 and 108, respectively. These error
levels are empirical and are based on extensive comparisons of the solution with other numerical
solutions and scale model experiments (eg., Alumbaugh and Newman, 1994).

5.1 High Frequency Simulation for the "VETEM?’ project

The 'VETEM?” (Very Early Time ElectroMagnetic) project is an attempt to build an electromagnetic
prospecting system that operates above traditional geophysical induction frequencies (100 kHz) yet
below ground penetrating Radar frequencies ( 100 MHz) (Pellerin et al., 1995).To illustrate the

ability of the code to simulate the electromagnetic response at these frequencies, variations of the
model shown in Figure 3 has been employed. This example was designed to simulate a test site at the
Colorado School of Mines where a prototype of the VETEM system known as the High Frequency

Sounder (HFS) (Stewart et al., 1994) was first tested. The model is particularly difficult to simulate



because of two conflicting conditions that are imposed by the material properties; 1) the wavelength
in the block at 28.5 MHz is approximately 1.6m which requires a maximum cell dimension of 0.16m
to avoid grid dispersion (Chew, 1990, p 244) and 2) the skin depth in the first layer at that same
frequency is 17.8m which requires the boundaries to be placed very far away to avoid reflections off
the grid. The small cell size coupled with the large distance to the boundaries produces a very large
mesh if no absorbing boundary conditions are employed.

Plan View
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Figure 3: The Colorado School of Mines 3-D (CSM3D) model.

To simulate this example a 120 x 120 x 120 cell mesh was employed with a constant cell size of
0.15m in the x and y directions. This places the total distance across the mesh at 18m. In z, the
maximum cell size was also 0.15m, with a minimum cell size of 0.13m to accommodate the layer
thicknesses. Note, this mesh produces a total of 5x10% unknowns for which to solve, which is much
too large a problem for all but a supercomputer. The VMD source was placed at the center of the
mesh in x and y, i.e., 9m from each boundary, and a background conductivity of ¢=10-1%S/m was
assumed. To incoporate loss and thus avoid reflections off the edges of the mesh, b was set equal to
0.6 over 20 cells along each edge of the mesh.

In the first case we simulate two 1-D models, a two layer which assumes the block is absent, and a
3 layer model which assumes that the block extends to infinity in the x and y directions. This allows
us to compare to a 1-D code devloped by Ki Ha Lee at Lawrence Berkeley Laboratory. Because HFS
directly measures tilt angle and ellipticity of the magentic field (Smith and Ward, 1974) the results
have been plotted in terms of these parameters rather than amplitude and phase of the different
components. As can be seen in Figure 4a for the layered models, the 3-D code reproduces the 1-D
calculations extremely well.

In Figure 4b the 3-D results for four different source positions are plotted with the results for
the two 1-D models. Notice that the 3-D responses never reproduce the 1-D results even when
the source-receivers are completely outside or within the block. This indicates that 3-D effects are
measureable at greater distances than is immediately evident and that 1-D inversions probably would
not accurately reproduce the structure of the subsurface.

To demonstrate some of the questions that must be answered when using the parallel machines,



the solution time as well as the flop rate has been plotted against the number of processors employed
for the 3 layer model at 10.1 Mhz on the Intel Paragon. Figure 5 shows that a large decrease in
run time occurs with an increasing number of processors from 200 up to 1000. This corresponds to
solving for 24000 to 3000 unknowns per processor.and indicates that the processors are spending the
majority of their time performing calculations rather than communicating. However, the relatively
small decrease in run time with increasing number of processors over 1000 indicates the solution
time is begining to be dominated by message passing if less than 3000 unknowns are being solved
for on each processor. Thus we are left with a decision to make. If we wish to use the machine
most efficiently, we would employ less than 1000 processors such that the internal computations are
dominating the solution time. We could then run several jobs simultaneously such that the efficiency
increases proportionally to the number of jobs. On the other hand if we desire as quick a turn around
time as possible for a single computation, then we would want to operate near the right end of the
curve,

5.2 Airborne Simulation

The second example simulates an helicopter EM survey flown to define the location of a buried
paleo-channel through which conductive salt water is migrating, and is designed after a survey flow
in Austrailia in the early 1990’s (Doug Frazer, personnel communication). Figure 6 shows a plan
view of the model at 5m depth below the earths surface as well as two cross sections through the
model. The flight lines are 30m above the earths surface, are spaced at 200m intervals from top to
bottom in Figure 6, and along each line the sampling interval is 100m. This yields a total of 187
source positions. A VMD source is operating at 0.9 kHz, 7.2 kHz and 56 kHz, with the receiver
located 8m to the right of the source. The three frequencies coupled with the 187 positions yields a
total of 561 forward solves.

To calculate this with the 3-D finite difference code, the earth and air were divided into a 208 x
184 x 49 cell grid which yields a total of 5.6x10% unknowns for which to solve. To avoid reflections
off the mesh boundaries normal grid stretching (i.e. b=0) was employed to move them out to 400m
from the nearest sampling point. The smallest cell size employed was 5m x 5m by 2.5m and was
employed at the air-earth interface underneath each source array. The largest cell size employed was
in the corners of the mesh and was 20m x 20m x 20m. A background conductivity of s=10~6S/m
was assumed to simulate the electrical properties of the air.

Notice in Figure 7 that for all three frequencies the channel is clearly defined, although its
resisitivity is not as accurately defined at higher frequencies. This is due to the increased sensitivity
at higher frequencies to the surface resistivie layer. To run this model on 1360 processors of the Intel
Paragon took approximately two days. This reasonably quick furn around time for this complicated
model illustrates the utility of these machines for solving realistic geologic problems. In addition,
although this soluttion may of taken too much time to be employed for inversion of this large of a
model, the near future development of machines with tens-of -thousands of processors should allow
for it.

6 Conclusions and Discussion

In this paper we have presented a scheme to solve for the frequency domain electromagnetic response
of a 3-D earth over a wide band of frequencies using massively parallel computers. The problems
associated with providing absorbing boundary conditions and porting the serial version of the scheme
to a parallel machine have been outlined, and two simulations have been included to demonstrate
the versatilty of the code.



Although the demostrations shown here would have been nearly impossible prior to the parallel
implementation due to the size of the models and/or the number of frequencies and sources involved,
we believe that there is still much research to be done with regards to the implementation of this
type of scheme. The most notable location for improvement is in the area of preconditioners. We are
currently considering the use of multigrid preconditioners, and methods to separately treat the real
and imaginary components of the matrix system. In addition, a scheme to accelerate the convergence
for very low frequency simulations where channeling currents dominate needs to be developed in order
to simulate natural field measurements as well as extend the frequency band down below 100 hz;
Smith (1992) has found that a static correction can be incorporated to accommodate this. Finally,
methods of dealing with the air-earth interface need to be more closely examined. We have found
that this interface tremendously complicates the numerical problem, especially when electric dipole
sources are employed on the surface.

Lastly, it must be mentioned that the development of this forward modeling code is not the final
product. Rather this will be used as the forward solver within a 3-D non-linear electromagnetic
inversion code being developed to image the electrical properties of the earth (Newman and Alum-
baugh,1995b). This is the end product which has driven us to port the finite difference scheme to a
parallel platform as without these large computers, full 3-D inversion would be impossible.
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Figure 4: Results for the CSM3D model. a) 1-D comparisions for 2 and 3 layer models. b) 3-D
comparison for different source positions.
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Figure 5: Run time versus number of processors employed for the 3 layer model at 10.1 MHz.
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Pigure 6: The subsurface channel model employed for the airborne simulation. The upper figure is a
plan view at the top of the channel, and the bottom figure is a vertically exagerated cross-section at
y=1500 m. Although it is difficult to see, a 5 m thick- 500 Qm layer exists from the earth’s surface
down to the top of the channel. The gray scale varies logarithmically from 5 Qm (black) to 697 Qm
(white).
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Figure 7: Calculated apparent resistivities for the subsurface channel model.
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