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Microscopic time reversibility and macroscopic irreversibility are
a paradoxical combination. This was first observed by J. Loschmidt
in 1876 and was explained, for conservative systems, by L. Boltzmann
the following year. Both these features are also present in modern
simulations of classic many-body systems in steady nonequilibrium
states. We illustrate them here for the simplest possible models, a
continuous one-dimensional model of field-driven diffusion, the so-
called driven Lorentz gas or Galton Board, and an ergodic time-
reversible dissipative map. '

PACS numbers: 05.45.4b, 02.70.Ns, 05.20.-y, 05.70.Ln

I. INTRODUCTION

In classical statistical mechanics, Loschmidt and Zermelo are notorious for
their criticism of Boltzmann’s explanation of irreversibility. For isolated systems
far from equilibrium Boltzmann predicted a unidirectional irreversible decay to-
ward mechanical and thermal equilibrium. This prediction was based on his H-
Theorem description of gas-phase entropy production [1] and is an exact conse-
quence of the Boltzmann Equation for the time development of the one-particle
distribution function f(r,v,t). The approximation underlying this equation is the
Stosszahlansatz which is a replacement of the two-particle collisional probability
by a product of one-particle distributions. The Boltzmann equation predicts a
monotone decrease of (In f) following the time evolution of the system, and the
Boltzmann entropy

S(t) = —k(ln f) = ~k / F(r,v,)1n f(r, v, t)drdv (1)

in the limit ¢ — oo approaches the Gibbs entropy per particle [5,6]. % is the
Boltzmann constant.




Loschmidt objected that this predicted irreversibility is inconsistent with the
underlying time-reversible equations of motion, because any trajectory going to-
ward equilibrium could just as well be followed in the reversed direction, away
from equilibrium [2]. Zermelo insisted that the irreversibility is likewise inconsi-
stent with Poincaré’s theorem, which states that the phase trajectory of an iso-
lated mechanical system will eventually revisit a small neighborhood of its initial
phase point [3]. Both objections certainly seem valid. However, as Boltzmann
immediately pointed out [4], any argument based on a phase trajectory linking
nonequilibrium states with equilibrium states needs to consider not only the time-
reversible nature of the equations of motion but also the probability distribution
of the initial conditions. In the case of Loschmidt‘s objection this probability for a
macroscopic system is so much in favor of the equilibrium states that any dynami-
cal evolution or even fluctuation leading from equilibrium to nonequilibrium states
is practically unobservable. It also makes Poincaré’s recurrence time ridiculously
long. It is easy to imagine that Boltzmann‘s approximate statistical treatment of
two-body collisions is responsible for the apparent contradictions. Though desi-
gned to describe systems obeying reversible dynamical laws, the approximation
makes the Boltzmann equation intrinsically irreversible. As a consequence, it fails
to describe some phenomena, primarily phenomena involving fluctuations.

In the present work we do not intend to treat equilibration of isolated systems.
This is discussed in depth in the article by H. Spohn in this volume. We prefer
instead to attempt a better understanding of explicitly nonequilibrium systems,
systems driven away from equilibrium by boundary conditions which impose velo-
city or temperature gradients on them and impose a steady nonequilibrium state.
For such systems, free to undergo corresponding reversible momentum and energy
exchanges with their surroundings, it is no longer true that all phase-space states
are equally likely.

Nevertheless, the motion is - in a certain sense (which will be clearly defi-
ned for our two models) - “ergodic” so that Zermelo‘s objection applies with full
force. Any observed state, including the initial state, will eventually recur. Also,
Loschmidt‘s objection still holds when time-reversible equations are used to de-
scribe the interactions with the surroundings. Any system evolving in accord
with the Second Law of Thermodynamics becomes a system violating that Law
when time is reversed. In the present work we restrict consideration to ergo-
dic time-reversible systems and show that, despite the ergodicity and despite the
time-reversibility, the motion - averaged over a long trajectory - is dissipative and
irreversible, and the phase-space distribution for steady nonequilibrium states col-
lapses to a strange attractor. We believe that the two simple models which exhibit
all this complexity and are discussed in the following two Sections are instructive
aids to understanding the irreversibility described by the Second Law.

The time-reversible equations of motion for a particle which we shall use in
the following have the general form

q; = pi/m, (2)




p: = Fi(q) + X; + F{(q,p), (3)

where q;, p; are the position and momentum vectors of particle . For simplicity, all
the particles have equal mass m. The arguments q and p without index i stand for
the positions and momenta of all particles. In this equation F;(q) = —~3®(q)/dq;
is the intrinsic force on particle ¢, where ®(q) is the potential energy, and X; is
an external force driving the system away from equilibrium. Through X; work
1s continuously performed, which - if not properly taken care of - would heat or

cool the system and prevent a steady state. This is conveniently avoided by the
constraint force

F¢(q,p) = —(pi (4)

describing the action of a heat reservoir, where ((q,p) is 2 dynamical variable
which changes sign with time reversal and is referred to as a thermostat or friction
variable. The particularly simple and aesthetic form of a time-reversible constraint
force in (4) is a consequence of venerable variational principles of mechanics, in-
cluding both Hamilton’s Principle of Least Action [7] and Gauss’ Principle of
Least Constraint [8~10]. For such a description to agree with macroscopic ther-
modynamics it is specially useful to define temperature in terms of the ideal-gas
thermometer, kT = (p?/m), where p, is the momentum of a typical cartesian
degree of freedom.

Once this idea of a time-reversible nonequilibrium steady-state system with a
constraint force (4) is accepted, a number of consequences follow directly from the
equations of motion {10-12]

1. The equations of motion, both at and away from equilibrium, remain ex-
actly time-reversible, so that a reversed movie of the motion obeys the same
equations. In such a reversed motion all the momenta p; and the thermostat
variable ( change sign. There are other concepts of a time-reversible system
which differ from that used in this paper. We shall come back to this point
in Section 4. For simplicity we have assumed that all N particles in the
physical space of dimension d are constrained to a single boundary tempe-
rature T requiring a single thermostat variable (. But these ideas may be
generalized to more than one friction variable controlling different degrees
of freedom. ‘

2. There is a nonequilibrium version of Liouville’s Theorem, which identifies
the rate of heat loss, — ", (p?/m, divided by the corresponding boundary
temperature T and Boltzmann‘s constant k, with the rate of shrinkage of an
arbitrary (differentially small) comoving phase-space volume element éV':

dln§V/dt = — fj (p2/mkT = —Nd¢ = (dQ/dt)/kT. (5)

t=1




3. Since the exponential growth or shrinkage of (infinitesimally small) phase-
space perturbations of the system’s trajectory are measured in terms of the
Lyapunov exponents J; , the time-averaged shrinkage of a comoving phase-
space volume element is given by the sum of all Lyapunov exponents:

(d1n 6V/dt) = zLj N <0, (6)
=1

where L = 2dN is the dimension of the phase space. The equal sign applies
only for equilibrium systems. In nonequilibrium steady states with a steady
external boundary temperature T', the exchanges of heat lead to the < sign
in (6) indicating the collapse of the corresponding phase-space probability
into a strange attractor with a fractional dimension D;. This so-called in-
formation dimension D; can be thought of in two distinct ways: first, as
the way in which the phase-space probability within a hyperbox of size &
depends upon ¢, namely ~ D1, averaged over a whole partition of the phase
space with such boxes; second, as the dimensionality of a phase space object
whose phase-space measure - on the average - neither grows, nor shrinks,
as time progresses. At equilibrium the information dimension is identical to
the dimension Dy of the allowed phase space. Away from equilibrium this
dimensionality is reduced, D; < Dy, though the motion itself, if ergodic,
continues to visit - eventually - all points of the equilibrium phase space.
Thus, the full equlibrium phase space is required to support the measure in
the nonequilibrium steady state, and Dy is equal to the Hausdorff dimension,
the dimension of the support of the measure [13].

4. The time reversibility of the motion equations guarantees, in addition to
the strange attractor, also an exactly similar strange repellor, which is con-
structed from the attractor points by reversing the sign of all momentum
components and thermostat variables. Its support is again the full equili-
brium phase space, and it is likewise ergodic.

5. The repellor acts as a “source” of the space flow in the same way that
the attractor acts as a “sink”. The Lyapunov-unstable (3 A > 0) repellor
states (occupied in the distant past) are connected to the Lyapunov-stable
(X < 0) attractor states (to be occupied in the distant future) by ergo-
dic trajectories in phase space which come arbitrarily close to every point
of the (allowed) equilibrium phase space. A time-reversal transformation
transforms stable attractors into unstable repellors and vice versa.

In the present work we discuss two examples which exhibit all these puzzling
features. The first is the externally driven Lorentz Gas or Galton Board. Both
the ergodicity, the fractal nature of the phase-space distribution and the reduction
of the information dimension have been established rigorously [14,15], confirming
earlier numerical work [16,17]. Recently we have developed an exact algorithm for
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the computation of Lyapunov spectra of particle systems involving hard elastic
collisions, which has been applied also to this model [19,20]. The second example
1s a class of simple time-reversible two-dimensional maps which exhibit exactly
the same features - reduced information dimension with ergodic attractor-repellor
pairs - but with reduced complexity [21]. Both examples exhibit irreversible beha-
vior, and both are subject to Loschmidt’s and Zermelo’s objections. We present
these two models in Sections 2 and 3 and discuss the results in Section 4.

II. EXTERNALLY DRIVEN PERIODIC LORENTZ GAS OR GALTON
BOARD

The simplest model for nonequilibrium transport is that of a point mass, re-
ferred to as the wanderer particle, driven through an infinite periodic lattice of
elastic hard scatterers by an external field. In the two-dimensional case we con-
sider here the scatterers are hard disks arranged in a triangular lattice as shown
in Figure 1. Due to the collisions with the scatterers the wanderer performs a
diffusive motion in the corresponding field-free case for which the mean squared
displacement approaches 2Dt at long times ¢, where D is the diffusion coefficient
[22].

The wanderer motion could equivalently be viewed more symmetrically, as re-
lative motion in a periodic two-body system, with vanishing center-of-mass velocity.
However, here we will adopt the view that a single particle, with mass m, moves
through a lattice of fixed scatterers. With periodic boundaries and a symmetric
direction of the field E the motion can be restricted to one half of a single unit
cell.

Numerical investigation has shown that the motion, periodically confined to
a single half unit cell, is ergodic for sufficiently small fields, just as it is in the
zero-field case [16,17]. This result was also established theoretically [15]. We
describe it with Boltzmann’s term “ergodic”, meaning that the moving particle
eventually, and repeatedly, comes arbitrarily close to any point {z,y,ps,py} of
the allowed phase space. For a fixed scatterer density the only available control
parameters are the kinetic energy p2/2m and the driving field strength E = |E|.
Then the shape of the wanderer trajectory only depends on the dimensionless ratio
EmR/p?, which determines the influence of the field energy relative to the kinetic
energy. R is the radius of the scatterer (see Fig. 2).

During the streaming between successive collisions the wanderer is accelerated
by the field. To achieve a stationary nonegquilibrium state it is convenient to
constrain the kinetic energy, using the linear constraint force (4). If the field
points in z-direction the equations of motion suggested by Hamilton’s and Gauss’
principle become :

T = pz/m ; y = py/m (7)
Pz = E—~(p: ; py = —(py,




where the thermostat variable assumes the form

¢ = p.E/p". | (8)

The wanderer dynamics in Figure 1 takes place in a three-dimensional phase space
{z,y,6}, where 8 defines the direction of the particle with respect to the field as
shown in Figure 2:

pr = pcos @;p, = psin 6. (9)

As a further simplification we observe the state of the wanderer particle only af
its collision with the scatterer, ignoring the smooth streaming between collisions.
This corresponds to the construction of a Poincaré map and reduces the three-
dimensional description to a two-dimensional map in collision space {e,sin 8},
where the collisional angles a and f are also defined in Figure 2. sin # changes
sign during time reversal and is thus a momentum-like variable, whereas « is a
position variable describing the collision.

In the field-free equilibrium case all collisions in the «a,sin S-plane are equally
likely as shown in Figure 3a. In this example the scatterer density is 4/5 the
close-packed value. The nonequilibrium set of collision points in Figure 3b for a
rather weak field, EmR/p? = 1.5, and in Figure 3c for the moderately strong field,
EmR/p* = 3.0, reveal a multifractal structure, which we referred to as a strange
attractor in the Introduction. The singularity strength a of the probability density
varies from point to point. a determines how the measure u. of a neighborhood
of a point scales with the size ¢ of this neighborhood, g, ~ €*. The phase-space
distribution is singular almost everywhere.

The multifractal nature of this distribution can be characterized by the sin-
gularity spectrum f(a), which, loosely speaking, is the Hausdorff (box counting)
dimension of the set of all points characterized by a local singularity strength a
[23]. The curve A in Figure 4 was obtained with a box-counting algorithm due to
Chhabra and Jensen [24] and depicts the singularity spectrum for the attractor
in Figure 3b. The various symbols refer to different box sizes; up to 1024 x 1024
boxes were used. The spectrum is reliable for a < 2.5, which is the range of inte-
rest for our purposes. Vance has shown that the descending and ascending parts
of the spectrum are simply related [15],

(a-1)f

a

a-—l) = f(a)+a—2. (10)
This relation is well obeyed by spectrum A for the fractal object depicted in Figure
3b. The information dimension is equal to that value of the singularity spectrum
for which f(a) = @ or, equivalently, f'(a) = 1. D, is also referred to as the
Hausdorff dimension of the set of the probability measure [25], but should not be
confused with Dy, the Hausdorff dimension of the support of that measure. Dy,
is given by the maximum of the f(a)-curve. For our example D; = 1.82, and
Dy = 2 > Dy in agreement with our previous assertion.
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The information dimension D; of the multifractal is also related to the con-
ductivity £ = (p,/mE) and to the Lyapunov spectrum of the system [26,10,9].

Vance found that the change in information dimension due to the field is given by
[15]

AD, = /cE2m/(p2/\min), (11)

where A, is the most negative Lyapunov exponent. A similar result, identical
through terms quadratic in the field strength E, was subsequently obtained by
Chernov, Eyink, Lebowitz and Sinai [14,18].

Until recently accurate Lyapunov exponents were not available for the Lorentz
Gas. We have developed a method which is based on following differentially-
separated trajectories in tangent space and which takes the impulsive hard-disk
collisions exactly into account [19,20]. It is valid at arbitrary high fields. The
theoretical prediction (11) is verified by our computer-simulation results. For
instance, if we consult Table 1 of Reference [19] referring to a scatterer density
of 4/5 of its close-packed value, we find: « = 0.146, E = 1.50, A, = —1.829,
and ADgky = —0.180. These quantities are given here in reduced units for which
p,m, and R are all unity, and Dgy 1s a dimension derived from the Lyapunov
spectrum and - according to the Kaplan-Yorke conjecture - is expected to be equal
to the information dimension D;. The expression (11) yields for the dimensionality
reduction AD; = —0.18 in perfect agreement with our direct computation. Since
both numbers are the results of independent measurements, we conclude that our
present understanding of the driven Lorentz Gas, from a numerical standpoint, is
~ quite satisfactory.

This 1s not the case for our theoretical understanding. The paradoxical features
of the phase flow, identified by Loschmidt and Zermélo, still remain, namely its
time reversibility and ergodicity. Going forward or backward in time eventually
leads to shrinkage in the phase space, although the reversal of any particular step
simply changes the sign of the rate with which the phase volume changes. Starting
at ¢ = 0 from almost any point in phase space and going forward in time, the
system trajectory generates a stable strange attractor with a negative Lyapunov-
exponent sum. If at timet = 7 > 0 the system is in a state {r(7), p(7)} on or close
to this attractor, a time reversal transformation gives a state {r(7),—p(7)} on or
close to the strange repellor. The reversed trajectory - although a valid solution
of the time-reversible equations of motion - is now characterized by a positive
sum of Lyapunov exponents and is more unstable than the forward trajectory:
Macroscopic time reversibility is broken. If we continue to follow the reversed
trajectory for times ¢ > 7 it will therefore leave the repellor states and - at a time
37 - will be close or on the attractor again. Theoretically the limit 7 — oo is
understood. For all practical applications, a few Lyapunov times are sufficient. In
the case detailed above the attractor and repellor dimensions are 1.82, a drop of
AD; = —0.18 from the equilibrium value.

Vance observed that these fractal objects are ergodic [15]. Intuitively this
is to be expected on the basis of the reversibility of the equations of motion.
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Any zero-measure portion of the attractor must correspond to zero measure in
all other portions of the attractor connected to the original portion by the phase
flow. Because the attractor and repellor are ergodic, in any arbitrarily small
neighborhood of each attractor point there will be repellor points and vice versa.
For our weak-field example of Figure 3b this is depicted in Figure 5, in which
attractor and repellor points are superimposed.

We have tried to analyse this complicated topological structure by evaluating
the multifractal singularity spectrum for the correlation measure psp defined in
terms of the numbers of attractor and repellor points, N4 and Ng, for all boxes
of a partition of the Poincaré map with box size ¢:

;LARENANR/ZNANR. (12)

Here, the sum is over all boxes. In Figure 4 the singularity spectrum for the
attractor-repellor product measure (label AxR) is compared to that of the pure
attractor (label A). The various symbols refer to different box sizes. The Hausdorff
dimension of this product measure, given by the maximum of the f(a)-curve,
equals two as expected. Its information dimension is 1.64, less than that of the
pure attractor. As may be seen from Figure 4, the multifractality of the product
measure is greatly enhanced.

We have mentioned already that infinitesimally close to every attractor point
lie repellor points and vice versa. There is, however, no obvious spatial correlation
between a point on the attractor with its repelling neighbors. This is demonstrated
in Figure 6 where we plot generalized correlation integrals C(r) obtained from the
Poincaré map of Figure 3b. Such integrals were used by Grassberger and Procaccia
[27] for the evaluation of the correlation dimension D,. Let us consider two sets
of points, 5; and S;, each containing M points in the same space. Then C(r)
is defined as the number of points belonging to S; and which have a separation
< r from an arbitrary point of S;, summed over all points of S; and divided by
M?2. If S; and S, are identical, the slope of In C(r) as a function of In r yields the
correlation dimension D, for this set. The curve labelled AA in Figure 6 refers to
this case, where S; = S, is the attractor depicted in Figure 3b. From its slope we
find D, = 1.69 for the attractor (and repellor) which - as theoretically required -
is less than D;. AR in Figure 6 refers to the case that S; is associated with the
attractor and S, with the repellor. Furthermore, in the curve with label AZ S is
the attractor, but S is a set of points randomly sprinkled onto the phase space.
It is surprising that the slope of AR is equal to two, also the result for the random
case AZ. This indicates that there is very little correlation between attractor and
repellor points.

We have analyzed the complex dynamical features of this nonequilibrium
steady-state model by constructing a two-dimensional Poincaré map, from one
collision of the wanderer particle to the next. But the actual generation of this
map is algorithmically rather complicated. Not only are collisions possible with
nearest neighbors and second-nearest neighbors of scatterers in the lattice, also




higher-neighbor collisions are possible. To avoid this complexity we have sought
out the simplest possible two-dimensional map which has the features of time-
reversibility, ergodicity (and as a consequence the absence of stable fixed points),
and dissipation.

This map is described in the following section.

III. TIME-REVERSIBLE, DISSIPATIVE MAPS

A map M is said to be time reversible if it satisfies the identity
(z,5) = TMTM(z, ). (13)

T represents velocity reversal (changing the signs of any velocities or friction
coefficients). Here we interpret (z,y) as a typical (coordinate, momentum) pair of
variables and require that time reversal only changes the sign of y:

(z,~y) = T(z,y). (14)

Two applications of the time-reversal operator yield the identity TT = L.
Evidently the maps corresponding to area-preserving shears, parallel to the z
or y axes,

X:(z,y) = (z+y,9), - (15)
Y :(z,9) = (z,z+y), | (16)

are time reversible. For X the sequence of operations gives:
TXTX(z,+y) = TXT(z + y, +y) = TX(z + y, —y) = (z, +y).

XY, the well-known “Cat Map”, is not reversible. But symmetric combinations
of X and Y are area preserving and time reversible [21].

Because dissipation corresponds to the shrinking of phase-space volume asso-
ciated with heat loss, any model with properties analogous to the Galton Board
must allow area changes. The simplest such map is a “reflection” about a mirror
located at z = m [21]. For example, if we wished to map the regions (0 < z < m)
and (m < z < 1/2) into each other, we can define the reflection operation Ry
according to

= m+[(2m—-1)/2m)(z —m) forzc <m

z' = m+[2m/(2m — 1))(z — m) for z > m, (17)

where negative z are treated analogously. This is a piecewise linear map for
—1/2 < £ < 1/2 with two values of the slope. It is depicted in Figure 7 for various
values of m, 0 < m < 1/2. The case m = 1/4 corresponds to the area-preserving
equilibrium case.




If we apply simultaneous reflections in both the z and y directions,
P =R:R, = R/R;, we can generate a time-symmetric map XYPYX on the
unit square —1/2 < z < 1/2,—1/2 < y < 1/2 with periodic boundary conditions, .
which has expanding and contracting regions as required. This map turns out to
be ergodic, without stable fixed points, and to show the same type of topological
behavior exhibited by the driven Lorentz Gas (Galton Board) example of Section
2, the formation of attractor - repellor pairs with a reduced information dimension
[21]. Attractors generated with this map are shown in Figures 8 for various values
of the control parameter m. The information dimension is less than two. Just as
in the Galton Board case [17], the dimensionality loss is quadratic in the deviation
from equilibrium, here the deviation of m from the area-preserving value, 1/4.

Vance has recently pointed out that also a time-reversible variant B of the
familiar baker transformation may be constructed [28]. It involves a rotation of
the unit square by 7 /4 as shown in Figure 9. A cut, parallel to, and closest to, the
upper left edge results in two rectangles. Application of B maps the smaller upper
rectangle - without rotation - into the smaller darker region shown at the bottom
of the third image of the upper row. The mappings of the two rectangles both
include an unstable direction in which the length is stretched and a perpendicular
stable direction in which lengths are compressed. As before, T denotes velocity-
reversal (in y-direction). Starting from a uniform distribution of points shown in
the second square of the upper row in Figure 9, 30 applications of B generate the
attractor (top right) which is transformed into the repellor (bottom right) by T. 60
subsequent applications of B lead back to the attractor as displayed in the bottom
left frame. Both in the forward and backward direction the trajectory leads from
the repellor to the attractor, a clear indication if macroscopic irreversibility.

IV. LOSCHMIDT’S PARADOX IN NEW CLOTHS

What have we learned from our small-scale study of irreversible behavior in re-
versible systems? We have constructed two simple models, one continuous and one
discrete, with properties typical of much more complicated macroscpic systems:

1. Time reversibility of the equations of motion: The notion of time reversibility
we have employed in this work is best discussed in terms of equation (13),
if M is interpreted as a general propagator moving the state of the system
forward in time. Application of the time-reversal operation T at time ¢
changes the sign of all momentum components and thermostat variables. If
one continues to solve the equations of motion forward in time (for 7 + ¢,
t > 0), the trajectory is retraced in configuration space.

In the context of Hamiltonian systems this concept of reversibility is referred
to as “S-reversibility” [29] (and the velocity-inversion operator T defined in
(14) is denoted by S. There are, however, a number of other concepts of
reversibility which are not equivalent [29,30].
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2. Ergodicity: all accessible phase-space states eventually recur. There are no
stable fixed points.

3. Macroscopic trreversibility: To relate this concept with the previous ones one
has to consider (infinitely) long trajectories in phase space, starting from se-
lected initial conditions. The phase flow always leads from the repellor to the
attractor regardless of the direction of time, a manifestation of macroscopic
irreversibility.

4. Dissipation: The work supplied by the external perturbation is dissipated
into heat and extracted by the thermostat with a rate Q given by (5). This
heat transfer is essential and makes volume changes possible in the conti-
nuous phase space.

The key to an understanding of these properties is the appearance of a
Lyapunov-stable attractor and Lyapunov-unstable repellor in phase space which
are transformed into each other by the application of T. From any point on the
repellor there is a trajectory leading to points on the attractor regardess of the
direction of time. Neverthless, the system continues to be ergodic and all states of
the system remain accessible, even though they are of zero probability relative to
equilibrium states. We have the paradoxical situation that both the repellor and
the attractor are supported by the whole equilibrium phase space and that these
fractal objects are intimately interwoven in phase space.

Thus, Loschmidt‘s and Zermelo‘s objections reappear in new cloths. We are
confident that by the study of such simple models, time continuous and discrete, as
presented on this paper we will approach closer to an understanding of macroscopic
irreversibility, honoring the memories of Boltzmann, Loschmidt, Poincaré, and
Zermelo.
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VI. FIGURE CAPTIONS

ig. 1 Geometry of the externally driven periodic Lorentz Gas also referred to
as the Galton Board. E is an external field which drives a point particle of
mass m through an infinite periodic triangular lattice. The scatterer density
1s 4/5 of the close-packed density. A single trajectory is shown.

ig. 2 Geometry of a collision between the wanderer and a scatterer particle.

ig. 3 Poincaré map in the collisional «,sin B-plane for the driven Lorentz Gas
(Galton Board) model. 50,000 collision points are shown in each plot. (a)
field-free case, E = 0; (b) EmR/p* = 1.5; (c) EmR/p*® = 3.0. The scatterer
density is 4/5 of the close-packed density.

ig. 4 Singularity spectrum, f(a), for the driven Lorentz Gas (Galton Board)
model. The scatterer density is 4/5 of the close-packed density, the field is
EmR/p* = 1.5. Curve A: f(a) for the attractor depicted in Figure 3b; Curve

AxR: f(a) for the attractor-repellor product measure defined in equation
(12).

ig. 5 Superposition of the maps representing the strange attractor and strange
repellor for the driven Lorentz Gas (Galton Board) model for a field
EmR/p* = 1.5. The scatterer density is 4/5 of the close-packed density.

Fig. 6 Generalized correlation integrals C(r) for the driven Lorentz Gas (Galton
Board) as defined in Section 2. The scatterer density is 4/5 its close-packed
value, and the field strength ERm/p* = 3. Curve A: for pure attractor
points as depicted in Figure 3b; Curve AR: for attractor points correlated
with surrounding repellor points; Curve AZ: for attractor points correlated
with a random set of points.

Fig. 7 Reflection map P defined in Section 3 for various values of m: (a) 0.05;
(b) 0.15; (c) 0.25, equilibrium; (d) 0.35; (e) 0.45.

Fig. 8 Various attractors generated by the map XYPYX defined in Section 3.
The values for the information dimension D; are indicated by the labels.

With decreasing D; the corresponding values for Am = m — 0.25 increase
according to 0.01, 0.05, 1/12, 0.10, 0.15, and 0.17.

Fig. 9 Time-reversible baker transformation B. In the forward direction (upper
row) 60 applications of this map lead from the repellor (top left) to the
attractor (top right). After time reversal (lower row) the trajectory leads
from the repellor (bottom right) to the attractor (bottom left).
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