ORNL/TM-13050

RECEIVED
0CT 13139

OSTI

Anticipatory Precrash Restraint
Sensor Feasibility Study:
Final Report

Stephen W. Kercel
William B. Dress

NSTRUMENTATION

NTROLS DIVISION

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER




This report has been reproduced directly from the best available copy.

Availgble to DOE and DOE contractors from the Office of Scientific and Techni-
cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615)
576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161,

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibiiity for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights.
Reterence herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, reccmmendation, or favoring by the United States
Government or any agency  thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.




ORNL/TM-13050

Instrumentation and Controls Division

ANTICIPATORY PRECRASH RESTRAINT
SENSOR FEASIBILITY STUDY:
FINAL REPORT*

Stephen W. Kercel
William B. Dress

Date Published—August 1995

*This report was part of the Anticipatory Airbag Deployment project sponsored by the U.S. Department of
Transportation’s National Highway Traffic Safety Administration.

Prepared for the
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6285
managed by
LOCKHEED MARTIN ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-840R21400







CONTENTS

List of Figures .. ... e v
List of Tables .. ... e e vii
EXecutive SUIMMALY . . . ..ottt ettt et ie ettt e et tiaia et aiaaa e, ix
Abbreviations and ACTONYMNS. . .. ..ottt ettt ittt iiie s eiaeann e nnaeunnaas xi
1. PROBLEM STATEMENT . ... .. i i it it es 1
2. OBIECTIVES .. i e e e 3
3. SURVEYOF THE LITERATURE .. .......cc0tuniiiiiiiiiiiiiiiaiaaennnn. 7
What does “anticipatory” mean? ...... ... ... ittt 7

Can (and should) targets be classified?................ ... ... . it 9

Can signal processing extract good dynamical data about targets?............. 11

Can a vehicle sense its own dynamical state? .....................cc...... 11

Can precrash restraints leverage from related technologies?.................. 12

4. PRACTICAL CONSTRAINTS ... i i it 15
S, EXPERIMENT ... e e et 17
Van Data: Collision Course. ... ...ttt et 21
Modified Cart Data: Collision and Noncollision Courses ....................... 21

Car Data: Noncollision Course ... .. .. e e 24

6. MATHEMATICAL ANALY SIS . ... e e it e iiee e 27
Data Analysis: General COmments . .. .........oviunirinneenneenneennannnans 27

Fourier Analysis. .. ...ttt it ittt e e 27

Discrete Wavelet Analysis. .. ..... .. ...ttt inrin it iiienennnnn. 27

“Van Slowing Down™ . . ... .. it i e e e 27

Data Analysis: Some Results. .. ... ... .. i 28

Simple Analog Filter Model . ........ ... ... . . i i 28

FFT Extraction of Velocity . ........ .. iiiii ittt ie i iie e, 29

Discrete Wavelet Analysis. . ...ttt 29

Chirplet Analysis . ... ..ottt i i e e e 30

Nonlinear Model of a Single Cycle........ ... ..o ... 32
Karhunen-Loeve Transform. ......... ... ... . o i, 34

Singular Value Decomposition .............. .. ..o i il 37

Auditory Analysis .. ...iitiit i i e e e 39




Discussion: Danger Zones and Safety Zones. .................ccoeiiinnn. 39

Beam-Forming Approach. .. ...t 40

Data Analysis: Comparison of Techniques . ........... ... ..., 41
Techniques Not Explored in This Study . ............ oo, 41

7. PROSPECTSFORTHE FUTURE ....... ... 43
8. CONCLUSIONS ............... e 45
9. THE NEXT PHASE: A TASK LIST .. ... oo 47
Task 1: General Data Collection. ........... .ottt i, 47

Task 2: Dynamical Information Extraction ................................ 49

Task 3: Beam-Forming Proof of Principle.......................... ... ..., 49

Task 4: Identification of a Sparse On-Vehicle Sensor Array .................. 51

Task 5: System Definition of the Anticipation Engine....................... 51

Task 6: Kinematic Simulation............ ... .. . ... o il 52

Task 7: Survey of Existing Crash Data .................. ... ... oo, 52

Task 8: Target Classification .. .........coiiniiiiinnii ittt 52

10. RECOMMENDATIONS .. .. ittt et ettt tieaeaenns 55
ReferenCes . . ..ottt e e e e e e e e 57
Appendix: Tutorial on Orthonormal Wavelets ... .................uoeeeeeuueeeennnnn.. 61




2.1
22
23
5.1
52
53
54
55
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

FIGURES

Schematic for a formal anticipatory system. . .. .. ... ... ............ 4
Schematic for extracting system information from sensordata. . . .. ... ... ... 5
Schematic for extracting target information from sensor data. . . . . .. ... .. ... 5
Ultrasonic ranging SYSteIM. . . . . . . . o vt v v vt i e e e e e e 18
Doppler radar System. . . . . . . . . . . .t e e e e e 18
Doppler radar unit used inexperiments. . . . . . .. .. ... . . oo e .. 18
Head-on geometry. . . . . . . . . . . . .. i e e 19
Pass-by geometry. . . . . . . . . . e e e e e e e e e 19
Side-swipe EOmELIY. . . . . . . . . . . i e e e e e e 19
Cart with reflecting screen. . . . . . . .. . ... . ... ... 20
Reflecting screen at 45°angle. . . . . . .. ... ... ... ... ... .. ... ..., 21
Screen supporting StruCture. . . . . . . . . .o .t e e e e e e e e 22
Dopplersignature of van. . . . . . ... ... ... ... ... 22
Doppler signatures of cart with screen. . . . . . .. .. ... ... ........... 23
Passenger car drive-by Doppler signature. . . . . . . . ... ... ............ 24
Receding passenger car Doppler signature. . . . ... ... ............... 25
Data plots for van slowingdown. . . . ... ... ... ................. 28
Analog filtered output. . . . . . . . ... ... 28
Fourier analysis of van slowingdown. ... ....................... 30
Extraction of velocity from Fourier analysis. . . . ... ................. 31
Wavelet analysis of van slowingdown. . . . ... ... ................. 31
Fourier analysis of waveletlevel 2. . . .. ... ... .................. 31
Onerow of the chirplet sets. . . . .. .. .. .. ... ... . .. ... .ieena.. 32
Fixed-speed signal correlation with fixed-speed chirplet. . . . . . . ... ... ... .. 33
Deceleration signal correlation with deceleration chirplet. . . . . . .. ... ... ... 33
Nonlinear curve fitting. . . . . . . ... ... ... . ... ... e 33
Velocity obtained by nonlinear curve fitting. . ... ................... 35
Acceleration obtained by nonlinear curve fitting. . . . ... ... ............ 35
Signature of possible multiple reflections. . . . . ... ... ... ... ... ... ... 36
Eigenvalues of covariance matrix. . . . . .. .. . ... .. ... ... ... ..... 36
Projection onto the first three eigenvectors. . . . . . ... ... ... ... ....... 36
Resolution of projection into distinct surfaces. . . . .. ... ... ........... 37




6.17  Singular values of the covariance matrix. . . . . . .. .. ... .. ... ... ... 38
6.18  Projection of acceleration signature onto SVD basis. . . . . . . S 38
6.19  Projection of constant speed signature onto SVD basis. . . ... ... ......... 38

Vi




5.1
6.1
7.1

TABLES

Data collection geometries . . . . ... ............
Comparison of analytical methods . . . . ... ... .....

Best-case costs for a future precrash restraint sensor system

vii







This report explores feasibility of an
anticipatory precrash restraint sensor. The
foundation principle is the anticipation
mechanism found at a primitive level of
biological intelligence and originally
formalized by the mathematical biologist
Robert Rosen. A system based on formal
anticipatory principles should significantly
outperform conventional technologies. It
offers the prospect of high payoff in
prevention of death and injury.

This study includes a survey of previous
research. The formal anticipation engine is
realizable, but the only past development has
been for large-scale nuclear power plant
control systems. An anticipation engine has
never been attempted for a small instrument.
Previous research in predictive crash
detection has not used the formal anticipation
paradigm. Sensors and processors are
available to provide a good, fast, and
inexpensive description of the present
dynamical state of the vehicle to the
embedded system model in the anticipation
engine.

What is not discussed in the literature is
whether or not there are sensors and
processors that will provide a good, fast, and
inexpensive description of the present
dynamical state of the targets to the
embedded environment model in the
anticipation engine. The unavailability of
dynamical information on targets would make
the anticipatory system infeasible. The object
of the experimental and analytical part of this
study was to determine if target dynamical

EXECUTIVE SUMMARY

information can conveniently be made
available.

The experimental part of this study found
that inexpensive radar in a “real-world”
setting does return useful data on target
dynamics. The velocity and acceleration of
the target were extracted from a Doppler
radar signal by seven different
signal-processing methods. In addition,
Doppler radar shows distinct signatures for
distinct approach geometries.

The data produced by a radar system can
be converted to target dynamical information
by good, fast and inexpensive
signal-processing techniques. The
Karhunen-Loeve transform (KLT) is used to
examine the upper limit on what information
is likely to be revealed by sophisticated
signal-processing methods. While too
computationally costly to be used in a
practical instrument, KLT is the best available
algorithm for uncovering the information
buried in a signal. The KLT of the Doppler
radar time series appears to simultaneously
resolve velocity and acceleration of multiple
surfaces. It demonstrates that, in principle, all
this information is extractable. Several other
techniques, such as chirped wavelets,
performed almost as well.

Not only is the anticipatory sensor
feasible, but further development under the
sponsorship of the National Highway Traffic
Safety Administration is necessary and
desirable. There are a number of possible
lines of follow-on investigation. The level of
effort and expected benefits of various
alternatives are discussed.
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1. PROBLEM STATEMENT

The ultimate goal of the anticipatory
precrash restraint sensor project is the
development of a sensory system that decides
at the present moment, with great accuracy,
whether or not to actuate a system of restraint
devices such that the restraint is properly
deployed a short time into the future. This is
more than merely the prediction of whether
or not a crash will occur. It is an estimate
that the expected crash will be of sufficient
severity to warrant device deployment. The
vehicle will have a suite of restraint devices,
driver and passenger airbags, side stiffeners in
the right and left doors, and possibly other
devices, each of which allows for a range of
degrees of deployment. It is not desirable to
fully deploy all restraint devices for every
crash, and a context-sensitive decision must
be made as to which devices to deploy, and
to what degree.

Contrast the anticipatory sensor with an

accelerometer-based sensor. The accelerometer -

indicates two things: whether or not a crash
is already in progress, and if so, the severity
of the crash. This is a purely reactive system.
It knows nothing until the crash actually
starts. The information it provides to the
restraint system requires that the restraint
system deal with a situation that is already
occurring. For many types of crashes, there is
not sufficient time to determine that a crash
is already in progress, decide what to deploy,
and complete the deployment before the crash
energy is transmitted to the occupants of the
vehicle. To obtain the necessary extra

milliseconds, an anticipatory system is needed.

An anticipatory system is a formal
mathematical scheme based on interacting
predictive models. One model takes
information about the past and present state
of the vehicle and makes a prediction of its
dynamical state in the near future. Another
model takes information about the past and
present state of the environment (i.e., likely
targets) and predicts the dynamical state of
the targets in the near future. Based on these
sets of predictions, the system forms an
expectation of whether a crash will occur, and
if so, how bad will it be.

For a model to operate, it needs real-time
data streams to provide the “present-state”
information on the vehicle and the targets.
This requires a suite of sensing transducers
that provides “data,” and real-time signal
processing that extracts “information” from
the data. Thus, the anticipatory system is not
a sensor with some incidental built-in
intelligence. Rather, it is an integrated
intelligent system that incidentally uses an
array of sensing elements, signal processors,
and an anticipation engine.

The major unsolved problem is the
intelligence, not the hardware. Specific
questions are as follows: Can a formal
anticipatory system consisting of interacting
nested models reliably predict the onset and
severity of a crash? What are the
computationally cheapest models that provide
an adequate prediction? What input
information does the system model need, and
how sparse can the information be without
significantly diminishing the performance of
the system model? What input information
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does the environment model require? Does
the output data of available sensor elements
contain the information needed by the
models? What are the computationally
cheapest signal processing methods for
extracting the information needed by the
models from the data produced by the
sensors?

The reason for using the anticipatory
paradigm is that it has the potential to
produce decisions that are simultaneously
good, fast and inexpensive, and to produce
them far more effectively than do
conventional techniques. It does so by
providing a method to make maximal use of
minimal data. Development of the intelligence
is expensive, but it is a one time-cost. The
cost of producing copies of the developed
intelligence for hardware systems is trivial by
comparison.

The anticipation process is conceptually
well founded. Anticipation is one of the most
primitive functions of biological intelligence.
Unlike higher cognitive functions, it is
deterministic. It does not require that the
creature doing the anticipating make a
volitional choice to do so. Being
deterministic, the rigorous development of a
theoretical foundation for a mathematical
description of anticipation is straightforward,
albeit tedious.

Theoretical rigor has a profound practical
consequence. With its foundations properly
laid, the philosophical debate as to whether or
not it is possible to mathematically describe
anticipation is settled; it is. This is in stark
contrast with machine cognition, which seeks
to mathematically emulate volition and
consciousness and which is the subject of
heated and legitimate philosophical debate. It
is truly unknown whether or not-a machine
can be programmed to form a concept, nor is
it known whether we would recognize an
instance of machine cognition if we saw one.

A major priority that remains to be
defined by the National Highway Traffic
Safety Administration (NHTSA) is whether
the ultimate objective of this research is to
use an anticipatory system to arm a restraint

device, or to fire a restraint device. There is a
risk-reward tradeoff to be considered in this
decision. The arming function is less
expensive and less risky than the firing
function, but it leads to a lower potential
payoff.

It is tempting to consider the arming
function to the exclusion of the firing
function. Arming requires information about
target dynamics, which can be obtained from
radar returns. It does not require target class
or mass (Najm 1995). The consequences of
error may be tolerable. A false positive means
that the system arms, but no crash occurs. If
a crash does not occur within some
prescribed amount of time after arming, the
system can disarm, probably with no harm
done. A false negative means that a crash
occurs, but the system does not arm until
forced to do so by the crash detection
accelerometers; in that instance, the
advantages of the anticipation are lost.
Swihart and Lawrence have produced
experimental data that show at least a 10%
reduction in firing time for accelerometers
supplemented by radar-based crash prediction
for arming (Swihart and Lawrence 1995).

The firing function is costlier and riskier
but leads to a greater potential payoff than
the arming function. In addition to target
dynamics, the firing function requires
information about target class and mass. It
has not been proven that class and mass data

-are obtainable by a device that must meet the

constraints of an automotive precrash restraint
sensory system, nor was it an objective of
this study to explore the question. The
consequences of error are quite severe for an
anticipatory firing system. A false positive is
very likely to cause a crash where none
would have occurred otherwise. A false
negative might cause the restraint to fail to
actuate during a crash, causing more severe
injury (or loss of life) than would have
otherwise occurred. The payoff for an
anticipatory firing system is that it would
deploy the restraint device several tens of
milliseconds faster than a contact-based firing
system.




This report covers only the feasibility
study phase of the project. The objective of
any feasibility study is to answer the
question, Can the thing being studied really
be done? A reasonable way to answer the
question for this case is to determine whether
or not there are “showstoppers” that might
preclude the implementation of an
anticipatory sensory system for the proper
deployment of precrash restraints.

Anticipatory does not merely mean
predictive. It means a system of nested
predictive models that emulates biological
anticipation and is generally consistent with
formalism laid down by Rosen (1985). The
scheme is shown in Fig. 2.1. The anticipation
engine does not appear to be a showstopper.
Anticipation is rigorously justified in
mathematical theory.

The dynamical models for crash prediction
are based on deterministic classical physics.
The development of the specific models
themselves would be tedious but
straightforward. The models should be
implementable in no more than a few
thousand machine language instructions.
Given present-day microprocessor clock rates,
it should be possible to transform the initial
dynamical conditions into a prediction in less
than a millisecond.

Rosen identifies five necessary attributes
that distinguish an anticipatory system. The
first is that an anticipatory system, S;, must
contain a model, M, of another system, S;.
Second, the anticipatory system, S,, contains
a set of observable quantities that can be
linked mathematically to S; and an orthogonal

2. OBJECTIVES

set of observables that cannot. Third, the
predictions of the model, M, can cause an
observable change in the state of S;. Fourth,
there must be some observable difference in
the interaction between S; and S, when the
model is present and when the model is not.
Finally, M must be a predictive model; based
on the present conditions, M must change
state faster than S; (operate faster than real
time) such that M’s changed state constitutes
a prediction about S;.

Since the vehicle and its environment (the
set of objects into which the vehicle might
crash) are everyday sized objects moving at
ordinary speeds, the equations of classical
dynamics should provide an adequate model:

dx; i

dtt =ﬁ(xl$'--9xn)9 = l,...,n
dy; )

dt = g](yl) see s}’m), J = 1,...,m.

Here, the vector x; characterizes the state
of the vehicle at an instant, and the vector
dx; /dt, characterizes the time rate of change
of the state of the vehicle at an instant, where
the state has i degrees of freedom, and f; is a
mapping function that is not necessarily linear
and not necessarily conservative. The vector
y; characterizes the state of the environment
at an instant, and the vector dy, /dt
characterizes the time rate of change of the
state of the environment at an instant, where
the state has j degrees of freedom, and g; is a
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Fig. 2.1. Schematic for a formal anticipatory system.

mapping function that is not necessarily linear
and not necessarily conservative.

Since they must operate faster than real
time, neither model is an exact
characterization of the system it describes. A
major task of a subsequent phase of the
development of a practical airbag actuation
sensor is to determine the minimal set of
vectors x; and y; that account for the
necessary observables, and the functions f;
and g; that adequately characterize the system
for this particular application.

How these models and the interaction
between them are to be implemented in the
sensory system hardware is a computational
detail. One promising method would be to
implement ‘the two dynamical models as two
different cellular automata, each on its own
set of simple dedicated massively parallel
very-large-scale integrated circuit (VLSI)
hardware. The interaction between them could
be modeled as fuzzy set membership; there
already exists a dedicated fuzzy logic chip
that is probably suitable to the task. However,
this example illustrates only one possible
method. Others might turn out to be faster,
better, or less expensive.

Sensing the state of the vehicle and
extracting the information from the sensor
data should not be a showstopper. On-vehicle
sensors for velocity, acceleration, strain, etc.,
represent a mature technology, and processing
can be done in real time with cheap dedicated
digital-signal-processing (DSP) chips. The

scheme is shown in Fig. 2.2. In fact, it is the
abundance of inexpensive sensor data
describing the state of the vehicle that defines
the engineering problem for this part of the
system. How sparse can the data set be made
to still provide an adequate description?

If there is a showstopper, it is in
developing the information about the state of
the environment. Optical techniques are not
practical; they are too easily disrupted by
environmental effects. Radio-frequency (RF)
radar offers the proper range and resolution
but, historically, has been extremely
expensive and has required absurdly fast
processing times. If RF radar is used in an
impending crash detector, are there ways of
implementing it within the cost constraints of
consumer electronics? Does RF radar
generate the information that the environment
model needs? Can target dynamics be
extracted from the data fast enough for it to
be practical? Can target class be extracted at
all? The scheme for extracting target
information from sensor data is shown in
Fig. 2.3.

Identification of target class may be as
important as measurement of target dynamics,
and it is a fundamentally more difficult
problem. There is no general theory of
pattern recognition against which conceptual
level questions can be tested. Notwithstanding
some of the claims reported in the literature,
an accurate, reliable, and statistically valid
ground vehicle classification system has never
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Fig. 2.2. Schematic for extracting system information from sensor data.
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Fig. 2.3. Schematic for extracting target information from sensor data.

been demonstrated. The optimistic assessment
of the literature is that several
proof-of-principle studies have been
published, and none of them precludes the
possibility that vehicle class might be
extracted from either acoustic signatures or
radar returns.!

To show that the anticipatory airbag
sensing system is feasible, the experimental
and analytical research effort in this project
has concentrated on extracting information on

' target dynamics from the output data of

cheap sensors. This project does not confuse
the system with its transducers; the global
objective remains the development of an
anticipatory system. Rather, the feasibility
study focused its primary effort on analysis
of environment transducer outputs because
uncertainty about the availability of
environment information constitutes the most
likely showstopper.

lBy mutual agreement between NHTSA and the authors, experimental and mathematical study of vehicle
classification was specifically excluded from the scope of this feasibility study. All comments on vehicle classification
appearing in this document are based on a review of the recent literature, and on the authors® experience in pattern
recognition and signature analysis research for other projects.







3. SURVEY OF THE LITERATURE

What does “anticipatory” mean?

A formal anticipatory system is based on
mathematically formalized principles of
anticipation. The term generalizes the notion
that the system can take present action based
on an expectation of a future state. It refers
to a system in which decisions are made by
an algorithm that emulates the anticipation
process found at a primitive level of
biological intelligence. The principles of
anticipatory systems were rigorously derived
by Robert Rosen, a mathematical biologist
(Rosen 1985).

The most important use of the anticipation
mechanism in nature is to preserve the safety
of the creature doing the anticipating. Based
on an extremely sparse set of percepts
describing the present state, a creature
performs the remarkable feat of recognizing,
with sufficient time to take corrective action,
whether or not the future state constitutes a
danger. Since eons of natural selection have
caused the anticipation mechanism to abound
in nature, not only must it be effective, but
also it must have superior survival value
compared to other paradigms for identifying
threats.

If we learned how to perform the
seemingly impossible task of heavier-than-air
flight by observing how it was done in
nature, does it not make sense to try the same
thing in the development of robust safety
systems? This was precisely the approach
taken by Tsoukalas in the development of
anticipatory controls for large systems such as
nuclear power plants (Tsoukalas 1989). Since
the anticipatory paradigm has proved itself in

the ongoing struggle for the survival of the
fittest, it is reasonable to expect that a
safety-system technology based on
anticipation should significantly outperform
conventional technologies.

The implementation of a formal
anticipatory system in a small instrument has
never been reported in the literature. The
most likely reason for this is that, before the
recent development of high-performance
processors and algorithms, it was probably
impractical. However, as this feasibility study
indicates, at the present level of technology,
the development of an anticipation engine in
a small system is the next logical step in the
progression. It is reasonable to expect that the
development of an anticipatory system
applied to vehicular safety should lead to a
high payoff in reduction of accidental death
and injury.

NHTSA-sponsored research in predictive
crash sensing goes back to the work in the
early seventies by Holstrom and associates
(1993). These researchers defined active
restraints as devices requiring some action on
the part of the vehicle occupant, such as
seatbelts, and defined passive restraints as
devices not requiring action by the vehicle
occupants, such as airbags. Airbags were
treated as a system under development, to be
initially installed at some time in the near
future. They envisioned that airbags would be
actuated by accelerometers mounted on the
vehicle firewall and observed that the long
actuation time of accelerometers (20-40 ms
after crash contact first occurs) greatly
diminishes the potential benefit of airbags.
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Holstrom and associates used the term
“anticipatory sensor” simply to mean a device
that provides some sort of warning of an
impending crash before contact occurs.
Nothing in their work suggests the idea of a
formal anticipatory system based on nested
models. There is no reason to expect that
they should have discussed formal
anticipatory systems. It would be nearly
15 years before Rosen would lay down the
principles (Rosen 1985). Even if they had
known the theory, they would not have
considered it for on-vehicle use. A practical
implementation of a formal anticipatory
system for vehicular safety would have been
utterly beyond the reach of the computer
technology of a quarter century ago.

Their objective was to provide crash
warning when the target is 50-100 cm from
the victim. The reasoning was that the
extremely short range minimizes the false
alarm problem, while the 25 ms or so gained
by firing the airbag without waiting for the
crash to start dramatically enhances the
effectiveness of the airbag. They were
generally more willing to tolerate false
negatives (failure to predict a crash that
actually occurs) than false positives (airbag
actuation when no crash occurs).

Holstrom and associates did not prescribe
an acceptable false alarm rate but speculated
that it should fall in the range of one
occurrence in 4 years (probability of accident
involvement) to one occurrence in 2500 years
(probability of fatal injury). Their rates of
occurrence were based on statistics for the
early seventies. Statistics for 1990 result in
averages of one police reported crash
involvement per 14.8 years of driving and
one fatal crash involvement in 2910 years of
driving (Knipling 1995).

The decision that Holstrom et al. were
seeking is logically crisp. The system either
says that a crash is about to occur (fire
everything), or that no crash is impending (do
not act). There is no provision for actuating
some devices but not others, and no provision
for variable actuation, such as context-

sensitive control of the degree of inflation of
an airbag.

Their cost constraint seems reasonable.
They asserted that the maximum that an
original equipment manufacturer is willing to
pay for such a sensor is $10-$20. Taking a
quarter century of inflation into account, this
is consistent with our estimate of $50-$100
per sensor system. In both cases it is assumed
that the production volume would be
1 million to 10 million per year.

These researchers investigated several
sensing technologies, seeking presence,
closing rate, and the nature of the target.
They examined and rejected several candidate
technologies, finally settling on RF radar as
the most promising possibility. They used a
10-GHz Doppler radar with a Gunn diode,
not dissimilar to our RF setup, but they
separated receiving and transmitting antennas
such that the sensitivity included a highly
localized “hot spot” along the centerline of
the car and 1 m in front of the radar system.
Distance information was implied by the
presence of a target in the hot spot. Velocity
was extracted from the Doppler return by
straightforward analog processing.

They considered target classification to be
crucial to a good crash sensor. They sought to
distinguish between two classes, hazardous
and innocuous targets. Although they did not
resort to modern pattern recognition jargon,
they attempted to do so by classifying the
Doppler radar signatures by visual inspection
of Doppler returns in time domain in hopes
of finding a distinguishing threshold. They
were not especially happy with the results;
some innocuous targets gave bigger Doppler
bursts than some hazardous targets. They did
not seek distinguishing features in any
transform feature space.

They concluded by recommending a
hybrid system. They asserted that
accelerometer type actuators are adequate
below 30 mph but that precrash warning is
needed at higher speeds and suggested a
system with both accelerometers and radar.
Below 30 mph only the accelerometers would
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be used, in conventional fashion, and the
radar would not operate. Above 30 mph, the
radar would provide advance warning, and
the accelerometers operating at a low
threshold would provide confirmation. In the
30- to 60-mph range, they did not
recommend making a decision to deploy
based solely on the radar data.

Given the processing technology available
at the time, the proposed system seems quite
reasonable. It is remarkable that it never
caught on.

The same research is recounted in much
greater detail in a Department of
Transportation (DOT) report (Hopkins et al.
1974). 1t is worth noting that these
researchers expected the sensor to detect 60
to 80% of major targets but to have an
extremely low rate of false positives. The
report is a more detailed proof of the claims
asserted in Holstrom’s IEEE paper. Most
importantly, as with the IEEE paper the
detailed report uses “anticipatory” to mean
“precrash”; it does not describe a formal
anticipatory system.

More recent literature changes the
descriptive adjective from “anticipatory” to
“predictive,” but the emphasis is still on the
sensing hardware element and not the
processing. It does not discuss formal
anticipatory systems. Swihart and Lawrence
(1995) are concerned with the same result as
the early NHTSA work: precontact warning
of an impending crash. Their application is
more demanding, requiring information for
context-sensitive deployment. Their system
would use radar-based prediction to perform
the arming function, and not the firing
function. Their experimental data shows at
least a 10% reduction in firing time for
accelerometers supplemented by radar-based
crash prediction for arming. They note that a
system that fires an airbag solely on the basis
of a noncontact prediction requires not only
much better target dynamics than their system
provides but also target-class information.

Swihart and Lawrence’s objective is to
extract crash-warning information from the
radar returns of intelligent cruise-control

systems. They define a false alarm as strictly
a false positive. They see three tasks for the
crash warning system: (1) target identification
(presumably, this means deciding whether or
not the sensor has a target in view, rather
than identifying the kind of target),
(2) trajectory computation (presumably the
extraction of target dynamics), and
(3) threat/no-threat classification. They
acknowledge the possibility that knowledge of
the victim’s dynamics, extracted from
onboard sensors, could enhance the reliability
of the crash prediction, but they do not
visualize it in terms of nested interacting
models of the system and its environment.
Curiously, while their paper implicitly
recognizes the need for a prediction of the
severity of the impending crash, they do not
see target class as an important datum. They
are extremely concerned with the intelligent
deployment of restraint devices so as to
minimize injury. However, they do not list
target classification as a necessary task in
their operating paradigm.

Can (and should) targets be classified?

Both past and recent research considers
the class of the target to be a significant
datum to be produced by an impending
collision detector (Holstrum et al. 1973;
James and Sampan 1995). A possible basis
for classification is acoustic signature. It is
instructive to consider a recent paper on
vehicle acoustic signature classification
(James and Sampan 1995). The paper
illustrates what can go wrong when the
attempt to solve a pattern recognition problem
becomes confused with the analysis of the
internal workings of a neural network.

The fundamental error in (ab)using neural
networks is the notion that it eliminates the
need to understand the physical process that
produces the samples to be classified.
According to Dr. Harold Szu, of the Naval
Surface Warfare Center, one of the world’s
authorities on neural networks, just about any
set of labeled numbers thrown at a neural
network will result in a classification rate that
is 80% correct (Szu 1995). By itself,
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increasing the size of the training sets does
not improve the classification rate.

In order for any classifier, including a
neural network, to give a higher classification
rate, the signatures to be classified must be
projected onto a proper feature space. A
feature space is a mathematical space in
which the attributes of samples of a given
class occupy a limited region, while attributes
of samples of other classes occupy other
limited, yet distinct, regions (Duda and Hart
1973). The most difficult part of any pattern
recognition problem is the identification of
the feature space (Tou and Gonzalez 1974).
Establishing a feature space requires the
projection of representative signatures of each
class onto sets of basis vectors until a basis
set is found that shows good localization by
class. Selecting the basis sets to use for
classification inevitably requires an appeal to
the physical process producing the signatures.

The scheme reported by James and
Sampan starts with the idea that a long
time-series vector can be compressed into a
short vector by an algorithm that somehow
looks reasonable but is chosen without
recourse to physical reality; there is no
indication as to whether or not useful
classification features are being discarded. A
long list of compressed signatures, each
labeled by class, is used to train the classifier.
Despite the fact that each of the four classes
uses hundreds of training samples, a close
reading of the paper shows a correct
classification rate of about 80% for four
classes.

For pattern classification, an acoustic
signature containing thousands of data points
must be compressed to a vector of no more
than a few dozen dimensions. However, the
compression scheme cannot be arbitrary. The
idea that acoustic signals have their energy
unevenly distributed in various mathematical
spaces is well known. The principle for
selecting a compression algorithm consists in
projecting it onto various spaces until one is
found in which there is considerable
localization of energy and vast regions of the
space that contain little of the signal’s energy.
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The uninhabited regions can be discarded.
What remains is a compressed version of the
original with considerable reduction of data
but little reduction of information. The
selection of spaces must be based on some
understanding of the physical process
generating the signal.

The standard of comparison for supervised
classifiers is the Bayesian classifier (Tou and
Gonzalez 1974, pp. 124-30). There is an
argument from game theory that asserts that
supervised classification is a zero-sum game.
A consequence of that assertion is that the
Bayesian classifier leads to the lowest
probability of classification error. While it is
computationally costly to implement, it
represents a reasonable limit of good
performance. Once a feature space is found
and verified by a Bayesian classifier, the
remaining engineering task is to devise a
classifier that is almost as good as Bayesian,
but cheaper to implement. Comparison with a
Bayesian classifier constitutes a fair test of a
neural net.

A supervised classifier that is known a
priori to require four classes and that has a
correct classification rate of 80% when
trained with hundreds of samples from each
class is not a very good classifier. With a
proper feature space and a classification
algorithm that operates efficiently in the
feature space, four classes and hundreds of
training samples per class should lead
consistently to classifications that are greater
than 99% correct.

The wavelet transform is an excellent
technique for extracting features from vehicle
signatures. The work of Karlsen et al. (1995)
provides a technique for selecting a basis
from the physical attributes of a ground-
vehicle acoustic signature. While their work
is preliminary, it provides encouragement that
distinctive ground-vehicle features can be
reliably extracted from the acoustic signature.
The time localization of the wavelet enables
it to extract discontinuous features from noisy
data (Szu et al. 1995).

Some vehicle classification development
has been done for infrastructure-mounted
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sensors. Duckworth et al. (1994) report that
gross classifications of vehicles (e.g., big
truck vs little car) can be made from
short-term Fourier transforms (STFTs) of the
returns from infrastructure-mounted Doppler
radar. Microwave profiling with
frequency-modulated continuous wave
(FMCW) radar is reported to have a 75%
correct classification rate for five classes of
vehicles (Roe and Hobson 1992). A highly
reliable vehicle classification scheme based
on laser profiling is reported by Schwartz
(1994). It makes no claim as to correct
classification rate. The foregoing examples
are mentioned for completeness only. They
depend on a global view of the target that
can only be obtained with an
infrastructure-mounted sensor. It not practical
to adapt them to on-vehicle use.

Classification of vehicles based on
interpretation of radar returns from on-vehicle
sensors has not been widely studied. Some
work has been done in Germany, using
two-dimensional scanning multibeam radar (or
lidar) (Najm 1995). Given the present state of
the art, this scheme is very expensive. .
Classification of vehicles based on returns of
collision-avoidance type radars has evidently
never been attempted.

It is possible, but not certain, that wavelet
processing of on-vehicle radar returns might
lead to a robust vehicle classifier. Since the
wavelet retains features discarded by STFT, it
may be possible to improve the classification
rate of the system of Duckworth and
associates with wavelet processing. Wavelet
techniques have been highly effective in
military-radar classification schemes
(Topiwala and Teng 1995; Baras and Wolk
1995).

Perhaps an anticipatory firing system
requires identification of target class, but this
is not a foregone conclusion. There is general
agreement that the detector must produce an
estimate of the severity of an impending
crash and that the estimated severity is
directly proportional to the energy that the
target will transfer to the victim. However,
the energy of a target is proportional to its

mass (presumably implied by its
classification) and, more importantly,
proportional to the square of the target’s
velocity (easily extracted from the dynamics).
Thus, a 3000-1b compact car closing at

100 mph relative speed will produce a crash
2.5 times more severe than a 30,000-1b truck
closing at 20 mph relative speed. It is not
clearly established whether or not
identification of target class is worthwhile
even for a precrash firing sensor.

Can signal processing extract good
dynamical data about targets?

Many different sensor technologies have
been explored for crash-avoidance sensing. A
systematic comparative survey of these
technologies was performed by Najm (1994).
His emphasis was on the sensor technology
rather than on the signal processing details.
He notes that filtering or gating of radar
returns is used to provide an estimate of
target dynamics. Useful dynamical
information does appear to be present in
practical radars; and good, fast, cheap signal
processing should do a better job of
extracting it than is being done by present
commercial devices.

While the recent literature on crash
warning provides insights into the capabilities
and limitations of radar, it does not provide
(nor was it intended to provide) much
guidance of the processing side of the
precrash restraint problem (Takimoto and
Kotaki 1992). For example, a vehicle-control
system investigated by Ozguner et al. (1995)
uses a good radar-reflecting target as an
integral element of the overall system.
Helpful exceptions include the work of Fujita,
Akuzawa, and Sato (1995) and Najm,
Mironer, and Fraser (1995); both of these
studies provide insight into the extraction of
target dynamics from sensor data.

Can a vehicle sense its own
dynamical state?

As with most sensing devices,
accelerometers have a limited dynamic range.

"
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The proper use of an accelerometer depends
on making the limited dynamic range
compatible with the range of values that it is
expected to sense in its intended application.
Thus, conventional airbag accelerometers
must not saturate, or “top out,” at the high
end of the range, but have no need to provide
high-resolution data about small accelerations.
At the other end of the range, accelerometers
used in noncrash situations, such as intelligent
suspension, are not expected to operate
properly when exposed to 50 g acceleration
during a crash but are expected to provide
high-resolution information during noncrash
operation.

Conventional airbag actuation uses
on-vehicle sensing to detect whether or not a
crash is currently in progress. The technology
has about two decades of commercial practice
behind it and in a sense is quite mature. A
fairly extensive selection of silicon
micromachined automotive sensors with
physical sensing and electronic preprocessing
fabricated on a single substrate are presently
available (Grace 1991; Bryzek 1992).
Conventional airbag actuation is based on the
very large accelerations of an ongoing crash
and therefore is mostly concerned with
accelerations at the high end of the range
between 0 and 50 g. Conventional airbag
accelerometers lack the resolution at low
accelerations to provide good precrash
dynamical data (Najm 1995).

What mostly appears in the recent
literature is research in the extraction of
ongoing-crash information. A major issue is
whether single-point or multiple-point sensing
is necessary to adequately describe the
vehicle dynamics. Kelley (1993) suggests that
single-point monitoring will suffice but
requires rather a good deal of signal
processing. Alrabady and Mahmud (1993)
have developed an actuation algorithm based
on estimating the severity of an ongoing
crash from acceleration and jerk information
extracted from accelerometer data. Allen
(1992) has developed an algorithm based on
the first derivative of the power output by the
accelerometer to estimate the severity of the
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ongoing crash. These provide little guidance
in sensing the precrash dynamical state of the
vehicle.

In more recent applications, the limited
dynamic range of the accelerometer is placed
at the more sensitive end of the scale. The
devices used in intelligent suspension systems
have a useful dynamic range from just above
zero to 5 g. They provide the highly resolved
details about acceleration that are required by
intelligent suspension systems. These devices
are already appearing on Lincoln Town Cars
and are about to be introduced on less
expensive vehicles. The price of this
technology is falling rapidly, and in a few
years it should be widely used. By the time
an anticipatory precrash restraint sensor is
ready for market, it should be a
straightforward task to extract all the
necessary data about the dynamical state of
the vehicle from the data stream being
provided by existing on-vehicle sensors
primarily intended for other applications
(Najm 1995).

The unresolved engineering problem in
having the vehicle sense its own dynamical
state is the determination of the minimal set
of precrash information actually required by
the system model, and the signal-processing
task of extracting it from the output of
existing on-vehicle sensors. This problem
appears to be straightforward, and its solution
does not seem to require any new conceptual
breakthroughs. It does not need to be
addressed in the next phase in the
development of the anticipatory precrash
Sensor.

Can precrash restraints leverage from
related technologies?

The problem to be addressed for
anticipatory precrash-restraint actuation
sensing is fundamentally different from
problems of crash-warning systems and
intelligent cruise control sensing. The
anticipatory precrash-restraint sensor must
compute fast enough to provide an accurate
prediction of an event less than 100 ms into
the future involving nearby targets, as
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opposed to 2 or 3 s, and quite lengthy
headways, for the other two systems (Takubo
1995; Kikuchi, Ishiyama, and Nakajima
1995). Thus, the processing algorithms must
be extremely fast compared to those needed
for the other technologies. On the other
hand, the only targets of interest in precrash-
restraint actuation sensor are those that can
cause a crash in the next 100 ms, and the
field of view and the overall amount of
information to be processed is much less than
that for the other two systems.

The element that the precrash-restraint
actuation sensor has in common with the
other crash-predicting technologies is the
sensor element. Almost all propose using
microwave radar. Infrared proximity detection
works for robot guidance but only in
low-speed indoor situations (Malik and Yu
1992). The same has been demonstrated for
ultrasonic sonar (Kweon et al. 1993).

The precrash restraint system differs from
the others in how it processes the radar return
signals. In fact, it can be reasonably
envisioned that a single radar might be
connected to three independent processors,
one to feed a driver crash-warning system,

one for an intelligent cruise control system,
and one for precrash restraint actuation.

In systems designed to provide crash
warning to the driver, there are two problems.
The first is to accurately predict a crash. A
more difficult problem is to provide warning
to the driver in such a way as to elicit the
proper evasive action from the driver
(Hashimoto, Sasaki, and Kawai 1995;
Chakroborty and Smedley 1995). This human-
factors issue is the topic of interest in much
of the crash-warning research and is
particularly of interest to NHTSA’s Office of
Crash Avoidance Research (Leasure and
Burgett 1994). Human factors are not an
issue in a precrash-restraint sensory system,
since its output goes directly to a machine.

NHTSA shows a similar priority in its
obstacle-detection research (NHTSA 1994).
Ultrasonic-based rear and side object
detectors for use with big trucks were
systematically compared. These systems all
used ultrasonic detectors with a range of
perhaps 3 m. However, the big issue was
human factors. The report is primarily
concerned with how the driver reacted to the
warning.
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4. PRACTICAL CONSTRAINTS

The work of Holstrom and associates
(1973) suggests that measuring target
dynamics is not especially difficult. However,
what really matters is target class, and this is
very difficult to determine. It should be noted
that the signatures collected in their research
were photographs of oscilloscope traces, and
that these were visually inspected only. It
might be profitable to collect the same type
of Doppler data from various target classes in
digital form and try to find a good feature
space.

Holstrom et al. also discovered that
ultrasonic sonar was not very good at
extracting target dynamics but seemed to be
better than radar at distinguishing target
classes. It may be fruitful to consider a
hybrid system in which the radar detects the
target at longer range, and when it comes into
sonar range, actuates a sonar device to get a
classification trace.

It is constructive to recognize that
extraction of target dynamics and target class
are fundamentally different problems. The
same sensor may or may not be the best
device for both tasks. Various types of radar
technologies, when correctly processed,
appear to be feasible for sensing target
dynamics. It is also possible, but not yet
practically demonstrated, that target class
might be extractable from radar returns.

Acoustic signature analysis is unlikely to
be practical for extracting dynamical
information about oncoming targets but might
be used for target classification (Dress and
Kercel 1994). In this application, acoustic
signatures might come in two flavors. Active

acoustic signatures would emanate from
moving targets such as other vehicles. Passive
acoustic signatures emanating from the victim
vehicle and reflected by fixed targets might
also be detectable. With some knowledge of
the victim’s normal acoustic signature, it
might be possible to correlate the return with
the known signal and have a quick
determination of whether the signature is
active or passive. Experimentation with
acoustic signature analysis is recommended to
determine its usefulness.

The conventional wisdom is that false
positives are less dangerous than false
negatives. In a false negative, the detector
fails to predict a crash that is about to occur.
Nevertheless, a few tens of milliseconds later,
an accelerometer fires the airbag anyway.
More injury occurs than if the noncontact
detector had worked, but the overall restraint
system did provide some protection. In the
vast majority of cases in which the detector
does predict the crash (estimated in the
literature to be 60-80%), the system provides
the maximum protection. It is noteworthy that
any assessment of the consequences of error
must take into account the intended
application of the sensor, whether to arm or
to fire.

Suppose that the arming function is
considered to the exclusion of the firing
function. The consequences of error may be
tolerable. A false positive means that the
system arms, but no crash occurs. If a crash
does not occur within some prescribed
amount of time after arming, the system can
disarm, probably with no harm done. A false
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negative means that a crash occurs, but the
system does not arm until forced to do so by
the crash-detection accelerometers, and as
noted above, the system provides some
protection, but not the best protection.

The firing function is much riskier. Since
it requires identification of target mass and/or
class (which the arming function does not) as
well as dynamics, and since mass/class
identification techniques are much more
error-prone than dynamics extraction
techniques, it is reasonable to expect that an
anticipatory firing system will produce
significantly more wrong predictions than an
anticipatory arming system. The consequences
of error are quite severe for an anticipatory
firing system. A false positive is very likely
to cause a crash where none would have
occurred otherwise. A false negative might
cause the restraint to fail to actuate during a
crash, causing more severe injury (or loss of
life) than would have otherwise occurred.
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One area that has not been explored is the
assessment of the confidence level of
predictions. Using the techniques of fuzzy
logic, it may be possible not only to predict
an impending crash, but to make a prediction
along the lines of “this vehicle presently has
X.XX possibility of being involved in a crash
in the next 100 ms,” where X. XX goes from
0.00 to 1.00. This should be explored in a
future phase of this work.

For practical deployment in a vehicle, the
anticipatory system must meet several
constraints. Since the predictions pertain to
the state of affairs approximately 100 ms in
the future, the process of converting sensor
data into a prediction has to happen in much
less than 100 ms. The error rate (false
positive and false negative) must be
extremely low. Finally, the whole system
must have a reasonable potential to be
producible for a few tens of dollars per copy
when produced in quantities of several million.




5. EXPERIMENT

We did a few experiments with a Polaroid
ultrasonic ranging system developer’s kit. We
set up a real-time ultrasonic sonar with the
Polaroid sensor, a Keithley A-to-D converter,
and a personal computer. In addition, several
wheel-actuated microswitch strips were placed
in the road to provide reference speed and
displacement data as the vehicle passed over
them. The schematic arrangement is shown in
Fig. 5.1. We used the detector with a Ford
Econoline van and found that the range w
about 10 to 20 ft. ‘

We do not rule out the use of ultrasonics,
particularly in a hybrid system with other
sensors. However, we had an extremely
limited budget for experimentation during this
phase, and we considered that the exploration
of RF radar would yield the greatest amount
of insight in the least amount of time. Several
manufacturers claim that they will soon be
able to provide radar systems for a few
dollars per copy when produced in volumes
of millions. At present, however, a single unit
radar set is expensive. We investigated the
possibility of using an Amerigon pulsed
broadband radar. Amerigon offered the loan
of a unit but required a payment of $14,000
for custom engineering. Our budget did not
provide for such a large expense.

Consequently, most of our experiments
were done with a surplus burglar alarm radar
unit purchased from an amateur radio supplier
for $20 (Figs. 5.2 and 5.3). This was a
Doppler radar that puts out 10 MW at
10 GHz. It uses a Gunn diode both as the
transmitter oscillator and as the receiving
local oscillator, and a hot-carrier diode as a

mixer. The supplier did not furnish a
manufacturer’s specification sheet. A horn
antenna is used with the radar; its beam
width is 23° in azimuth and 21° in elevation,
and it has a gain of 16.6 dB. The Doppler
output was connected to the same A-to-D
converter as was used for the sonar
experiments.

We did Doppler radar experiments with
three vehicles—the Ford van; a small cart
with a flat, adjustable reflecting screen; and a
passenger sedan—in different geometries as
listed in Table 5.1. One set of experiments
involved a Ford Econoline van in the head-on
geometry shown in Fig. 5.4. A similar set of
experiments involved a passenger sedan in
three geometries: the pass-by configuration
shown in Fig. 5.5, with the radar antenna
pointing normal to the direction of motion of
the target vehicle; and two side-swipe
configurations, shown in Fig. 5.6, with the
antenna cocked 45° off normal pointing
toward the front of the oncoming target, and
with the antenna cocked 45° off normal
pointing toward the back of the receding
target.

We mounted a flat reflecting screen on a
small cart as shown in Fig. 5.7. The angle of

Table 5.1. Data collection geometries

Configuration Van Cart Sedan
Head-on X X

Side-swipe X X
Pass-by X X
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Fig. 5.1. Ultrasonic ranging system.

Fig. 5.2. Doppler radar system.

Fig. 5.3. Doppler radar unit used in experiments.
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Fig. 5.4. Head-on geometry.

Fig. 5.5. Pass-by geometry.

Fig. 5.6. Side-swipe geometry.

the screen with respect to the axis of the cart

was adjustable, as shown in Figs. 5.8 and 5.9.

The idea was to observe the effect of the
angle of reflection on the reflected signal. We
ran the cart directly toward the Doppler radar
sensor with the screen in both normal-to-axis
and 45°-off-axis positions in the head-on
geometry. We also ran the cart by the sensor
in the other two geometries.

The experiments were conducted with the
radar antenna 3 ft above the ground. In the
head-on experiments, the vehicle was run
directly toward the antenna. The vehicle was
50 ft away at the start of the run and 5 ft
away at the end of the run. In the side-swipe
and pass-by geometries, the radar was
positioned back from the edge of the
roadway, and the perpendicular distance from
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Fig. 5.7. Cart with reflecting screen.

the antenna to the side of the vehicle was
12 ft at nearest approach.

Some of the tests were conducted in light
rain and snow. Doppler radar returns were not
affected by mildly adverse weather.

The objective of these experiments was
proof of principle. Can we establish that the
radar returns really contain the information
needed to feed the environment model? The
experiments were not conducted with the
exhaustiveness or the precision needed to
establish engineering specifications.

The only independent check of target
dynamics was provided by a set of two
wheel-actuated switches. These provide an
accurate measure of average target velocity in
the time interval during which the front wheel
of the target passes between the two switches.
Data describing the profile of velocity as a
function of time were not collected. In a
course of experiments to establish engineering
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specifications for a practical sensor (as
opposed to proof of principle, as was done
here), the velocity profile should be collected.
The duration of each signature was 2 to
4 s. A sampling rate of 1000 samples per
second was used for digitizing. A typical
Doppler signature has 2000 to 4000 samples.
What the Doppler experiments yielded
were sets of time-series data corresponding to
the instantaneous velocity of real-world
targets, collected under real-world conditions
with cheap hardware. The major result of
these experiments is that a good estimate of
real-time acceleration can be obtained. The
implication is that with a system (such as
pulsed radar) that also provides displacement,
it should be possible to obtain good estimates
of acceleration, displacement, and velocity.
Our experiments did not yield information on
angle of approach.




EXPERIMENT

VAN DATA: COLLISION COURSE

The event shown in Fig. 5.10 is the
signature of a large van traveling directly
toward the transceiver. This signal was
digitized at 1000 Hz, so the ordinate
corresponds to time, in milliseconds, for the
event. The slowing down is evident around
time 3500 ms.

A number of other configurations were
used to gather a variety of data under varying
geometries.

MODIFIED CART DATA: COLLISION
AND NONCOLLISION COURSES

A small, two-person electric cart was
modified to carry a large planar radar
reflector in an attempt to present a uniform
radar cross section to the beam. Runs were
made with the cart on a collision course (cart
towards the detector) and with the cart

Fig. 5.8. Reflecting screen at 45° angle.

passing by the detector. Both sets of runs had
the reflector configured in two orientations:
normal to the direction of travel and at 45° to
the travel direction. The goal in the latter
case was to observe the cosine effect of the
Doppler signal. This can arise when the
return signal is directly reflected from an
object moving at an angle with respect to its
travel. Such a situation could produce a speed
determination that is incorrect by the cosine
of the angle (i.e., as much as 0.707).

For the two collision course plots in
Fig. 5.11, the markers were well in front of
the receiver, and most action took place just
before the cart was brought to a halt directly
in front of the receiver. The first plot
(Fig. 5.11) shows the case in which the radar
reflector (“Screen”) is at 0°—directly facing
the receiver, which was pointed at the cart
along the path of motion. Slowing down is
evident between points 5000 and 6000 in
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Fig. 5.9. Screen supporting structure. :
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:'Fig. 5.10. Doppler signature of van.
both cases (the Doppler frequency decreases the intensity. In the second case, decidedly -
rapidly). The major quantitative difference in less energy—some 20 times less just after the
the top two plots of Fig. 5.11 (the second one second marker—is being reflected into the
with the reflector at 45° to the cart motion) is receiver; however, enough is getting in to .
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Cart on Collision Course
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Fig. 5.11. Doppler signatures of cart with screen.
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detect a Doppler signal consistent with the
linear motion of the cart. The qualitative
difference is that a substantial and measurable
signal is reaching the receiver throughout the
first event, whereas the second event shows a
reasonable amount of signal only after about
point 3500. Careful analysis of the last region
of slowing down in the two cases indicates
the presence of the cosine effect. However,
the conclusion is that it may safely be
ignored, since there are enough portions of
any real vehicle that will specularly reflect
energy directly into the receiver and thus give
a measure of the velocity (i.e., the cosine of
the effective angle is nearly 1.00 to within
the solid angle of acceptance of the receiver
horn).

CAR DATA: NONCOLLISION COURSE

A passenger vehicle was used as the target
in the following tests. All tests were done
with the vehicle passing by the stationary
detector. In one case, the detector was
directed normally to the vehicle motion; in
the others it was either pointing ahead by
—45° (looking at the receding vehicle) or
behind by +45° (looking at the approaching
vehicle).

The markers shown in both plots in
Fig. 5.12 were spaced 3 m apart, with the
receiver horn placed in between; thus, the
point of closest approach of the vehicle is
approximately in the center of the two
vertical markers.

Car7.dat

Fig. 5.12 shows the Doppler signal for the
receiver homn pointed normal to the vehicle -
trajectory. The front tires triggered the first
marker at about point 1800 and triggered the
second marker at about point 2700. The
shape and quality of the signal suggests that
most of the information present indicates the
varying radar reflectivities of the various
portions of the automobile as it passes the
receiver. This reflectivity signal is somewhat
modulated by certain comers and curved
portions that are reflecting energy directly
into the receiver. This is therefore a mixed
low-frequency amplitude signal with some
Doppler components. Such a signal seems to
be characteristic of a “drive-by” event having
no significant component of velocity directed
toward the receiver. The task of the analysis
system must be to assign a “no problem”
label to such events.

This type of event is probably the most
frequent event to occur and is typical of
passing multiple target vehicles on the left in
many familiar traffic situations. Such an event .
is easily recognized by its lack of structure
and by the fact that it is dominated by
low-frequency features.

Fig. 5.13 shows the Doppler signal with
the receiver horn viewing the receding
vehicle. The signal does not grow appreciably
until the vehicle’s front tires are well past the
first marker (the vertical line at about point
1400).

Most of the signal, in duration and
intensity, is present after the vehicle is past

1600 F 10.6 mph
1000 E cor9857. homO, d=1m

A " e,

0 1000 2000

3000 4000

Fig. 5.12. Passenger car drive-by Doppler signature.
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Fig. 5.13. Receding passenger car Doppler signature.

the receiver. There is no evidence of slowing
down, as the oscillations are fairly uniform in
frequency during the entire event. The
event-analysis system must also characterize
such events as “no problem.” This type of
event can easily arise at intersections where
roads are at less than 90° angles.

The interpretation of these data depends
on the relationship between velocity and
Doppler frequency. The frequency of an
electromagnetic wave when reflected off an
object moving with respect to the transmitter
depends strongly on the angle of incidence
(for velocities much less than light the angle
of reflection is nearly equal to the angle of
incidence for a plane reflecting surface).
When the angle is small, we can ignore its
effect, and we obtain the expression for the
ratio of the received frequency, ®,, and the
transmitted frequency, @;:

where c¢ is the speed of light and v is the
speed of the reflector (positive when moving
toward the source). For ordinary vehicular

traffic |v| << ¢, we expand the fraction on
the right and neglect terms in v/c to the
second or higher power. The result is

o, = 0 (1 -2v/).
Rearrangement results in the expression

20
()}

2

[T 1LY

where Aw/ is the fractional Doppler shift
due to the moving reflector.

When ¢ is measured in miles per hour
(mph) we obtain the expression

Aw

vy= —
o

X 3.353 x 10® mph

for the speed of the moving reflector. Since
®; is 10 GHz, and the measured shifts range
from O Hz up to about 330 Hz, the range of
speeds measured during the various
experiments ranged from 0 mph up to about
11 mph.
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6. MATHEMATICAL ANALYSIS

At the conclusion of the experiment,
extensive analysis was performed to
determine whether or not the signatures
obtained contain useful information.

Simulations included analog filtering,
extraction of “instantaneous” velocity values
by STFT, extraction of velocity and
acceleration by discrete wavelet analysis,
correlation of the signal with chirped
wavelets, parameter extraction by nonlinear
curve fitting, extraction of “state-space”
parameters by the Karhunen-Loeve transform,
singular-value decomposition, direct auditory
analysis, and a conceptual look at beam
forming.

DATA ANALYSIS: GENERAL
COMMENTS

Fourier Analysis

The simplest way to look at the Doppler
radar data is to partition the sample stream
into small chunks (windowing), apply the fast
Fourier transform (FFT) to each chunk, and
identify the dominant peak, if any. This
works nicely if there is enough signal
strength in the given window; otherwise, this
technique yields garbage. A problem with this
method is extracting acceleration. The
Doppler frequency is changing appreciably
over the width of a window (typically
~100 ms). By taking the difference in
frequencies (peak position in the Fourier
spectrum), one obtains a measure of the
acceleration. However, the result is an
average over several hundred milliseconds
rather than an instantaneous value, and it

takes a long time to carry out the
measurement.

Discrete Wavelet Analysis

The advantage of using wavelets is purely
computational. The signal, again in a window
of ~100 ms, is analyzed by a bank of filters.
The bank having the highest energy (above a
threshold) is identified. The input to that bank
is transformed to the frequency domain, and
the position of largest peak (as above)
determines the Doppler shift. Since the filter
bank with the greatest energy is usually not
the first bank, the Fourier transform is carried
out on a data set that is smaller by some
power of 2 than the original. This means
faster analysis, but with the linear overhead
of the filter-bank calculations. A desirable
by-product of the wavelet approach is better
noise immunity, leading to cleaner signals for
shorter windows.

“VAN SLOWING DOWN”

The data file “Van Slowing Down” shows
an event in which the Doppler signal was
recorded with a sample rate of 1000 per
second while the van accelerated from about
6 mph to 12 mph, and then slowed down to
about 2 mph over about 2 s. The velocity
behavior is quite clear even when the raw
data are plotted, as Fig. 6.1 shows.

Fig. 6.1 shows the Doppler signal over
about the final 0.8 s of the event. Note that
the higher speeds produce about 10 samples
over a single cycle. At 12 mph, there are
three samples per cycle; we are getting close
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Fig. 6.1. Data plots for van slowing down.

to an aliasing problem. At a 36-mph speed
differential between the target and the
detector, a 1000-Hz sample rate would be at
the Nyquist rate, which is not allowed. If we
took the sample frequency up to 1500 Hz, we
could handle a 50-mph differential with some
margin of error. This would increase our data
volume by 50% and hence our time to
achieve an answer. It would also push out the
“danger,” or blind, zone by 50%, to perhaps
10 m (see the discussion below). Such a
limitation might be unacceptable.

DATA ANALYSIS: SOME RESULTS

The purpose of the various methods
discussed below is to demonstrate that there
are many different ways to extract the
required information from the Doppler signal.
Some of these methods are quite
simple—they require very little computational
effort—but they return only the barest amount

of information. Others are quite sophisticated;
accordingly, they require more computation
but yield an abundance of information.

Simple Analog Filter Model

Suppose we wish to create the simplest
possible system for analyzing the Doppler
signal. If we simply filter the analog signal -
after setting a threshold on the energy
content, we obtain the picture shown in
Fig. 6.2, where the analog filter has been -
simulated with an AR(1) digital filter.
The simulation involved amplifying and
clipping the Doppler signal to obtain a
square-wave output. This also provided the
thresholding, since only a signal with an
amplitude of 1.00 was allowed to proceed to
the filter.
The several large features in Fig. 6.2
represent regions where the energy in the
Doppler signal was sufficient to trigger the

1000

2000

1500

Fig. 6.2. Analog filtered output.
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next stage of capacitance filtering. The
behavior of the filter in such a case is a rapid
charging to its full value (near 1.0). If the
Doppler signal showed constant velocity, the
response of the filter would be a constant
value, whose level depends on the absolute
velocity or frequency of the Doppler signal.
As the target accelerates, the level rises. As
the target slows, the level drops as shown.
The instantaneous velocity is proportional to
the voltage level, and the acceleration is
given by the slope. For example, at about
time step 880 (corresponding to about 1.76 s
into the event), the signal was large enough
to pass the threshold test, so the capacitor
started charging. Some 400 ms later, about
three time constants of the simulated RC
network, the output level is seen to level off.
At this point, the level drops linearly through
time 3.6 s, at which point the signal
disappears into a high-frequency noise. Since
there is no simulated low-pass filter, this
noise is amplified and shows up as the peak
at time step 1890.

Extraction of the acceleration by the same
approach would require a high-pass filter to
smooth the velocity filter so that a
differentiator of discrete components could be
made.

The virtue of this method is its simplicity
and low cost; it is the least expensive method
for determining velocity and acceleration
from the Doppler signal. On the other hand,
it has no flexibility, and its effectiveness
depends entirely on the initial design and
execution. There is also a lag of several time
constants before valid inferences can be made
(at least 0.3 s in this case); depending on the
constraints imposed by vehicle motion, this
lag may prove fatal for the analog method.

FFT Extraction of Velocity

The next method studied was standard
Fourier analysis based on the fast Fourier
transform (FFT). This has the advantages of
being quite well understood from both
theoretical and implementational standpoints,
and being reasonably effective at producing
quality results.

As an example, suppose we take 128-ms,
non-overlapping samples and perform a FFT
on each of them over the entire event. The
results are shown below in Fig. 6.3.

The position of the sharp peak in each of
these plots is a measure of the frequency of
the Doppler signal and hence of the average
speed during that 128-ms period. We could
now write a peak-determining algorithm to
extract the position. However, the positions
were determined by inspection, and the
results of the entire event, analyzed by FFT,
are shown in Fig. 6.4.

Discrete Wavelet Analysis

Multirate filter, or discrete wavelet,
analysis has certain advantages over the FFT
method discussed above, the most important
one being computational efficiency: wavelet
filters are generally faster than the FFT, yet
provide as good or better results for the
purpose at hand. As a first-pass analysis, the
Doppler signal was passed through five levels
of a discrete wavelet transform using the
Daubechies extremal-phase wavelet with eight
coefficients, otherwise known as D4.

The data stream was segmented into
128-ms samples overlapping 50%. The goal
was to produce a velocity (frequency)
measurement every 64 ms. Each segment was
analyzed into six wavelet levels. The level
with the most energy (determined by the sum
of the squares of the value) was presumed to

~ have the most capability of providing an

accurate velocity determination. Again, this
produces an average of the velocity over the
128-ms interval. The method gave results
almost identical to those shown above and
was about 10% faster.

The plots in Fig. 6.5 show the first three
levels of the wavelet transform of
128 samples taken at time step 2400 (2.4 s
into the event). It is evident that most of the
signal is in the second level (there is a bit of
high-frequency noise in the first, and
practically none in the third).

An FFT of the resulting 64 samples in
level 2, shown in Fig. 6.6, gives a quick
determination of the frequency as 281 Hz,
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Fig. 6.3. Fourier analysis-of van slowing down.

resulting in a speed of 7.0 mph. This value
may be as much as 10% in error due to the
averaging effect and taking the peak value of
the curve rather than the mean position.

The basic idea looks reasonable, but the
dyadic scheme may be too coarse. (“Dyadic
scheme” refers to the fact in discrete wavelet
analysis, the signal is resolved into octave-
wide components, as described in the
Appendix.) For a more detailed look, it is
possible to use the same multirate techniques
at other bandwidths, such as critically
decimated third-octave analysis.
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Chirplet Analysis

Chirplet analysis uses a number of chirp
wavelets, each with a different deceleration
(linear frequency behavior). The Fourier
transform (FT) of such a set convolved with
the FT of data segments picks out the
appropriate components, identifying regions
as to both acceleration and velocity.

Each data section, each perhaps 100 ms in
duration, will require an FFT (of the data)
and a convolution with each of several
mother chirplets (of various linear frequency
variations) at each of several scales
(corresponding to basic frequency or
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velocity). The wavelet with the largest
correlation is presumed to be the best
description of the data. An alternative is to
convolve segmented portions of the Doppler
signal with a set of filters, each representing
a particular velocity and acceleration. If this
set is arranged in an hierarchical manner,
processing time can be greatly reduced.

The concept of chirplet analysis is that of
a bank of matched wavelet-packet filters
chosen to span the Doppler signals
anticipated. To illustrate the concept, we
constructed a set of chirp functions in the
frequency range corresponding to five
velocities between 2 and 12 mph, and five
accelerations for each velocity ranging from
-5 mph/s to +5 mph/s. Only one generic set
is shown in Fig. 6.7 as the actual velocity.

The first example, shown in Fig. 6.8, is
from the middle of the event, where velocity
is high and is changing only slightly. Only
the central filter shows a large response to
this data when it is sampled at about
18 points, giving a vehicle speed of around
12 mph. None of the other filters, for this
sample spacing, show as high a response, so
we conclude that the acceleration is small.

The second example, shown in Fig. 6.9, is
near the end of the event, where the velocity
is low and the acceleration is quite
noticeable. Here, the central filter shows the
highest response, for a sampling of about 150
over the length of the filter, corresponding to
about 2 mph. The filter on the far right has
about ten times the strength of response of
the filter on the right for this sampling; this
corresponds to an acceleration of -5 mph/s, a
value consistent with those obtained by the
other methods.

Nonlinear Model of a Single Cycle

The nonlinear curve fit is perhaps the
fastest of the digital methods in that we can
obtain a value for the velocity and '
acceleration within the time frame of a single
oscillation of the Doppler signal (assuming
adequate processing power). The idea is quite
simple: the Doppler signal consists of a
frequency-modulated sine wave. The obvious
amplitude modulation due to the varying
configuration of the reflecting surfaces is not
important for extracting the motion dynamics.

A typical one-cycle waveform lasts
anywhere from 3 ms at about 11 mph to
about 33 ms at 1 mph. If we can fit the
sampled waveform during a cycle or a half
cycle, we can obtain an estimate of both the
velocity and acceleration using the model

f@® = agcos(a; + axt + ast?),

where ay is the amplitude of the Doppler
signal during the particular cycle of interest;
a; is the phase, allowing for the starting
value to be nonzero; @, is related to the
velocity in the usual Doppler analysis; and a3
accounts for the acceleration.

For example, the slowing down is quite
evident during the cycle shown by the plot in
Fig. 6.10.

Here, the dots show the actual sampled
waveform (noise reduced by a single Haar
wavelet filtering). The smooth curve is a
nonlinear least-squares fit to the ten data
points using the Levenberg-Marquardt
algorithm. The entire event lasts 20 ms
(corresponding to about 2 mph). The cost of
executing the Levenberg-Marquardt algorithm
is about 500 ms in high-level Mathematica.

Fig. 6.7. One row of the chirplet sets.
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This can be reduced by a factor of 20
without much effort, for a computation time
of 25 ms, comparable to the time of the event
itself. A reduction of 50 to 100 times is
possible using a higher-speed digital signal
processing device; this would allow a
determination of velocity and acceleration to
be made once per cycle even at the higher
vehicle speeds. :

The method of obtaining the sections over
which to fit the model is simply that of
observing zero crossings; each zero crossing
of the Doppler signal indicates that the data
set is ready to be fit.

A drawback of this method is its
susceptibility to noise. Since from 6 to 30
samples (at a sampling rate of 1000 Hz) are
used to make the determination, noise in as
little as one sample would affect the accuracy
of the calculation. For example, consider the
final 600 ms of the event. The results for the
cycle-by-cycle determination of velocity and
acceleration are shown in Fig. 6.11. The
variation in the velocity measures are quite
reasonable; however, the acceleration
parameter shows much more noise
(Fig. 6.12), and the mean acceleration during
this period is about —1.0 mph/s, although the
actual value can be read off the plot as
(2.5 mph — 8.3 mph) / 0.600 s or about
-9.7 mph/s. Thus, the noise destroys the
acceleration readings.

However, these readings can easily be
inferred from the difference of the velocity
results. For example, a smoothed difference,
equivalent to a linear regression on the
velocity results, gives a value of —10.4 mph/s
for the acceleration, quite in line with the
estimate taken from the velocity plot.

An advantage of this method is that it can
be used to discriminate against such
“nonevents” as a target moving past, not
toward, the detector. These events, as shown
elsewhere in this report, result in large
chi-squared values for the presumed Doppler
cycles. The chi-squared values for the true
Doppler signals are significantly less than 1
but on the order of several hundred for the
non-Doppler events.
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Karhunen-l.oeve Transform

KLT amounts to using the principal
eigenvectors of the covariance matrix as a
basis to represent the process. There are
(physically) three dimensions to the state
space of a Doppler chirp.

Consider the last 750 ms of the
slowing-down event for the van. There are
three separate regions identifiable as to
amplitude. A likely reason for the amplitude
variation is that different portions of the van,
having different reflectivities, are being
viewed by the receiver as the van approaches.
These regions are quite evident in the plot in
Fig. 6.13.

If we now form a time-delay matrix
consisting of

we create a square, positive definite matrix of
dimensions m by m from A multiplying it by
its transpose. The eigenvalues are found, and
the first three are used to reconstruct the
signal in phase space. The optimum value for
m is determined by taking the ratio of the
first two eigenvalues; when they are
approximately equal, we have spread out the
signal to a maximum extent. (We assume that
the dominant process is a simple sine
oscillation.)

The result of analyzing the above signal in
this fashion is shown in Fig. 6.14. First we
show the eigenvalues for m = 9. This value
of m spreads out the fundamental oscillation
equally along the first two directions.

If we use the first three eigenvectors as a
basis for the phase space, we obtain the plot
shown in Fig. 6.15 using all 350 data points.
Note that there are three disks, each tilted
with respect each other. The three almost-
planar trajectories roughly correspond to the
three regions in the data set.

We can now look more closely at the
event in the same phase space by considering
only 50 events at a time, resulting in six
regions over the 350-point data set. These
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plots are shown in Fig. 6.16. The first
50-point region in shown in the upper left,
and the last in the lower right. Note that all
but the first are nearly two-dimensional
trajectories. The first one clearly shows the
presence of acceleration during the entire 50
time steps by the helical structure. The last
trajectory has a decidedly different orientation
than the previous four.

Singular Value Decomposition

The idea behind using a singular value
decomposition (SVD) for the covariance
matrix of the delayed data values is the same
as that for KLT, discussed above. The
purpose is to achieve a phase-space
embedding of a geometrical figure: the
trajectory. This is similar to the state-space
embedding approach used in analysis of
chaotic systems. Our system is definitely not
chaotic, as the ultimate attractor is a point in
phase space, not a pleasing geometrical
attractor. However, much the same methods
can be used and provide insight as to the
details of the Doppler data.

With this method, we again form the
covariance matrix, as shown above. The
difference is that we look for singular values.
The question of how many dimensions to
take for the phase space is more cleanly
resolved using SVD. With KLT, we saw that
there was not a large difference between the
third and fourth eigenvalues. A similar picture

for the SVD case is shown in Fig. 6.17,
where we see that the third value is relatively
higher and the fourth relatively lower. This
may be a slight advantage for representing
the event in three rather than four dimensions.

The embeddings look similar to those
obtained using the eigen decomposition. The
advantage to this method is that there are fast
algorithms for the SVD; the drawback is that
the methods to obtain the eigenvalues and
vectors are fairly computationally intensive.

The plot in Fig. 6.18 shows the
three-dimensional character of the last 200 ms
of the van’s deceleration. All three
dimensions are clearly needed to display the
trajectory, showing that the acceleration is
quite important. The next plot (Fig. 6.19)
shows the event at a much earlier stage.
Here, the trajectory looks more like a
pancake, showing little acceleration relative to
the dominant behavior of the velocity
component.

The SVD scheme depends on the fact that
the signature breaks up into a relatively few
distinct components that occupy distinct
regions in some mathematical space. To use
the method in an automated system, it would
be necessary to identify which parts occupy
which spaces.

This is the same problem that pattern
recognition schemes must overcome. Each
point in the data stream can be treated as a
sample to be classified. We have a priori

Fig. 6.16. Resolution of projection into distinct surfaces.
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knowledge that the samples should form
several distinct clusters. They should be
classifiable with a cluster-seeking algorithm.
Once the elements of each cluster are known,
it is a simple matter to compute geometric
properties of the clusters, and also a simple
matter to deduce target dynamics from the
cluster’s geometric properties.

The problem with cluster-seeking
algorithms is that they are typically much too
slow to operate in real time. It may be
possible to implement a cluster seeker with a
massively parallel array of simple processors,
similar to what might be used to implement a
cellular automaton.

Auditory Analysis

Another simple approach is to simply
amplify the Doppler signal and transduce it
into sound pressure waves via a loudspeaker.
The resulting tone is quite audible and
distinctive with no additional processing.
Such an auditory signal could serve as a
warning to the driver to be aware of an
impending collision. We will explore this
avenue no further, other than to mention its
potential use and a need for a human-factors
study should it prove interesting.

Discussion: Danger Zones and Safety
Zones

Earlier in this chapter, the concept of a
“blind” zone was introduced to indicate that a
certain rapidity both of measuring a response
and of making the correct determination
could be a problem. There is another limit or
horizon to the system, best referred to as a
“safety” zone.

A 15-mph differential is 22 ft/s, or
6.7 m/s. In 100 ms, the relative distance
between vehicle and target will change by
0.67 m. At a 60-mph differential, this distance
will be 2.7 m, or about one car length. Given
the time a sensor would require to make the
decision—perhaps another 100 ms and 30 ms
of deployment actuation—the 15-mph
differential amounts to a danger zone distance
of 1.5 m. We would like to reduce this

danger zone in the future. At a 60-mph
differential, this danger zone extends out to
6 m—that is, anything inside the 6-m zone
will not be accounted for in a timely fashion.

A safety zone can be defined by the range
of the radar device—i.e., probably a few
hundred feet.

Fortunately, it is not necessary to wait
100 ms before computing a new data
segment. We may want to compute a new
segment every 10 or so samples (i.e., 10 ms),
assuming that we have the computational
throughput to do the required number of
computations in 10 ms. How many
computations would be involved? The FFT of
256 points should take <2 ms, and a
convolution with a 256-point vector should
take much less than 1 ms, perhaps 100 ps.
Thus, 100 convolutions plus the FFT will
take on the order of 12 ms. A few hundred
microseconds would then be required to pipe
the data about, find maxima, and so forth.
This ~12-ms information delay would then be
piped to the anticipatory control model, where
a decision would be made. A very rough
guesstimate of the time required to extract the
target dynamics is ~5-10 ms, for a total time
lag of perhaps 20 ms. Thus, the danger zone
would be reduced to about 1 m at
60 mph—not bad! ,

Of course, these numbers may not hold up
to a reality check. The data pipeline has a
definite lag to a step function equal to about
half its length. A step function is quite
unrealistic, though. Any fast object entering
the radar’s receptive field will probably do so
from the side (a head-on approach allows
plenty of systolic activity in the data pipe).
Further study is needed in order to obtain
firmer numbers.

In dealing with the desired range, it is
important to keep the intended use in mind.
NHTSA’s Office of Crashworthiness Research
is primarily interested in two possibilities. If
the target is very close (perhaps 1-2 m), an
anticipatory crash detector might be used
provide arming, or perhaps even noncontact
firing. If a target is distant (10-20 m) and the
dynamics indicate an impending crash, the
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detector could be used for arming. The
middle of the range is of much less interest.

Beam-Forming Approach

Beam forming is a multireceiver variation
of the time-domain pulse method that builds
up a picture in distance-angle-velocity space.
This method has several advantages over the
simple Doppler and time-of-flight methods.
None of the methods discussed thus far can
provide an indication of bearing—i.e., the
angle of the target with respect to the base
vehicle. Thus, we are able to get velocity and
acceleration from the Doppler radar, and if
we time the pulses, we also get the critical
distance parameter. But with a single
transceiver, there is no sure way to identify
the bearing of a potential troublemaker.

The advantage of knowing the bearings of
a collection of targets is that we may safely
ignore any target whose angle changes from
one pulse to the next: the only possible
collision candidates are those targets whose
bearing remains constant over several
measurements. This ability to prefilter the
space of all possible targets will greatly aid
the next processing stages and reduce the
computational burden at all later stages. Note
that if we are moving, all stationary objects
are removed from consideration by the
constant-bearing criterion. Considering only
the constant-bearing targets, we next ask
which of those are moving toward our
vehicle at a speed greater than a
predetermined (damage-capable) amount.
These are the only targets that the
anticipatory subsystem need consider in its
predictive model.

We will give priority to those targets
whose bearing is stationary o degrees,
whose velocity towards the side of the
vehicle is greater than a certain value, and
whose distance is less than a certain value.

Radar pulse method

The problem with beam forming with
electromagnetic pulses (e.g., millimeter
waves) is the high signal velocity.
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Electromagnetic radiation travels at light
speeds (approximately 300 mm/ns); thus, a
1-m resolution in distance entails a 3.3-ns
resolution in time. Translated into the
velocity-bearing space, this limits the possible
angular resolution. The problems with
achieving this goal must be analyzed before a
decision to employ accurate timing methods
are made.

Ultrasonic pulse method

For sound, we have more than enough
time resolution because the speed of sound is
about a million times slower than that of
light. Thus, we can process pulse times on a
millisecond time scale instead of having to
consider the nanosecond time scale. However,
the range of the ultrasonic pulse is much less
than that of the radar pulse. The solution may
be to have two systems—ultrasound for close
range and radar for more distant objects.

Threat identification by beam forming

One beam-forming scenario would work
as follows. Consider a pulse radar with one
transmitter and three receivers at a known
geometric spacing. The trigger lines are
arranged such that all three receivers receive
the trigger pulse at approximately the same
instant; thus, all three receivers “know” when
the transmitted pulse started its flight. A
comparison of the times of arrival of the
signal at each of the three receivers allows a
straightforward computation of the bearing to
the target. One of the inherent advantages of
a pulsed type of system is that the differential
in times of arrival can be determined at a
much higher resolution than the resolution of
the absolute time of flight. It is reasonable to
expect that the bearing to the target can be
found with high accuracy and repeatability.

It then becomes easy to distinguish
between threatening and nonthreatening
targets in the environment. If on successive
transmitting pulses the bearing of the target
remains fixed, the target is either moving
directly away from or directly toward the
victim; the change in displacement indicates
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direction toward or away from the victim.
Any target whose bearing varies as a function
of time is not a threat. Only threats need to
be analyzed further.

Thus, the first useful piece of information
that comes out of the process is the angle of
approach. The displacement follows
immediately. From successive pulses, the
velocity can be obtained by numerical
differentiation. Acceleration can be obtained
by a second differentiation. All four necessary
pieces of information about the target
dynamics thus become available.

There might be some concern about noise
corrupting an estimate based on
differentiation. A system such as the
Amerigon pulsed radar operates by taking a
reading as an average of many (perhaps a
thousand) pulses, thereby averaging out much
of the noise. It is reasonable to expect the
output of such a unit to have sufficiently low
noise that useful estimates of acceleration can
be computed.

DATA ANALYSIS: COMPARISON OF
TECHNIQUES

A comparison of the nine different
analysis techniques is shown in Table 6.1.
The first eight methods presume the use of a
single sensor. The eighth item is not really an
analysis method. Rather, it reflects the fact
that when the Doppler modulation is played
over a speaker, the sound is quite distinct for
different types of signatures, and it might
have possibilities as a driver-warning system.
The ninth item, beam forming, might use one
or more of the first seven analysis methods in
extracting the target dynamics. '

The speed of the chirplet is extremely
high if the filters are implemented on an
application-specific integrated circuit and if
massive parallel processing is used.

Table 6.1 lists relative degrees of accuracy.
To make numerical predictions about
reasonable expectations of error would require
the massive data collection of a detailed
engineering study. The proof-of-principle
experiments of this study simply are not
sufficient to make this kind of prediction.

What dynamical data are extractable
depends more on the sensor than on the
analytical technique. A broadband pulse radar
using a single receiver and any of the. seven
techniques shown in the table should give
displacement, velocity, and acceleration, but
not angle of approach. A Doppler radar would
give only velocity and acceleration. Using a
pulse or FMCW radar with several receivers,
chirplets, and beam-forming algorithms
should produce all four relevant quantities.
This should be explored in more detail in the
next phase of this research.

TECHNIQUES NOT EXPLORED IN THIS
STUDY

Time did not allow for the exploration of
two other promising analysis methods, fuzzy
logic and cellular automata. Both are capable
of fast implementation on dedicated parallel
hardware, and both provide robust results in
the face of real-world disruptions. Both are
worthy of future exploration.

Remarkably, fuzzy logic not really
“fuzzy.” It is a set of rules whose validity is
justified by an appeal to traditional crisp
logic. What the rules provide are
mathematical measures of the possibility that
a given element is a member of any one of a
number of sets. Starting from that foundation,
fuzzy-logic techniques provide the solution to
problems intractable to conventional
techniques.

Fuzzy logic has at least two applications
to the anticipation engine. First, it is a pattern
recognizer, and it might be used to classify
the features of radar signatures into
“impending crash” or “no crash” classes. It
has already been shown to be effective in
distinguishing between classes of airplanes
from the features of their acoustic signatures
(Dress and Kercel 1994), and might be
equally effective in classifying the acoustic
signatures of ground vehicles.

However, the more crucial application is
in the area of decision making. A fuzzy-logic
decision engine is eminently well suited to
the task of taking data in the form of
high-dimensional vectors and producing a
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qualitative evaluation. It is quite reasonable to
expect a fuzzy-logic system to take lists of
numbers from the environment and system
models of an anticipation engine and convert
them into a prediction like “little bump,” “big
bump,” “moderate crash,” “bad crash,” or
“really bad crash.”

A cellular automaton divides a
multidimensional space into adjoining cells,
assigns a numerical value to each cell, and
provides a set of rules for updating the values

of each cell depending on its present state

and the present state of its nearest neighbors. -
When implemented on simple dedicated

parallel hardware, a cellular automaton can -

provide astonishingly fast solutions to -
differential equations with complex boundary

and initial conditions. A cellular automaton is

a strong candidate for the algorithm to be

-used at the heart of the environment model in

the anticipation engine.

Table 6.1. Comparison of analytical methods

Computational Extractable parameters
Accuracy Displace-
Method Speed Simplicity (rank)® Angle ment Velocity  Acceleration
Analog 0.1-05 s Simple 1 No Yes Yes Yes
FFT 10-30 ms  Well-known 2 No Yes Yes Yes
Wavelet 5-20 ms Simple 3 No Yes Yes Yes 3
Chirplet 0.1-1.0 ms  Simple 4 No Yes Yes Yes
Curve fit 2040 ms  Complex 2 No Yes Yes Yes
KLT 50-100 ms Complex 2 No Yes Yes Yes )
SVD 25-100 ms Complex 2 No Yes Yes Yes
Audio —————Audible warning only
Beam b c b Yes Yes Yes Yes
forming

%Accuracy rank is a relative ascending scale, with 1 representing the lowest rank and 4 the highest in this
particular rating. Therefore, the analog method is not very good. FFT, curve fit, KLT, and SVD all have
about the same degree of accuracy, although KLT and SVD may reveal more information about multiple
surfaces. The wavelet and chirplet methods have finer resolution than the others.

bThe speed and accuracy of beam forming depends on the analytical techniques used. If we assume
dedicated chirplet processing on each receiver plus a comparable amount of time to combine the results, the
beam former should make its prediction in approximately 2 ms.

“The complexity of a beam former depends on the analytical techniques used. If dedicated chirplet chips
are used, all the processing for three receivers to extract all four quantities should be less complex than KLT
extraction of three quantities from a single receiver using pulsed radar.
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7. PROSPECTS FOR THE FUTURE

In an optimistic vision of the future
development of this system, we might expect
the following scenario. NHTSA supports the
collection of enough experimental data to
allow for realistic specification of the sensor
element needed for the environment model
and then supports development of the
anticipation engine (particularly of the
software), with the task being completed
within the next 5 years. (Private industry is
unlikely to do this because the technique is
so obscure.) Because this information is in
the public domain, there is virtually no
incremental cost for commercial developers to
copy it for use in their systems.

In the meantime, on-vehicle sensors
become so inexpensive that they become
standard equipment on virtually all new cars.
Consequently, the data stream describing the
state of the vehicle is there for the taking.
The data can be made available to the
anticipatory system by the addition of a
single multi-cable jack somewhere in the
onboard data system. The incremental cost
might be $2 per vehicle.

In the meantime, at least one manufacturer
markets a practical microwave radar priced at
$10 per unit when purchased in lots of

100,000 or more. Assume that beam forming
is required and that two such radars are
required. Assume pessimistically that this
system requires dedicated radar. The
incremental cost is $20 per vehicle.

Assume that the major algorithms can be
implemented on application-specific integrated
circuits (ASICs) that can be produced for $5
each in large quantities. Assume
conservatively that one ASIC is needed to
process the environment data, one is needed
to process the on-vehicle data, and one is
needed to implement a set of cellular
automata to implement the anticipation
engine. Also assume that the cost of the
ORNL fuzzy logic chip (used to actually
make the prediction) can be reduced to $2.

The total incremental hardware cost is $39
per vehicle, exclusive of packaging,
overheads, profit margins, etc. Assume that
all these can be met at 100% markup. This

- suggests that in 5 or 10 years, the system

could be available at a price of a little less
than $80, with the prospect of the price
falling in future years as the hardware
technology advances.

The possible costs per vehicle are
summarized in Table 7.1.
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Table 7.1. Best-case costs for a future precrash restraint sensor system

Estimated
cost per
Component vehicle
On-vehicle sensor with multi-cable jack $2
Microwave radar, 2 units 20
Application-specific integrated circuit, 3 units 15
Fuzzy logic chip 2
Total incremental hardware cost $39
Total with packaging, overhead, and profit margins (100% markup) $80




8. CONCLUSIONS

An anticipatory-precrash restraint sensor is
feasible but not yet developed. A system
based on formal anticipatory principles should
significantly outperform conventional
technologies. Development can be expected to
be a long-term effort with the prospect of
high payoff in prevention of death and injury.
That such a system is feasible, however, does
not guarantee its development. The level of
technical and financial risk is sufficiently high
that American industry is unlikely to develop
the technology on its own initiative or with
its own money. Therefore, the development of
such a technology is probably dependent
upon R&D support from NHTSA.

A major priority that remains to be
defined by NHTSA is whether the ultimate
objective of this research is to use an
anticipatory system to arm a restraint device
or to deploy a restraint device. There is a
risk-reward tradeoff to be considered in this
decision. The arming function is less
expensive and less error-prone and the
consequences of error are less dire than the
firing function, but the arming function has a
lower potential payoff.

The existing literature makes clear that
two issues have been resolved. First, the
formal anticipation engine is realizable.
However, the only past development has been
for large-scale nuclear-power-plant control
systems. Such a system has never been
attempted for a small instrument. None of the
previous research in predictive crash detection
has used the formal anticipation paradigm.
Second, sensors and processors are available
to provide a good, fast, and inexpensive

description of the present dynamical state of
the vehicle to the embedded system model in
the anticipation engine.

There is a fair consensus in the literature
that a prediction of the severity of the
impending crash is needed. It is generally
believed that severity depends on the energy
transferred in the collision, and energy is
dominated by relative velocity rather than by
mass or vehicle classification. The literature
suggests that it is possible, though not
assured, that targets can be classified on the
basis of acoustic signatures or RF radar
returns. This is a much more difficult
problem than extracting target dynamics, and
it is not certain that the benefits will justify
the effort.

What is not discussed in the literature is
whether or not sensors and processors are
available to provide a good, fast, and
inexpensive description of the present
dynamical state of the zargets to the
embedded environment model in the
anticipation engine. Unavailability of target
dynamical information would make an
anticipatory system infeasible. The object of
the experimental and analytical part of this
study was to determine whether or not this
enabling technology is available, and if so,
what form it might take.

This study found that inexpensive radar in
a “real-world” setting does return useful data
on target velocity and acceleration. The
principle has been proven with a $20 Doppler
radar. The velocity and acceleration of the
target can easily be extracted from the
Doppler radar signal by any of several
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methods that are implementable in real time.
In addition, Doppler radar shows distinct
signatures for distinct approach geometries.

The data produced by a radar system can
be converted to target dynamical information
by good, fast, and inexpensive
signal-processing techniques. While the
Karhunen-Loeve transform (KLT) is
computationally too costly for use in a small
real-time instrument, it is the best available
algorithm for revealing the information buried
in a signal. The KLT of the Doppler radar
time series appears to simultaneously resolve
velocity and acceleration of multiple surfaces.
It demonstrates that, in principle, all this
information is extractable. What remains is
the engineering task of finding a
computationally cheaper algorithm, such as
the wavelet transform, that is almost as good
as KLT and can be implemented on
inexpensive real-time hardware.

While Doppler radar proves the principle
that dynamical information is buried in the
returns of cheap radar, it does not provide

displacement information. Displacement
information is necessary to feed the
environment model of an anticipation engine.
FMCW or pulsed broadband radar both
appear to be workable alternatives. Each is
able to provide displacement, velocity, and
acceleration data for multiple targets. The
makers of both claim that their technology
can be mass-produced for a few tens of
dollars per copy.

Pulsed broadband radar may or may not
be the panacea that its makers claim it to be.
For example, it might be vulnerable to
receiving jitter. In addition, since it involves
taking multiple numerical derivatives, it could
be extremely vulnerable to noise. Both the
capabilities and the pitfalls of this method
need to be investigated. There is a reasonable
possibility that either broadband pulse or
FMCW, its less heralded competitor, is
capable of providing the target dynamics
needed for the environment model of the
anticipation engine.




9. THE NEXT PHASE: A TASK LIST

The following task list does not constitute
a statement of work for a follow-on phase.
Instead, it is a menu of choices of reasonable
lines of investigation, along with the expected
costs of each. The idea is that these
possibilities, and NHTSA’s research priorities
and budget limitations, would form the basis
for developing the scope of the statement of
work for the next phase.

Task 1: General Data Collection

The initial phase makes clear the
distinction between an “anticipatory crash
predictor” and a “radar sensor.” The latter is
only one of several key components of the
former, and probably not the trickiest.
Nevertheless, the sparse set of samples of
radar-return data and other signatures
presently available allow only for claims of
demonstration of principle. Before serious
engineering specification of the anticipatory
crash predictor can occur, it is necessary to
know what dynamical information can be
repeatably extracted from the available sensor
types. This is likely to be the biggest effort in
the front-end development of the anticipatory
crash predictor.

The kind and quality of experimental data
sought in this task would be such that
engineering specifications for practical crash
warning systems could be deduced from
them. In addition, the data should be captured
and reported in such a manner that practically
any reasonably capable hardware developer
should be able to use them.

The problem is that a massive amount of
data must be collected. There will be between

four and six vehicle types. There are perhaps
six different trajectories of interest. Several
different speeds, perhaps four, should be
investigated. For each of these 144
possibilities, at least 100 signatures need to
be acquired. Each of these 14,400 signatures
would be of perhaps 3 s duration and
sampled at 40,000 samples per second. Each
sample is a 2-byte word, leading to

240 kilobytes of data per signature. Assume
that signatures for four out of five possible
device types (Doppler radar, pulse radar,
FMCW radar, ultrasonic sonar, and
microphone) are collected simultaneously for
each pass, using parallel data acquisition
channels. This results in a little less than
14-gigabytes just for the signatures.

Add in vehicle type, device type,
trajectory identifiers, and data from contact
switches for a independent indication of the
dynamics for each signature, and the data set
rapidly approaches 15 gigabytes. It is worth
noting that such an annotated data set,
collected under controlled conditions, and
stored on a CD-ROM, would be a valuable
consideration in its own right. In addition to
serving as a foundation for the subsequent
tasks of this project, it could be used by other
experimenters in crash detection.

The type and ranges of data to be
collected depend on the functionality of the
ultimate system. If it is an arming system and
not a firing system, then vehicle mass and
class signatures are not needed. Also, the
firing system would emphasize dynamical
data at relatively short ranges collected at
short durations, while an arming system
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might look at a longer range and longer
collecting times.

Since angle-of-approach information is
required, some kind of beam forming will
ultimately be needed. At least some of the
data should be collected with a single-
transmitter, multiple-receiver configuration.

There are four active sensing technologies
for which signatures might be
collected—ultrasonic sonar, Doppler radar,
FMCW radar, and pulse radar. Doppler radar
and ultrasonic are on hand. FMCW radar and
technical support for its use can be acquired
through a cooperative arrangement with
Hittite Microwave, a company already
working with NHTSA. Pulse radar and
technical support might be acquired through a
cooperative arrangement with Amerigon if
Amerigon is interested. Millitec already has a
cooperative agreement with NHTSA's Office
of Crash Avoidance Research and may be
easy to include in the next phase of this
project.

It is not recommended that either FMCW
or pulse radar be procured as a simple
purchase of an end item for this project. Such
a purchase typically does not include detailed
engineering support or disclosure of the
internal workings of the device. A cooperative
agreement in which the supplier furnishes the
temporary use of one or more specimens of
the device, engineering support, and
disclosure of internal operational details, as
needed, is more in keeping with the goals of
this project. ORNL can enter into
nondisclosure agreements if necessary to
protect the suppliers’ trade secrets.

It is reasonable to assume 1 person-month
of direct labor and $5000 of travel expenses
for the activity involved in setting up each of
the cooperative agreements.

For acoustic signature collection, a
20-kHz scientific microphone and processing
electronics are required.

For data acquisition from the active
devices, one channel of A/D conversion is
needed for each device. The sampling rate
should be at least 40 kHz. The resolution
should be at least 12 bits.

To provide independent verification of the
dynamics of each signature, a precision
velocity profile recorder should be mounted
on the vehicle. Since this is a specialty item
for on-vehicle research, it is assumed that the
sponsor will arrange for the loan of the
device for the duration of the research rather
than provide funding for the researchers to
purchase the device.

Data recording would be performed by an
on-hand personal computer.

For data acquisition, there is a fixed cost
independent of the amount of data acquired.
Hardware to perform the data collection
would cost $10,000. This amount does not
include items already on hand. It also does
not include payments by NHTSA to radar
suppliers for access to pulse and/or FMCW
radar. Setting up and taking down the
data-collecting apparatus would require
2 person-months of direct labor.

There 1s a variable cost in proportion to
the amount of data acquired. An average
day’s data collection should result in 100
signatures, or a complete data set for one of
the 144 possible combinations of trajectory,
vehicle type, and speed. The data collection
would require a full day’s work by two
employees; another person-day would be
required for support activities (picking up the
car from the rental agency, transcription of
data to CD-ROM, etc.). In addition, it is
assumed that the target would be a rented
vehicle, at an average rental of $75 per day.

Since the data would be reusable, and a
valuable asset in its own right, it should be
documented separately from the overall
project. One person-month is assumed for
preparation of the report.

Summary of subtasks for data collection

1. Development of cooperative agreements with
radar suppliers
(Comments: Expenses are for one
agreement; two may be required. Fees to the
radar supplier not included.)
Direct labor 1 person-month
Other expenses $5000
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2. Data collection, fixed costs
Direct labor
Other expenses

2 person-months
$10,000

3. Data collection, variable costs
(Comments: Expenses are for 1 av. day of
data collection, resulting in a complete data
set for one combination. Six vehicle types, 6
trajectories, and 4 speeds result in 144
possible combinations.)
Direct labor 3 person-days
Rental of target vehicle $75

4, Documentation

Direct labor 1 person-month

Task 2: Dynamical Information
Extraction

It must not be forgotten that the real
objective of this task is to determine how to
acquire a description of the dynamics of the
target to feed to the environment model of a
formal anticipatory system. Incidental to this
goal, it is necessary to determine which
sensor or suite of sensors most inexpensively
produces a usable description. Incidental to
this goal is an analysis of the return
signatures collected under the data-collection
task. This analysis must be much more
exhaustive than the proof of principle analysis
performed during the feasibility study phase.

The task has both fixed and variable costs.
The fixed cost, independent of the number of
signatures analyzed, is for setting up the
analysis algorithms and reporting the results.
This can reasonably be expected to be
2 person-months. The average variable cost is
1 person-week per 100 signatures analyzed.

Summary of subtasks for dynamical data
analysis

1. Data analysis, fixed costs

Direct labor 2 person-months

2. Data analysis, variable costs
(Comments: Expenses are for analysis of
100 signatures. One day’s data collection,
resulting in a complete data set for one
combination of vehicle type, trajectory, and
speed, and using three different active

devices simuitaneously, would generate 300
signatures.)

Direct labor 0.25 person-month

Task 3: Beam-Forming Proof of
Principle

One datum that is required for crash
prediction is the angle of approach. It has not
yet been proven that this can be obtained
inexpensively in real time. As discussed in
the section on beam forming, a pulsed radar
using multiple receivers and beam-forming
analysis should lead quickly (and potentially
inexpensively) to five data for a given target:
class (threat or nonthreat), bearing,
displacement, speed, and acceleration. A
reasonable next step in this research would be
to investigate whether or not obtaining this
data is practical.

The investigation would be both
theoretical and experimental. It would be
necessary to simulate the one-transmitter,
multiple-receiver configuration for many
hypothetical targets mathematically in the
time domain. This would help to establish
sensitivity to noise and other anomalies in the
signal, establish the design requirements for
the radar hardware, establish systems
definition for the real-time implementation of
the beam-forming software, and define what
experiments need to be done to prove
principle.

The experiment would require fairly
significant custom engineering by an
enthusiastic radar manufacturer. The
development of the radar hardware would
also require significant interaction between
the researchers performing the investigation
and the radar developer. Also, until the
simulation is done, detailed specifications and
requirements for the radar would not be
available.

Since the experiment is for proof of
principle rather than for detailed engineering
specifications, the data collection would not
be as extensive as in some of the other
data-collection tasks. It would probably
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involve only two vehicles and the collection
of a few hundred signatures from each one.

One of the objectives of the experiment
would be to demonstrate whether or not the
information can be inexpensively extracted in
real time from the radar signature. For this
reason, one of the subtasks in this experiment
would be to program a bank of DSP chips to
extract the data in real time.

This would leverage off our previous
experience in implementing real-time wavelet
applications on DSP hardware. A working
DSP implementation would prove principle. If
the information-extraction algorithm works on
a DSP chip, it can always be mass-produced
better, faster, and less expensively on an
application-specific integrated circuit.

The simulation would require 6 person-
months of direct labor. It is reasonable to
assume 2 person-months of direct labor, and
$5000 of travel expenses for the ongoing
interactions with the radar supplier.

To provide independent verification of the
dynamics of each signature, a set of five
contact switches, activated by the vehicle
wheel, should be used. This would provide
displacement at five points, four velocity
readings, and three acceleration readings. In
addition, data acquisition would require five
channels of digital I/O to record the contact
switch operations. This should be a sufficient
check for proof of principle.

For data acquisition, eight channels (three
receivers and five wheel-actuated switches) of
A/D conversion are needed. The sampling
rate should be at least 40 kHz. The resolution
should be at least 12 bits.

Data recording would be performed by an
on-hand personal computer.

For data acquisition, there is a fixed cost
independent of the amount of data acquired.
Hardware to perform the data collection
would cost $5,000. This cost does not include
items already on hand. It also does not
include payments by NHTSA to the radar
supplier for access to the radar and custom
engineering. Setting up and taking down the
data-collecting apparatus would require
1 person-month of direct labor.
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There is a variable cost in proportion to
the amount of data acquired. An average
day’s data collection should result in 100
signatures, or a complete data set for one of
the possible combinations of trajectory,
vehicle type, and speed. The data collection
would require a full day’s work by two
employees; another person-day would be
required for support activities. It is assumed
that the targets would be on-hand DOE
vehicles, furnished at no direct cost to
NHTSA.

The development of the DSP circuitry
would require 6 person-months of direct labor
and $5000 for board fabrication.

Assume 2 person-months to prepare the
report plus the expense for two people to
travel to NHTSA to present a technical
briefing. '

Summary of subtasks for beam-forming proof
of principle

1. Simulation study

Direct labor 6 person-months

2. Interaction with radar supplier
(Comment: Fees paid to the radar supplier
not included.)
Direct labor 2 person-months
Other expenses $5000

3. Data collection, fixed costs
Direct labor 1 person-month
Other expenses $5000

4. Data collection, variable costs
(Comment: Expenses assume 3 person-days
per labor to collect data resulting in a
complete data set for one combination. Two
vehicle types, 4 trajectories, and 2 speeds
result in 16 possible combinations.)
Direct labor 48 person-days

5. DSP development
Direct labor 6 person-months
Other expenses $5000

6. Documentation
Direct labor 2 person-months
Travel $4000
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Cost summary for beam-forming proof of
principle

(Does not include fees to the radar supplier)

Direct labor $294,000
Other expenses 19,000
Contingency 57,000

Total $370,000

As noted earlier, the simulation study
would require 6 calendar months. Discussions
with the radar supplier would start at the
onset of the project, with a goal of furnishing
a working radar 9 months after the inception
of the project. DSP development would start
4 months into the project and be completed
10 months into the project. The technical
briefing at NHTSA would occur when the
hardware is ready, but before serious data
collection begins. Data collection would
require 1 month. Production and review of
the final report would require 4 months, and
would not start until after the data collection
is finished. Total duration of this task is
15 months.

(Note: Target bearing would be required
for either functionality, arming or firing.
Thus, NHTSA would not need to decide
which function is its ultimate goal before this
work could begin. This task is especially
necessary. If it is impossible to provide good,
fast, and inexpensive bearing information,
then the anticipatory crash detector will not
work. If the near-term funding and priorities
of NHTSA are limited and it can support
only one task, proof of principle with beam
forming would be our first choice.)

Task 4: ldentification of a Sparse
On-Vehicle Sensor Array

In addition to the environment model, the
anticipatory system uses a system model. This
is a description of the present dynamical state
of the vehicle itself. It is possible, but
probably undesirable, to heavily instrument
the vehicle. Sensors could determine the
translational and angular velocity and
acceleration of the car body relative to the
road. Other sensors [ideally, the preexisting

antilock braking system (ABS) sensors] could
determine the angular dynamics of each
wheel. By comparing discrepancies it could
be determined whether or not the vehicle is
slipping or spinning. Strain sensors in the
steering, brakes, and accelerator could
indicate the forces acting to change the
dynamics of the vehicle.

What is unclear is how much (if any) of
these data are actually needed. The
knowledge of whether the preexisting
dynamical state of the vehicle is carrying it
into or out of harm’s way is probably
necessary. However, 100 ms is not especially
far into the future when describing the
movements of something as massive as a car,
and an extremely crude model, requiring a
sparse set of initial conditions, is likely to be
sufficient. An adequate description of initial
conditions can probably be derived from
existing sensors (speedometer, ABS, etc.)

The objective of this task is to determine
how sparse the model and its data
sources can reasonably be. It is not resolved
into subtasks. Direct labor would be
3 person-months.

Task 5: System Definition of the
Anticipation Engine

The novelty of this research, and the
practicality and robustness of the sensory
system expected to ultimately emerge from it,
presume the use of a formal anticipation
system. The bulk of the effort of the next
phase is the development of a way to
inexpensively provide a reliable description of
the current state to the environment model.
Nevertheless, the ultimate goal is the
development of the anticipation engine itself.

With this in mind, it is reasonable for the
next phase not to include development of the
anticipatory system, but rather, to lay the
groundwork for its development in the phase
after that. The other tasks of the next phase
should lead to a detailed knowledge of the
nature of the current information available to
the nested models. The operational
requirements for an intelligent precrash-
restraint system should be available from
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NHTSA. Given these two items of
information, it should be possible to develop
a comprehensive system-definition document
for the anticipation engine.

The objective of this task is to produce a
system-definition document. It is not resolved
into subtasks. Direct labor would be 3 person-
months.

Task 6: Kinematic simulation

It would be desirable to look at the
kinematics of crashes from a number of
different orientations and configurations. The
objective would be to run kinematic
simulations that predict the occurrence of
crashes and then perturb or remove selected
elements of the input data. The goal is to
obtain an envelope of performance for simple
kinematic models. This kinematic model
might also become the nucleus of the
environment model of an anticipatory system
in a future phase of the research. Direct labor
would involve 6 person-months.

Task 7: Survey of Existing Crash Data

NHTSA’s observation is that 20-30% of
crashes are collinear and overlapping. All the
others occur at a glancing geometry. It would
be desirable to investigate the existing crash
data and obtain a distribution of the
probability of a collision as a function of
incidence angle. Obtaining these data for
analysis would probably involve more than
the usual amount of travel. Direct labor
would involve 4 person-months, and travel
would cost $20,000.

Task 8: Target Classification

As noted earlier, a major priority that
remains to be defined by NHTSA is whether
the anticipatory system being investigated in
this research will be used to arm a restraint
device or to fire a restraint device. A firing
system requires target mass and class data; an
arming system does not. It is reasonable to
suppose that NHTSA does not consider that it
has enough information to make this decision.
Is target classification hard or easy? What is
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the actual rate of misclassifications in a
real-world system? How difficult is it to
implement a classifier in an on-vehicle
sensory system? In other words, before
NHTSA tries to make a decision about -
whether or not an anticipatory firing system
is worth doing, it might be worthwhile to
determine just how much trouble it really is.
That would involve study of the classification
problem described in this section.

In the crash-warning literature, both past
and recent, identification of the class of the
target is an urgently wanted datum. The
reason for this is to get some indication of
the severity of the impending crash. If the
type of target is not available, an indication
of relative mass might be as useful.

Investigation of signatures for pattern
recognition features was not part of the work
for the first phase of this project. However,
since target class is a desirable output,
investigation of target signatures might be an
objective of the next phase.

This is a fundamentally different task from
the task of extracting vehicle dynamical data.
Four possible approaches are discussed
below: (1) identification of acoustic signatures
collected by others, (2) identification of
acoustic signatures collected by ORNL,

(3) interpretation of active device returns for
classification features, and (4) assessment of
transponder returns.

ldentification of acoustic signatures
collected by others

Passive signature recognition would
involve receiving a signature emanating from
the target and identifying the target from the
distinguishing features of the signature.
Acoustic signatures appear to be the only
emanations from a vehicle that might include
enough distinguishing features to make a
quick classification possible.

The work of James and Sampan (1995) is
instructive. They acquired a systematic,
statistically significant, and tightly controlled
collection of acoustic signatures for four
classes of vehicles. They did not seek a
feature space; instead, they compressed the
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data in an arbitrary manner. Using these
compressed data sets, they explored a wide
range of neural networks and typically got
80-90% correct classifications. Had their data
been projected onto a good feature space, the
correct classification rate would presumably
have been much higher.

A reasonable line of investigation would
be to acquire a copy of their uncompressed
data, project it onto several different spaces,
and find a good feature space. A Bayesian
classifier could then be used to predict the
limiting performance of a classifier based on
acoustic signature identification. Then
deliberate degradations could be imposed on
the data to assess the reliability of an acoustic
signature classifier under nonideal conditions.

Summary of subtasks for classifying acoustic
signatures collected by others

1. Acquisition of data and performance of format
conversion

Direct labor 0.5 person-month

2. Identification of a feature space
Direct labor 3.0 person-months

3. Training of a Bayesian classifier and
assessment of results

Direct labor 2.0 person-months

4. Performanace of a degradation study
Direct labor 2.0 person-months

5. Documentation

Direct labor 0.5 person-months

Total 8.0 person-months

The cost (if any) of purchasing the raw
data from the original experimenters would
be in addition to these costs.

Identification of acoustic signatures
collected by ORNL

As noted under the data acquisition task,
adding a scientific microphone to the sensor
array and collecting acoustic signatures
simultaneously with active-device return
signatures could be accomplished at relatively
small incremental cost.

Thus, another reasonable line of acoustic
signature investigation would be to record
acoustic signatures in parallel with the
active-device data collection, project it onto
several different spaces, and find a good
feature space. A Bayesian classifier could
then be used to predict the limiting
performance of a classifier based on acoustic
signature identification. Then deliberate
degradations could be imposed on the data to
assess the reliability of an acoustic-signature
classifier under nonideal conditions, such as
the use of a cheap microphone in the end
item sensor.

Summary of subtasks for classifying acoustic
signatures collected by ORNL

1. Identification of a feature space
Direct labor 3.0 person-months

2. Training of a Bayesian classifier and
assessment of results

Direct labor 2.0 person-months

3. Performance a degradation study
Direct labor 2.0 person-months

4. Documentation

Direct labor 0.5 person-months

Total 7.5 person-months

Interpretation of active device returns for
classification features

The basic shortcoming of passive methods
is that no classifiable signatures emanate from
some targets of interest, such as trees and
guardrails. For active methods, the impending
crash sensor sends out a signal and analyzes
its returns for distinguishing features by class.

As described elsewhere, a key element of
the next phase will be the collection of a
statistically significant set of return signatures
from a representative set of targets for several
different active device types, possibly
including Doppler, FMCW, and broadband
pulse radar or ultrasonic sonar. A distinct
subsequent task might be the analysis of these
signatures by target class for distinguishing
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features. It should be noted that there is a
substantial risk that radar returns will not
contain the necessary distinguishing features
and that such an investigation may not lead
to a useful classifier.

The following costs presume that a
statistically significant set of active device
return signatures already exists.

Summary of subtasks for classifying active
device signatures collected by ORNL

(Comment: Expenses are shown for one active
device type; there may be as many as four.)

1. Identification of a feature space
Direct labor 3.0 person-months

2. Training of a Bayesian classifier and
assessment of results

Direct labor 2.0 person-months

3. Documentation

Direct labor 0.5 person-months

Total 5.5 person-months

Assessment of transponder outputs

It may be that neither passive nor active
signatures contain enough distinguishing
features to identify the class of target. An
active transponder on the target vehicle could
transmit various kinds of information,
including a code for vehicle type. This would
lead to unambiguous identification of the
target.

The major drawback is the high
percentage of targets that do not have
transponders. This includes fixed targets such
as trees and guardrails. In addition, for the

next several decades, it is unlikely that a
substantial percentage of vehicles on the road
will have active transponders.

On the other hand, many of the most
dangerous targets—Ilarge commercial
vehicles—do have transponders for use in
various intelligent transportation system (ITS)
functions. It may be unwise to ignore this
valuable information in those cases for which
it is present.

An assessment of the value of
transponders in crash warning systems might
consist of two subtasks, involving
1 person-month each. The first subtask would
be to acquire statistical data from NHTSA on
the incidence of crashes, the distribution of
vehicle classes involved, and the proliferation
of transponders and projected rates of growth.
This would allow preliminary estimates of the
probability of collisions with a target
equipped with a transponder, both now and in
the foreseeable future. The second subtask,
based on these data, would be to estimate
savings in injury, loss of life, and property
damage due to using transponder data, when
available, as part of a crash prediction. One
could then consider whether or not the use of
available transponder data is worthwhile.

Summary of subtasks for assessing the use of
active transponders

1. Acquisition of statistical data from NHTSA
Direct labor 1.0 person-month

2. Estimates. of benefit of using transponder data
Direct labor 1.0 person-month

Total 2.0 person-months




10. RECOMMENDATIONS

We recommend that NHTSA support the
beam-forming proof-of-principle task as a
near-term priority. Our investigation has
shown that it is practical to extract
acceleration from radar data in real time with
inexpensive equipment. Velocity and
displacement are less difficult to extract.
What is presently missing is the bearing of
the target. This datum is required for both
arming and firing systems. Beam forming
with pulsed radar has the potential of
providing an inexpensive real-time method of
simultaneously producing bearing and a
threat/no threat target classification. Data on
acceleration, velocity, and displacement can
be obtained at virtually no incremental cost.

Before research priorities other than the
investigation of beam forming are established,
NHTSA must decide whether its ultimate goal
is an anticipatory firing system or an
anticipatory arming system. The tradeoff is a
classic exercise in the judging of risk versus
reward. An arming system requires only
dynamical data, the acquisition of which is
not especially error-prone. In addition, an
arming system is tolerant of a reasonable

incidence of false predictions. The drawback
is that an anticipatory arming system provides
only about 10 ms of improvement over a
conventional airbag actuator. An anticipatory
firing system requires mass and class data,
which are much more error-prone than
dynamical data. The consequences of an
incorrect prediction from an anticipatory
firing system can be quite severe. The great
advantage of this system is that it might
deploy the crash restraints several tens of
milliseconds faster than a contact-based
actuator.

Depending on NHTSA’s funding and
research priorities, NHTSA may wish to
sponsor several of the other tasks suggested
in Section 9 in addition to the beam-forming
proof-of-principle.

The ultimate goal of this research is a
working prototype of an anticipatory crash
detector (whether firing or arming) 5 to
10 years in the future. Development of such a
prototype is unlikely to be undertaken by
private industry. The objective of interim
sensor development is ultimately to feed the
environment model in such a detector.
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APPENDIX: TUTORIAL
ON ORTHONORMAL WAVELETS

Nonstationary Signals

The wavelet literature refers fairly casually, and without formal definition, to nonstationary
signals. At a superficial level, a nonstationary signal appears to be one whose Fourier spectrum
varies as a function of time. This is not a logically consistent definition; a Fourier spectrum is
the projection of a signal, possibly having nonzero values of finite duration, onto a set of
infinitely long basis functions. The Fourier spectrum cannot vary with time.

The distinction between stationary and nonstationary processes is established in random
process theory. Goodman defines a random process as a set of functions of time, each
representing a possible outcome of different instances of the process. He offers a formal
mathematical definition of stationary processes and degrees of stationarity, but at a conceptual
level, he says that the relevant statistical properties of a stationary process are independent of the
location of the time origin (Goodman 1985, pp. 60-67). Presumably, a nonstationary process is
one whose statistical properties do depend on the location of the time origin.

Wavelet theory concerns itself with processes that produce signals of finite duration. Different
instances of the same process can be expected to have different Fourier spectra, even if the
instances are adjacent in time. It is not too much of a conceptual stretch to suppose that if an
ensemble of such signals were represented as a random process, its statistical properties would
depend on the location of the time origin. Thus, an ensemble of different instances of a process,
each with a different Fourier spectrum, might reasonably be said to constitute a nonstationary
process, as the term appears in the wavelet literature.

Sets and Spaces

Wavelet theory makes many appeals to set theory, and the following sets are especially
relevant (Akansu and Haddad 1992, p. 292). Z R, and R* are the sets of integers, real numbers,
and positive real numbers, respectively. L%(R) is the Hilbert space of measurable, square
integrable functions. In practical terms, L(R) is the set of all functions, f(®), that satisfy the
proposition

J:o If(t)|2d1‘<°° . (A1)

The inner product of two functions is
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=] fwewar. A2

Continuous Wavelet Transform

The wavelet transform of a function f(#) € L*R) is a measure of the correlation of the
function with scaled and shifted versions of the mother wavelet, or wavelet kemnel function, (?)
(Akansu and Haddad 1992, pp. 296-300). The Morlet wavelet is an example of such a
continuous wavelet kernel function; it is a Gaussian windowed complex sinusoid. If the scale
parameter is a and the shift parameter is b, then the scaled and shifted wavelet is

a

Yalt) = %w [I— b] : (A3)

and the continuous wavelet transform is the inner product

Wa,b) = Wanf) = |_Wa®F*@ dt , )

where a € R*, and b € R.

The frequency domain behavior of the wavelet kernel function can be observed by taking its
Fourier transform (FT) (Akansu and Haddad 1992, pp. 304-10). It is a consequence of the usual
properties of the FT that if Y, (r) and ¥,,(2) constitute an FT pair, then

Ya(t) = ;}—;w(’—;—b—J ¥,(Q) = Va W(aQ)e R | (A5)

There is no specific function, (), that is the one and only wavelet kernel. However, for the
wavelet transform to be useful, there are constraints on y(f). Most importantly, for the wavelet
transform to be invertible, the kernel must be admissible.

The inverse wavelet transform is

1 (= [~ dadb
1) =2 I I, 557 wa.bwao . (A6)
when
oo Q) 2
cy =], l——(é—)l— aQ . (A7)

The wavelet W(7) is admissible if Cy, is finite. This requires that ¥(0) = 0. At Q = 0 the FT
degenerates to

vo) = | _voyar . (A8)
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In other words, to lead to an invertible transform, the wavelet must be admissible. To be
admissible, it must have zero average value.
There is a wavelet version of the Parseval relation:

co [_lrol2ar = [~ Iwanl? %“l . (A9)

Discrete Wavelet Transform

The continuous wavelet transform, a € R* and b € R, is typically impractical to implement.
It is overdetermined and redundant (Akansu and Haddad 1992, pp. 310-15). A more tractable
version, the discrete wavelet transform, can be created by sampling the scale and shift
parameters, a and b. To create a wavelet basis set of practical usefulness, it must be convenient
to reconstruct functions in terms of the basis. The process leads to several questions:

1. Is the basis set obtained by sampling a and b complete in L%(R)? The basis set is the set of
all the functions, y,;(f), obtained by a particular set of samples of a and b. “Complete”
means that within the basis set, Y,(), there are enough different members so that any
function f(f) € L*(R) can be expressed exactly as a weighted sum of members of the basis set.

2. Is the basis set obtained by sampling a and b redundant in Z%(R)? A redundant basis set may
have more members than a complete set. From a redundant basis set, not only may any
function f(f) € L*(R) be exactly reconstructed as a weighted sum of basis functions, but there
are also several different possible weighted sums that will reconstruct f(z).

3. If the basis set obtained by sampling a and b is complete, how coarse can the sampling be
made to keep the basis set minimal? If the basis set has too few elements, it will not be
possible to reconstruct every f(z) € L2(R). If the basis set has too many elements, there are
multiple ways to reconstruct f() € L%(R). If the basis set is minimal, it has just the right
collection of elements; there will be one weighted sum to reconstruct every f(?) € L*(R), but
only one possible sum for each f(z) € L¥(R).

A reasonable sampling scheme is as follows:
a=af, b=nhaf, mne Z>>

Fn() = ag™? y (g™ — nby) (A.10)

If the basis set ¥,,,(#) is complete for some choice of Y(?), ag, and by, then any f(f) € L¥R) can
be reconstructed as follows:

O = 3 D denWml®) (A.11)

where

dun = (SOl = [ FOW G5 —nbo) d (A12)

are the wavelet coefficients.
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A complete basis set, Yp,,{?), constitutes a frame. Frames are not in general orthonormal
bases. They do not satisfy Parseval’s theorem. Expansions based on frames are not unique.
Instead, the following energy relations hold:

Al lrola <Y 3 Kivmnd)2 < B lrol2ar . (A.13)

If y(7) is admissible, and 0 < A < B < oo, then y,,,(f) constitutes a frame. For any choice of a
and b; the frame bounds are constrained:

T J‘°° w2

< .
< bolnag S0 o dQ < B. (A.14)

If A = B = 1, the frame is tight, but this does not guarantee linear independence for {yp,}. A
frame is exact if the removal of one element leaves it incomplete. If the frame is tight and exact,
then it constitutes an orthonormal basis in L%(R), and Parseval’s relation holds. An orthonormal
wavelet is orthonormal to both scaled and shifted versions of itself:

Jt:, Yonn N (8) dt = Sy Sy (A.15)

Recall that wavelet coefficients are generated by correlation of the signal with mth scale
wavelet.

Wa,b) = Wanf) = | va®f*@) dr

_ : %w(%ﬁ) FH@) dt = Wm,n)

= J: ag™2  (ag™ — nby) f *(f) dt

= a2 [ (@™ nbo) fH(xydu . (A.16)

The last step is simply a change of variable. Subsequently, it will be seen that it is convenient to
choose ag = 2 and by = 1. Also, the signals being processed are real, allowing f(t) = f*(1). Thus,
the discrete wavelet coefficients are expressed as follows:

Wim,m) = 272 f(iyy @™1-n)dr . (A17)

This is equivalent to saying that the discrete wavelet coefficients at each scale, m, can be
obtained by convolving the input signal, f(z), with a filter whose impulse response is
h(f) = 2" %y(~2™), and sampling the output at every ¢ = n2™. This is also equivalent to saying
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that the wavelet coefficients at all scales, m, can be generated by feeding the input signal into a
bank of such filters.

Note that thus far in the discussion, only concepts and goals have been defined. Subsequent
discussion will show that the dyadic tree is a practical structure to implement the filter bank that
generates the discrete wavelet transform (DWT). Furthermore, if the filters in the structure meet
the paraunitary constraint and if the low pass filter has a zero at z=—1, the basis function is an
orthonormal wavelet.

Multiresolution Analysis

A method of constructing orthonormal compactly supported wavelets and the design of filter
banks to produce them emerges from the theory of multiresolution analysis (Akansu and Haddad
1992, pp. 313-34). The idea is that f() € L*R) is expressed as the limit of successive
approximations at different resolutions. The approximations are done by filtering f(#) through the
scaling function ¢(z).

Previously, the space L%(R) was defined as the set of all square integrable functions. The
subspaces {V,,|m e Z} are subsets of L%(R). Each subspace corresponds to an integer. The
greater the integer, the lower the resolution of the subspace, and the coarser the functions
contained within it.

Note that, at some cost, coarse functions can be described in a space that allows for fine
detail, but not the other way around. Fine functions cannot be described in a space that allows
only for coarse resolution. Thus, V; contains all the coarse elements in V,, plus finer elements
not contained in V,. This property of containment is described in the language of set theory as

eV CV,CV,CV, .. (A.18)

The subspace at the limit of fine resolution contains all possible elements of L%(R). That is,
Ve = L*(R). The property of completeness is formally described as

((\Vm = {2}, \U Va = LXR) . (A.19)

meZ meZ

Functions can be scaled by compressing or stretching. A function compressed by a factor of 2
is an element of the next finer subspace, and a function stretched by a factor of 2 is an element
of the next coarser subspace. The scaling property is formally described as

f(x) € Vp @ f(2x) € Vpy V fx) € L(R) . (A.20)

Within each subspace there is a basis function that is orthonormal to translation. This is the
scaling function, whose prototype is ¢(f) € V. The basis set covers the m subspaces and
translations by n, and is designated {®p,(?) =222t —n)}. The scaling function is
orthonormal to translations within a scale, m, but not to changes in scale.

W,, is the orthogonal complement of V,, in V,,_,. The idea is that if f(r) € V,, is an
approximation of g(¢) € V,,_1, then W, contains the detailed information about g(#) that is
missing from f(¢). Furthermore, there is no overlap; V,, has no information in common with W,,,.
Symbolically,
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Vi1 = Ve ® W, (AZI)

Vi L W, . ’ (A22)

At the extreme limit of coarseness, V.. would contain an infinitely coarse approximation or,
on a conceptual level, no information. W.. would contain infinitely coarse details, but on a
conceptual level, these details do convey information. In fact, the details in W include all the
information needed to describe the next finer level of V,,. Each succeeding finer level of detail,
W,,, contains the information which, when combined with V,,, completely describes V,,_;.
Combining the details from all possible W, completely describes L*(R). Symbolically,

OWOW .. . OW .. . OW , ®W ... = LAR) . (A.23)

The scaling function ¢(r) € V. The wavelet function y(r) € Wy

Projection operators, P,, and Q,,, project any function f € L%(R) onto V,, and W, respectively.
In practical effect, P,,f is the approximation of f at a level of coarseness m. Q,, f is the detail
that must be combined with P, f to obtain the approximation of f at a level of coarseness m — 1:

Pp_1f=Puf+ Onf- (A24)

From this, it follows that Q,,f = Py 1f — Pp.f, Omf € W, From this, it follows that the
complimentary space is W,,=V,,_; ©V,,. Translates of the scaling function ¢(t — n) € V; and
span the space Vj. Any element of Vj can be constructed as a weighted sum of ¢(z —n) terms if
enough different values of n are used. Similarly, $(2z —n) € V_; and spans the space V_;. Given
the relationship between the complement and the two subspaces, it is expected that there should
be a function (¢ —n) € Wy that spans W;. Because of the scaling property of V,,, the scaled
wavelet ,,,(1) = y(27t — n) will span W,,,.

The containment and completeness properties of V,,, and the propositions W,,, L V,, and V,,_;
=V, ©® W, imply that all the complimentary spaces W,, are mutually orthogonal and that all the
information contained in all W,, completely constitutes L%(R). The expression ,,,(f) constitutes
an orthonormal basis in W,,. Since spaces W,, are mutually orthogonal, it follows that ,,,(?)
constitutes an orthonormal basis in L%(R), being orthonormal to scales, m, and translates, n, of
the mother wavelet, y(?).

The point of all this discussion is that if the goal is to generate an orthonormal wavelet, it is
convenient to start with a scaling function that meets the conditions described above. If
O(t — n) € V, spans Vy, then ¢(2t—n) € V_; spans V_;. As a consequence of the containment
property, the coarser version of the scaling function can be generated as the weighted sum of
translates of the finer version:

0@ =2 ho(m) ¢ (2t—n) . (A25)

Similarly, the wavelet function can be generated as the weighted sum of translates of the next
finer version of the scaling function:

V@O =23 @ oQi-n) . (A26)
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The process of generating a scaling function or an orthonormal wavelet from a weight list is
most easily understood in the Fourier frequency domain:

o) & DQ) = ¢t -nTy) < %e'j"QTﬂlz cp[%) . A2
The FT of the weighted sum that generates the scaling function is
—iQ/2nTy g [ 2
Q) = Y, holm)e TV D |- | (A28)

Define = QT,, and recall that hQ is a discrete list of weights, or a sequence, and that the FT of
a sequence is Hp(e’®) = X, ho(n)e 7. The FT of the scaling function then becomes

D) = Hy(e™) q:(%) . (A.29)
By a similar argument
Q - Q
0('2—) = Ho(eﬂ%) P [T) . (A30)
Hence
) . Q
D(Q) = Hy(e’2.)Hy(e’™) @ [—4-] ) (A.31)

The process can be repeated indefinitely. Applying the observation that lim, _, .. Q/2" = 0, the
FT of the scaling function is seen to be an infinite product:

@) = o) [T, Hoe™) . (A32)

As a consequence of the completeness property, and after some mathematical steps, it follows
that |®(0)| =1 and that | Hy(e/®) | == 1. If the weight list k() is finite over the range of
0 < n £ N — 1, then the scaling function has compact support over the same range
@ =0lo<rsN-1]

There are some constraints on Hy(e/) that will assure that ¢(¢) is orthonormal to shifts within
a given scale, m. If ¢(z — n) spans V; and is orthonormal, then the unitary condition must be
satisfied (Akansu and Haddad 1992, Appendix B):

Y le@+2mp|?=1. (A33)

Into this equation we can substitute

D (2Q) = Hy(e’) B (Q) . (A34)
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After a good deal of algebra, what remains is
|Ho(e’) |2 + |Ho(e*m|2 = 1. (A.35)

This is within a normalizing constant of the constraint on the low-pass filter in a maximally
decimated perfect reconstruction filter bank.

By similar reasoning, constraints on H; can be obtained that ensure that the wavelet, y(z), is
orthonormal. It should be recalled that the wavelet is related to the scaling function at the next
finer scale:

W) = 22,, h(n) ¢ 2t—n) . (A.36)

The FT of a sequence h(n) is H(e/®). Hence,

¥(Q) = Hi(e™) @ [%J . (A37)

The infinite product representation of the scaling function can be substituted into this:
- T hed jto/zk
Q) = B[], _, Hoe™) . (A38)

If y(t — n) spans W and is orthonormal, then the unitary condition must be satisfied:
>, v@iamnl2=1. (A.39)
Into this equation we can substitute
Y(2Q) = Hi(e/) D (Q) . (A.40)
After a good deal of algebra, what remains is
|Hy )2 + |HyEeorm|2 =1, (A.41)

This is within a normalizing constant of the constraint on the high-pass filter in a maximally
decimated perfect reconstruction filter bank.

In addition, the wavelet function is orthogonal to the scaling function. The consequent unitary
condition in the frequency domain is

D, @ (Q-2km) ¥¥(Q-2km) = 0 . (A42)

Using the infinite product representations of @ and V in the above and applying even more
manipulations lead to
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Hy(e/®) Hi(e 7®) + Hylel@*™] Hi[e 7©+™] = 0 . (A.43)

This can be satisfied if h(n) = (-1)"*ho(N — 1 —n), or in the z domain, (H;(z) = 7V VHy(-z).
Letting z — ¢/®, and substituting into either orthonormality equation, this results in '

|Hoe’® |2 + |H(e®)]2=1. (A44)

Since it is already known that | Ho(e’®) | =0 = 1, the precedingrequiresthat | H;(e/®) | o=
= 0=2X,hy(n). In other words, in order to generate invertible, compactly supported orthonormal
wavelets, Hy(z) must have a zero at z = 1. ‘

To appreciate how the multiresolution analysis operates, start with a function f € V. It can be
represented as the weighted sum of translates of the scaling function:

f@ =3 cod-n), (A45)
where
con = {(£0G~n) = [fOO@-n)ar . (A46)

It is also possible to express f in terms of the next coarser approximation, and the interscale
details:

RO =Pf=3 c.b (% - n] : (A4T)
RO =0f=Y, dv (g - n) , (A48)
f@&) =Pif+ Oif. (A49)

Multiply f(2) = £1(2) + £,}(2) by &(t/2 — n) and integrate, resulting in (f,0(t/2 —n)) =
{Fo@/2 - n)) + (£ (D0(/2 — n)). The second term is the weighted sum of translates of
y(t/ 2 — n), which are othogonal to ¢(¢/2 — n). The second term must be zero. The result is that
c1a = {£0(/2 = n)) = {(£1()¢(t/2 - n)). A similar result obtains for d .

C1n = \%5 ffv‘(t)cb (% - n}dt , (A.50)
diy = %j flow [% - n]dt . (A.51)

It has already been established that the scaling function at different scales is related by
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00 =2, ho(m) ¢ (21-n) . (A52)

Therefore,
¢(é - ,,] =23 hok) 0 (=2n~F) . (A.53)

This can be substituted into the integral for ¢, and simplified with a little manipulation. A
similar operation leads to d ,.

c1n = V2. ) holk—2n) co (A.54)

dip = N2 hy(k—2n) cox - (A.55)

In general, a filter by g(n) followed by a downsample by 2 is realized as y(n) = Z,g(2n — k)x(k).
Hence, the two processes leading to the next coarsest approximation and details consist of
filtering the approximation by 2%hg(—n) and 2%h;(~n), respectively, and downsampling the results
of both by 2. The process can be repeated as often as necessary to obtain the next coarsest
approximation and details.

Synthesizing the original signal from this decomposition is done as follows. Starting with the
interscale equations ¢(f) = 2Z,ho(n)d(2¢ — n) and y(r) = 2XZ,h(n)d(2t — n), it can be shown that

)
ho(n) = %j(p -%)d)(t—n) dr (A.56)
\
1 (t
m(n) = 3 [w E)q)(t—n) d . (A57)
X

The reconstructed fine estimate has already been established as ¢y, = (£, d(z —n)) +
{f., &(t — n)). The first term can be expressed as follows:

FLoG-n) = [oe-nflda
= j¢("")’\[1§—2kcu¢(';' - kjdt

=3 cu%jq)(t-n)q)(% - k)dt . (AS8)

The integral is seen to be 2hg(n — 2k). Henlce, the first term in ¢, is 2‘/2sz1 xho(n — 2k). By
similar reasoning, the second term in ¢, is 272%;d; xh)(n — 2k). In general, an upsample by 2
followed by a filter by g(n) is realized as y(n) = Z,g(n ~ 2k)x(k). Hence, the two processes of
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obtaining the approximation from the next coarsest approximation and details consist of
upsampling both input streams by 2 and filtering the upsampled streams by 2%ho(n) and 2%2hy(n).

The wavelet-based decomposition and reconstruction scheme is identical to the
dyadic-tree-based scheme developed for perfect reconstruction subband coders.

Cascade Algorithm

Except for trivial cases, it is not possible to express orthonormal wavelet functions or their
corresponding scaling functions in closed form. For finite impulse response (FIR) filters, the
proposition that () = Xh;(n)(2f — n) means that the wavelet function is simply the weighted
sum of translates of the next finer scaling function. The scaling function is expressed implicitly;
(#) is the function that satisfies ¢(z) = Zho(n)d(2¢ — n). What is needed is a convenient method
for computing ¢(z).

Daubechies developed a fast method for approximating the value of ¢(z) to any desired
accuracy; she styles it the “cascade algorithm” (Daubechies 1992, pp. 202-6). The justification
for the algorithm begins with the observation that the scaling function has finite support and
I(b(x) dx = 1. A consequence of this is that 2/¢(2/x) also has an area of 1 for all integer j, and
as j — oo, 2/¢(2/x) — 3(x). Due to the sifting property, f(x) = f f(x+1y) 8(y) dy. Hence,

£ = im? [ £+ )02y dy . (A59)

joreo
If x is a dyadic rational, x = 27K, Daubechies shows that the above leads to

o WYK) = 1im 2% {9, 0 7-%%) . (A.60)

jove

Define an interpolating function 1(x) as a piecewise constant (on subintervals [27p, 29p + 1))
approximation of ¢(x). From the above, 1;(27p) = 2% (9, ¢_jp). The inverse wavelet transform
consists of a cascade of the following step:

([i9i-1,00 = ¢jot,m = zkhm—Zijk + gm-2djx - (A.61)

As a consequence of the foregoing and the orthogonalities (9,00m) = Som and (¢, W_u) = O, the
following recursion ensues:

Wy w7p) = V2 X hpgMy-1(2' g - (A62)

In this formula, 4 is the low-pass FIR filter in the inverse wavelet transform cascade (or
synthesis bank). The filter is normalized such that the sum of its coefficients is 2"2. It has length
2n and is translated such that it spans from A_, to h,_;. All other values of & are zero. The
bottom of the recursion is Mo(p) = &g .

Regularity

The fact that ®(Q) = IT;% Hy(e/®/@*) leads to another constraint on the design of wavelet
functions (Akansu and Haddad 1992, pp. 336—41). Depending on the properties of H, the
infinite product might converge to a smooth function or to a fractal function. It is desirable that
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®, and the corresponding functions ¢, ¥, and y, be smooth, and regularity is a measure of
smoothness.
Regularity is defined as the maximum value of r for which the following proposition is true:

o] < , (A.63)

- <
(1+ IQI)H»]

where r 2 m, ¢(f) is m times continuously differentiable.

To generate a wavelet, Hy(z) must have at least one zero at z = —1. Suppose that it has L
zeros at z = ~1 and consists of an N coefficient FIR filter. For P(z) is a polynomial in 7zl and
of degree N — 1 — L, the filter is characterized as follows:

1+‘1L
-

lcosg2 |2 | Peeiy] . (A.64)

Hy(z)

| Ho(ei®) |

]

This can be substituted into the infinite product form. After some manipulation, the following
result ensues:

oo oo o
lowy| =T lcosz,:’illLHk:l | e |

sinm/ZL o j%k
I — l I1_ [P . A65)

If the last term is bounded, then the sinc term will contribute to the decay of @. If /> 1 and
P(e’®) satisfies the following proposition, then ¢(#) is m times continuously differentiable.

max

|]‘[:+0 Pty | < g1v-m-n (A.66)

we R

The presence of L zeros in Hy(z), and the constraint that orthonormality imposes on the
relationship between Hy(z) and H;(z), imply a degree of flatness on both filters, described as
follows:

d'Hy(e!®) d'Hy(e’®)
—5;—|m=n=—(—10—);'—|m=0=0,0Sr5L-1. (A.67)

The imposition of zeros to ensure regularity has another important consequence. It provides a
reasonable foundation for a method to actually design the filters to generate orthonormal
wavelets. To reiterate a point already made, forcing the Hy(z) to have L zeros at z = —1 requires
the following:
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L
-1
Ho(2) = (1 L ] PQ) =

|cosg |t |Peiv)] ~ (A68)

| Ho(e ) |

where P(7) is a polynomial in z~! with real coefficients. Therefore, Q(z) = P(z)P(1/z) is a
symmetric polynomial.

Q@) = _2’21:2 97" Gn = Gn =
0@/ = | P/ |2 = gy + 221:1 Gn cOs (n®) . (A.69)

Here, cos(nw) is a polynomial in cos(w), which can be expressed in terms of sin® (&/2). Thus,
| P(e7)|2 is a polynomial, f(x), of degree N — 1 — L, where x = sin? (@/2). By some
manipulation, the term that imposes zeros, {[(1 + 1/2)/21E}2, becomes (1 — x)E. Hence,

| Hote’®) |2 = (1 -2 £ @) - (A70)
The power complimentary condition is a consequence of the orthonormality requirement:
| Hote?) |2 + | Holei@+™)]2 = 1 . (A71)

Substituting the polynomial expression into power complimentarity, and notingthat R(x) is an
odd polynomial such that R(x) = —R(1 - x), the following result occurs:

A=xFfE) +xLfl-0=1=

o) =37, ( £ ,2_ k] x* + xIR(1-2x) . (AT2)

By selecting various possibilities for R and L, the power spectrum for the Hy filter for various
wavelet families can be specified in terms of x. Since x = sin® (w/2), the power spectrum can be
expressed in terms of complex exponentials in ®. With the substitution e/® — z, the power
spectrum becomes a symmetric polynomial in z, |Ho(z) |2 = Hy(z)Hy(1/z). With some difficulty,
Hy(z) can be recovered from the spectrum by one of several spectral factorization techniques that
appear in the literature.

Daubechies Wavelet

One of the more popular wavelet designs is one devised by Daubechies (Daubechies 1992,
pp. 194-202). She assumes that R(x) = 0 and L = N/2, where N is the length of the generating
FIR filter. She factorizes the resulting polynomial to obtain the filter design.

The number of derivatives of |Hy(e/®)|2 at ® = 0 and ® = = are equal, and the Daubechies
filter is identical to the maximally flat FIR filter (Akansu and Haddad 1992, pp. 248-50). The
constraint of maximal flatness can be imposed by forcing selected derivatives equal to zero at
® = 0 and ® = 7 at the outset. From this point it is possible, independent of wavelet methods,
to derive the same power spectrum polynomial as Daubechies derived from the regularity formula.
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In Drumbheller’s notation, y,(?) is the Daubechies wavelet generated by a FIR filter of length
2n (Drumheller 1991). He proves some useful properties of the Daubechies wavelet: (1) is
bounded for all n, is continuous for all n, is continuously differentiable for n = 4, and has finite
spectral variance, f:o Q? I‘I’,,(Q) I dQ < oo, forn 2 4.
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