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1. INTRODUCTION

Many studies employ multiple measurement
instruments such as human raters, observers, judges, or
mechanical gauges to record subject data. It is well
known that the consistency of these instruments,
commonly called rater reliability, limits the extent to
which conclusions should be drawn from the observed
data. However, the degree to which rater reliability
limits conclusions has traditionally been assessed in

only subjective manners, In the following, a method is
developed for objectively quantifying the impact of
rater reliability on the statistical analysis of data from a
commonly used collection scheme. This method allows
the inclusion of a reliability index in statistical power
calculations and is an invaluable tool in the planning
of experiments. In the context of examples, it is
demonstrated how these power calculations may be
used to address design concerns such as “What
reliability?”, “How many raters?”, and “How many
subjects?” that often arise in the planning of
experiments utilizing multiple raters.

2. THE EXPERIMENTAL DESIGN

The data collection scheme that will be used to
derive the relationship between statistical power and
rater reliability is one in which M raters measure N
subjects in each of two treatment groups. In particular,
it is assumed that available resources permit the
measurement of each subject only once. If M raters are
available, the 2N total subjects could be randomly

assigned so that each rater measures 2N/M subjects.
However, complete randomization of raters to subjects
may introduce imbalance to the data collection. For
example, under random assignment it is possible that a
rater could be assigned to subjects contained only in a

single group. A more desirable assignment would be
one that alleviates such possible imbalances. A
reasonable approach is to restrict the randomization of
raters to subjects so that each rater measures N/M
subjects in each group.

As an example, suppose M=3 raters are employed
to measure twelve subjects, N=6 in each of two groups.
Every rater could then measure N/M=2 subjects in each
group. Although the assignment of subjects to raters
should be completely randomized within each group,
by relabeling the twelve distinct subjects, the method of
data collection for this example is depicted as in Table
1. Data collected as in Table 1, where M raters

measure N/M distinct subjects in each of two groups
can be represented by Y, where i=1,2 represents the
two groups; j=I1,...,M represents the M raters; and
#=1,...,N represents the N subjects within each group.
The Yy can be expressed by an equation of the form:

Yp =p+G+ R+ GR; + S, + RSy + 65, (1)

ijk
where p represents an overall mean, G; the group
effect, R, the rater effect, GRy; the group-rater
interaction, Sy the subject effect (the bracketed i
subscript denotes nesting of the subject within the ith
group), RSy the rater-subject interaction, and & is a
random error component. In order to make equation
(1) a statistical model, it is assumed that R;, GRy, Sks),
RSzy, and g are independent normal random
variables with Zero means and respectlve variances
Oy Oos Oy O'RS(G), and o2. The fixed group
effects, G,, are assumed to such that G, =0.

For data collection as in Table 1, not every
possible Yy is observed, and thus, such data will be
referred to as a balanced incomplete design. Methods
for deriving an orthogonal decomposition of the total
sum of squares for balanced incomplete data are well
documented. Abate and McCabe (1995) provide the
analysis of variance (ANOVA) table associated with
the balanced incomplete design where M raters each
measure N/M subjects per group under the assumption

Table 1: Data Collection When M=3 Raters Measure N/M=2 Subjects per Group

G G,
Sy Sy Ss Sq Ss Sy Sg  So S0 Su S
R; X X X X
R, X X X X
Rs X X X
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that the group by rater effect is negligible. That is, it is
supposed that individual raters are consistent upon
judging the mean of one group higher than the other
group, This assumption is reasonable for both
mechanical measuring instruments and appropriately
trained human raters. Under this assumption and with
appropriate pooling, an ANOVA table identifying the
sources of variability, associated degrees of freedom
(df), and expected mean squares (EMS) for the
balanced incomplete design is given in Table 2.
Because only one observation is taken for each subject
and each rater by subject combination, neither 0'2Rs(

or o> is estimable as indicated in the ANOVA table.

3. THE RELATIONSHIP

Table 2 can be used as a guide for constructing the
hypothesis test for a difference in group means. Abate
and McCabe (1995) show that the resulting test for
equal group means has

Power = P(F1onm1, > Fog1280Mm1),
where F1on1 is the upper o percentage point of the
central F distribution with 1 and 2N-M-1 degrees of
freedom, and Fj a1, denotes a noncentral F random
variable with 1 and 2N-M-1 degrees of freedom and
noncentrality parameter

N (/‘1 - ,uz)2 ) @
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In equation (2), p, is the mean of the first group and p,
is the mean of the second group.

When the statistical model associated with the
collected data involves variance components, a
commonly used rater reliability index is the intraclass
correlation coefficient. Abate and McCabe (1995) show
that an appropriate form of the intraclass correlation
coefficient under the assumed balanced incomplete
design is

A=

2
S R ®

P=—"3 2 2
GS(G)+GRS(G)+0-£

Comparing the noncentrality parameter resulting
from the hypothesis test for equal group means in (2)

Table 2: ANOVA Table

Source df EMS

G 1 O+ O sy T T ooy PN

R M-l O+ Oyt Oaey 2NMo,
SG)  INM-1 O3+ CryetOhe

RS(G) 0 -

Error 0 -

and the form of the reliability index in (3), it is
apparent that the connection between the power of the
hypothesis test and the rater reliability index is that
they are functions of common variance components.
The relationship between power and reliability can
thus be specified by performing a simple substitution.
Equations (2) and (3) imply that the noncentrality
parameter can be written as

(= )
A=pN LTl @
2056y
Establishing the form of the noncentrality
parameter in (4) allows power calculations to be
expressed as a function of the reliability index. This
implies that power studies, traditionally used as a tool
for planning experiments, can now be augmented to
include rater reliability information.

4. PLANNING EXPERIMENTS

It is well known that power calculations often
preface experimental studies to insure that an
adequately sensitive hypothesis test will be provided. If
not, adjustments are usually made to the sample size in
order to obtain a satisfactory level of power. The results
of the last section show that for data which are
collected by multiple raters, the power varies not only
as a function of sample size, but also with differing
levels of rater reliability. Although this is intuitive, the
present work provides for quantitative incorporation of
rater reliability into the planning of experimental
studies.

Suppose in planning an experiment, a researcher
has the ability to adjust one or a combination of the
number of subjects, the number of raters, and the rater
reliability. In order to identify how such adjustments
will affect the statistical analysis, power curves may be
constructed as a function of reliability. These power
calculations for the hypothesis test of equal group
means require specifying the risk of making a Type I
error, the difference in group means, and the variance
component associated with the subjects. In order to
circumvent the specification of the latter two,
calculations can be made in terms of the standardized
mean difference:

|,u1 - :uzl

Os56)

Thus, by specifying the Type I error rate and the
standardized mean difference, the relationship derived
in the previous section may be used to answer pre-
experimental concerns such as “What reliability?”,
“How many raters?”, and “How many subjects?”.



4.1 What Reliability?

For a fixed number of raters, the reliability
necessary to achieve a given power will depend on both
the number of subjects and the standardized mean
difference. Consider the balanced incomplete design in
which M=5 raters each measure N/M=4 subjects
within each of two groups and it is desired to achieve a
power of .80. It is well known that the power will
depend on the number of subjects and standardized
mean difference. Likewise, by keeping the number of
subjects constant, the reliability necessary to achieve a
given power also depends upon the standardized group
mean difference. In particular, Figure 1 shows that if
the standardized mean difference is .9, then a rater
reliability of approximately .99 is required to achieve a
power of .80. However, if the standardized mean
difference is 1.2, then a reliability of only about .60 is
required.

4.2 How Many Raters?

The number of raters is a component of power
calculations only in the specification of the
denominator degrees of freedom (2N-M-1) associated
with the F distribution. As a consequence, whenever
the number of subjects is relatively large as compared
to the number of raters, the number of raters does not
have a great impact on the power. This is demonstrated
in Figure 2 which shows for the balanced incomplete
design with N=30 subjects in each of the two groups,
and a fixed rater reliability of .80, the effect of varying
number of raters on power is inconsequential.

4.3 How Many Subjects?

For a fixed number of raters, the number of
subjects required depends on both the reliability and
the standardized mean difference. Suppose in the
balanced incomplete design, M=5 raters are employed
to collect the subject data and it is desired to detect a
standardized mean difference of 1.0 with power of .80.
Figure 3 demonstrates that if the rater reliability is .5,
then N=30 subjects in each group are required to
achieve a power of .80, whereas if the rater reliability
is .8, only N=20 subjects are required.

5. A COMPROMISE

The previous sections illustrated that for a fixed mean
difference, power is a well-defined compromise
between the number of subjects and the rater reliability.
In particular, an inverse relationship exists so that an
increased reliability allows for a decreased sample size
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Figure 1: Power Curves With Varying Reliability
Levels for the Hypothesis Test of Equal Group Means.
The power is given at a Type 1 error rate of .05 when
M=S5 raters each measure N/M=4 subjects per group.
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Figure 2: Power Curves With Varying Number of
Raters for the Hypothesis Test of Equal Group Means.

The power is given at a Type 1 error rate of .05 when
N=30 subjecis per group are measured by raters with
a reliability of .80.
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Figure 3: Power Curves With Varying Number of Subjects for the Hypothesis Test of Equal Group Means. The
power is given at a Type 1 error rate of .05 when M=5 raters with respective reliabilities of .5 or .8 measure N

subjects per group.

when attempting to maintain a specific power level.
For example, suppose that the power is calculated for

a standardized mean difference of .80, a Type I error
rate of .05, N=50 subjects per group, and M=5 raters
with an initial reliability of .50. Figure 4 shows how
increasing the rater reliability allows for the number
of subjects per group to be decreased while
maintaining the original power. This clearly
demonstrates that even marginal increases in the
reliability allow for a substantial decrease in sample
size.

6. SUMMARY

As demonstrated in the examples of the previous
sections, introducing a rater reliability index into
power calculations is an invaluable tool when
planning experiments. By performing power
calculations as a function of reliability, objective
decisions can be made regarding the value of
including more subjects or requiring additional rater
training. In addition, the potential applications of
this procedure are numerous and include not only
experiments employing human raters but also those
utilizing mechanical instruments.
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Figure 4: An Increased Reliability Allows for a
Decreased Sample Size. Combinations of sample size
and reliability are given which maintain a constant
power at a standardized mean difference of .80 and
a Type I error rate of .05 for M=35 rafters.
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