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A Reduced Grid Model For Shallow Flows on the Sphere

J.M. Reisner® and L.G. Margolin®

®Los Alamos National Laboratory, Los Alamos, New Mexico
P.K. Smolarkiewicz® _
® National Center for Atmospheric Research, Boulder, Colorado

We describe a numerical model for simulating shallow water flows on a rotating
sphere. The model is augmented by a reduced grid capability that increases the allowable
time step based on stability requirements, and leads to significant improvements in
computational efficiency. The model is based on finite difference techniques, and in
particular on the nonoscillatory forward-in-time advection scheme MPDATA. We have
implemented the model on the massively parallel CM-5, and have used it to simulate
shallow water flows representative of global atmospheric motions. Here we present
simulations of two flows, the Rossby-Haurwitz wave of period four, a nearly steady pattern
with a complex balance of large and small scale motions, and also a zonal flow perturbed
by an obstacle. We compare the accuracy and efficiency of using the reduced grid option
with that of the original model. We also present simulations at several levels of resolution
to show how the efficiency of the model scales with problem size.

1. Introduction

We describe a numerical model for simulating shallow water flows on a rotating
sphere. The model is based on Eulerian spatial differencing and nonoscillatory forward-in-
time (NFT) temporal differencing. Finite difference methods have advantages over spectral
methods when implemented on massively parallel computers with distributed memory
because the computations are localized in space. However finite difference methods
- have more restrictive time step constraints and so computational efficiency becomes an
important issue. Our model is explicit in time, and its computational time step is limited
by the largest Courant number on the mesh. Since the fastest wave speed is that of gravity
waves, and is uniform over the mesh, the largest Courant number is associated with the
smallest cell dimensions. In the typical latitude-longitude mesh, these smallest dimensions
are found in the cells nearest the poles.

There are several strategies available to increase the time step and thus improve.the
computational efficiency of a finite difference model. For example, we have developed a
semi-implicit version of our model (Nadiga et al. 1996 and Smolarkiewicz and Margolin
1994) in which the gravity waves are treated implicitly, but the advective velocities (which
are much slower) are treated explicitly. In typical atmospheric applications, semi-implicit
methods may allow a four-fold increase in time step. However the semi-implicit formulation
leads to an elliptic problem, whose solution involves inverting a matrix on the mesh.
Furthermore, the matrix operator is not symmetric due to the presence of Coriolis forces.
This means that standard conjugate gradient methods may not converge and less optimal
methods must be explored. Another alternative to allow larger time steps is filtering the
velocities at the high latitudes. Filtering, however, requires global communication, making
application on a massively parallel computer with distributed memory very inefficient.

Yet another alternative is the reduced grid. Here the logical structure of the regular
latitude-longitude mesh is modified by removing some of the cells near the poles, effectively
making the remaining cells larger. For example, if every other cell is removed from the
regions within 30° of the poles, then the time step can be increased by a factor of two.

The reduced grid also requires some nonlocal communication, but its impact on efficiency
is much smaller than that of filtering. In addition, in our experiments we have found that
the reduced grid reduces the accuracy less than either filtering or using implicit techniques.
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In the following sections, we will briefly describe the model and the the reduced grid.
We will then show results for two problems from the suite of test problems described by
Williamson et al. 1992; these are the Rossby-Haurwitz wave and the steady-state zonal )
flow on the sphere. The use of larger time-steps reduces the numerical diffusion associated
with truncation error. In the first case this is the dominant source of error, so that the
reduced grid model yields more accurate results than the nonreduced grid. In the second
case the interpolation errors dominate the diffusion errors and the reduced grid model
is less accurate than the nonreduced model. We will provide error estimates for the two
cases, as well as timing statistics for both the reduced and nonreduced grid in section 4.
We summarize our results in section 5.

2. Shallow Water Model

The equations expressing conservation of mass and momentum for a shallow fluid on a
rotating sphere are as follows:
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where G = hhy, and h, and h, represent the metric coefficients of the general orthogonal
coordinate system, ® = H — H, is the thickness of the fluid with H and H, denoting the

height of the free surface and the height of the bottom, v is the horizontal velocity vector,
and Q = (Puh,, Bvh,) is the momentum vector. The right-hand-side forcings are
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where g is the acceleration of gravity and f is the Coriolis parameter.

The integration in time of the discretized approximations to (1) is described in
Smolarkiewicz and Margolin (1993). The basic element of our nonoscillatory forward-in-
time (NFT) algorithm is the sign-preserving advection scheme MPDATA (Smolarkiewicz
1984). The use of two-time-level integration schemes is a departure for Eulerian global
atmospheric models where three-time-level or leapfrog schemes are traditionally used.
However two-time-level schemes are widely preferred in most other fields of computational
fluid dynamics. Some of the advantages of NFT schemes include a larger computational
time step, reduced memory usage, and less numerical dispersion. In addition, the
nonoscillatory property is crucial for preserving the sign of the layer thickness and of the
thermodynamic scalars, and further controls the nonlinear stability of the computations.
The model is implemented on a rotating sphere, and allows for arbitrary bottom
topography as well as a free surface on top of the layer. B

We have ported the model to the CM-5. It runs in data parallel mode, with the
horizontal dimensions being spread across processors. In a typical problem, the speed




(measured in Megaflops) depends on problem size. For 32 nodes, a problem with a 64x128
mesh yields performance equivalent to 0.5 CRAY YMP processors, whereas a problem with
256x512 nodes runs at a speed equivalent to 1.5 CRAY YMP processors.

The reduced grid that we have implemented is adapted from the work of Rasch (1994).
We use a sequence of nonoverlapping domains, where the number of grid points along™
circles of latitude decreases as one approaches the poles. The number of points from one
domain to the next decreases by multiples of two, both for accuracy of interpolation as
well as efficiency on the CM-5 architecture. One difference from Rasch (1994) is that the
minimum number of grid points at a given latitude that is allowed for the top domains
was fixed at 32 and not 4. This choice results both in increased accuracy and efficiency.
Initially the latitude at which the reduction occurred was chosen as suggested by Rasch
(1994); however sensitivity tests have revealed that the most accurate results occur
when the reductions occur only in the vicinity of the pole—with only a slight increase
in CPU time (with 2.8° resolution about 1 s for 7 days)—of a simulation being noted
with this strategy. For example, in a simulation with resolution of 2.8° resolution at
the equator three grids of 128x58x1, 64Xx4x2, and 32X4x2 are used to cover the globe
(see Fig. 1 for a visual representation of the reduced grid). The ghost points at the
top and bottom of each domain are simply interpolated values from other domains to
be used in the calculations of north-south derivatives within a given domain. We use
our NFT advection scheme for this interpolation, thus maintaining the positivity of the
height and thermodynamic fields (Smolarkiewicz and Grell, 1992) and preserving the -
overall second-order accuracy of the model. This interpolation does require some nonlocal
communrication. At present, no temporal interpolation is used between the meshes of the
reduced grid. The ratio between the time step required for the regular grid versus the
reduced grid ranges from 4 with 2.8° resolution to 50 with 0.35° resolution. Note that
as the resolution is increased in the nonreduced grid, the velocity field becomes more
finely resolved, and locally may exceed the maximum values found in the less resolved
solution. To ensure stability in such cases, the time step must be reduced by more than
a factor of 4 as we increase the nonreduced grid’s resolution from 0.7° to 0.35°—see Rasch
" (1994). We will demonstrate in section 4 that the nonlocal communication associated with
interpolation does not allow for a corresponding ratio of CPU time between the reduced
versus nonreduced grid on the CM5.
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Fig. 1 Upper left portion of reduced grid.




3. Shallow Water Test Problems and Model Setup

Shallow water is a useful testbed for evaluating and comparing numerical methods
that can be extended to fully three-dimensional global circulation models (GCMs).- Also,
shallow water layers can be stacked, and with the addition of a hydrostatic equation and
slight recoding of (1)-(2), can be extended to model fully three-dimensional flows (cf. Bleck
1984). Such models are termed isentropic in meteorology. As part of DOE’s CHAMMP
program, Williamson et al. (1992) have published a suite of seven test problems for shallow
water. One of these, the Rossby Haurwitz (RH) wave is particularly challenging, since it
represents an almost steady state flow that is a delicate balance of large and small spatial
scales. (When the free surface is replaced by a rigid lid, the solution is an exact steady
state.) The RH wave is also interesting because it represents the advection of a wave which
may be significantly damped if low-order forward-in-time methods are used (Smolarkiewicz
and Margolin, 1993). Thus, the use of a larger time step reduces the numerical dissipation
so that the reduced grid may perform as well or better than the regular grid.

Another test of the robustness of the reduced grid is a zonal flow over the pole. We
have modified Williamson’s standard test by the inclusion of a 6 km tall mountain in an
approximately 8 km depth fluid. The mountain is located on the north pole. Although the
mountain introduces an unsteady component into the problem, the flow is still relatively
balanced and little change of position of the height contours is noted during a simulation.
Unlike the RH wave in which dissipation errors dominate interpolation errors, interpolation
errors dominate this flow situation. Thus the total error in the reduced grid formulation
is found to be larger than in the nonreduced grid. Another source of error in the reduced
grid formulation is that the topography on the coarser meshes found near the pole is not
as well-resolved as in the nonreduced grid, potentially leading to additional differences
between the two solutions. Because analytic solutions are not known for either the RH

wave or the perturbed zonal-flow case, we have run high resolution simulations as a
~ standard for comparing the results from the nonreduced and reduced grid. Except for
timing statistics, all results are from simulations with 2.8° resolution at the equator. The
simulations were run for a period of 7 days with a time step of 160/40 s being used for the
reduced/nonreduced grid.

4. Results

4.1. Rossby-Haurwitz wave \
Since visual differences between the reduced grid and nonreduced grid are not
discernible, and the solutions have been published elsewhere (Smolarkiewicz and Margolin
1993, Fig. 2), we show only the L; and L error measures (see Fig. 2a) with respect
to the height of the shallow fluid as a function of time for the reduced and nonreduced
grids. These are the measures of error recommended by Williamson et al. (1992). Even
in the error comparisons, very little difference-is apparent—the errors associated with the
reduced grid are only slightly smaller than those of the nonreduced grid. A further test was
conducted in which the reduced grid’s time step was halved (160s to 80s) to determine the
sensitivity of the solution to numerical dissipation. As expected, the errors fall in between
those of the nonreduced grid and of the reduced grid that used a twice-larger time step.

Our original motivation for introducing the reduced grid was to improve
computational efficiency. Table 1 demonstrates that with 2.8° resolution the total CPU
time (total time is for one hour of simulated time) for the nonreduced grid (denoted by 2.8




in Table 1) and for the reduced grid (denoted by 2.8r in Table 1) are nearly equal. The
ratio increases to about 35 with 0.35° resolution. Hence, at least on the CM5, the bigger
gains in efficiency occur for the higher resolution grids. The main cause for the increasing
ratio with grid resolution is directly related to the ratio of time steps required for each
approach, which increases with decreasing resolution (see discussion at the end of section
2). Breaking down the total CPU time into four components, node CPU time, NEWS

or parallel communication (e.g., cshifts), Send/Get or nonparallel communication (e.g.,
interpolation), and other (e.g., communication between nodes and and program manager,
global sums, ect...) we observe that for the nonreduced grid the primary component is
NEWS; whereas for the reduced grid the primary component is Send/Get for the smaller
domains and on node calculations for the larger domains. In addition, the reduced grid
contains fewer grid points than the nonreduced grid, so that the amount of memory used
in the larger grids of the reduced mesh is somewhat less than that of the nonreduced mesh
(about 100 mb for a grid with 0.35° resolution).

Table 1
Resolution® Node CPU NEWS Send/Get Other Total
2.8 0.864 2.955 0.000 0.009 3.828
2.8r 0.984 1.807 2.552 0.216 5.559
1.4 8.684 26.504 0.000 0.052 35.240
1.4r 4.152 5.076 7.800 1.932 18.960
0.7 119.504 325.216 0.000 0.336 445.056
0.7t 18.22 15.248 20.880 7.056 61.408
0.35 2860.100 6914.200 0.000 4.300 9778.600
0.35r 116.944 54.764 . 51.326 50.060 73.09

4.2. Zonal Flow

Unlike the RH wave, visual differences are apparent between the solutions produced
by the reduced and nonreduced meshes for the perturbed zonal flow. Figs. 3a, 3b, and
3¢, show the numerical solutions for the reduced mesh, the nonreduced mesh, and a
high resolution simulation. Again we quantify the differences of these three solutions in
terms of the Ly and L, error measures (see Fig. 2b) of the thickness of the fluid. In
comparison with the errors of the RH wave, the absolute error levels for this case with
respect to the highly resolved simulation are smaller—the L error is about an order,
of magnitude smaller. Hence, as was noted in Smolarkiewicz and Margolin (1993) the
smaller error measures for this case suggest a less dissipative flow regime (due to numerical
discretization). The fact that the error measures for the reduced grid are greater than
the nonreduced grid also suggest that the main cause of these differences is due to errors
associated with the interpolation in the reduced grid.

As noted in section 2 a shallow-water model can be easily extended to include the
effects of baroclinicity in the atmosphere. To investigate whether adding additional layers,
and hence requiring additional interpolation will degrade the quality of the solution we
ran the zonal flow problem with 8 layers for both the reduced grid and the nonreduced
grid. Our analysis of the results of these runs indicate that adding additional layers to the
reduced grid model does not further degrade the solution with respect to the nonreduced
grid. In addition, the timing statistics suggest that as the number of levels in the vertical
increases, the efficiency of the reduced grid also increases, so that with 2.8° resolution and
64 layers the reduced grid is about 1.25 times faster than the nonreduced grid.
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Fig. 2 Time evolution of the error measures for the model configuration with 2.8°
resolution for the (a) Rossby-Haurwitz wave and for (b) Zonal Flow.
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5. Conclusions

We have described a numerical model for shallow flows on the sphere. We have
developed a reduced grid model to circumvent the time step constraints, and consequent
lack of efficiency associated with the convergence of meridians at the poles. At low
resolution we have shown that the use of the reduced grid is as accurate as the nonreduced
grid with about the same computational efficiéncy. The principal computational advantage
of the reduced grid is realized at higher resolutions, with the reduced grid being up
to 35 times faster than the nonreduced grid at a resolution of 0.35°. Due to faster
communication on machines like the Cray T90 or T3D we believe that the reduced grid
will lead to greater efficiency on these machines. Thus we conclude that the reduced grid
framework is a useful modification for general circulation models of the atmosphere and
ocean based on finite difference approximations.
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