

Multinomial Pattern Matching for High Range Resolution Radar Profiles

Melissa L. Koudelka, Ph.D.

John A. Richards, Ph.D.

Mark W. Koch, Ph.D.

Sensor Exploitation Applications
Sandia National Laboratories
Albuquerque, New Mexico

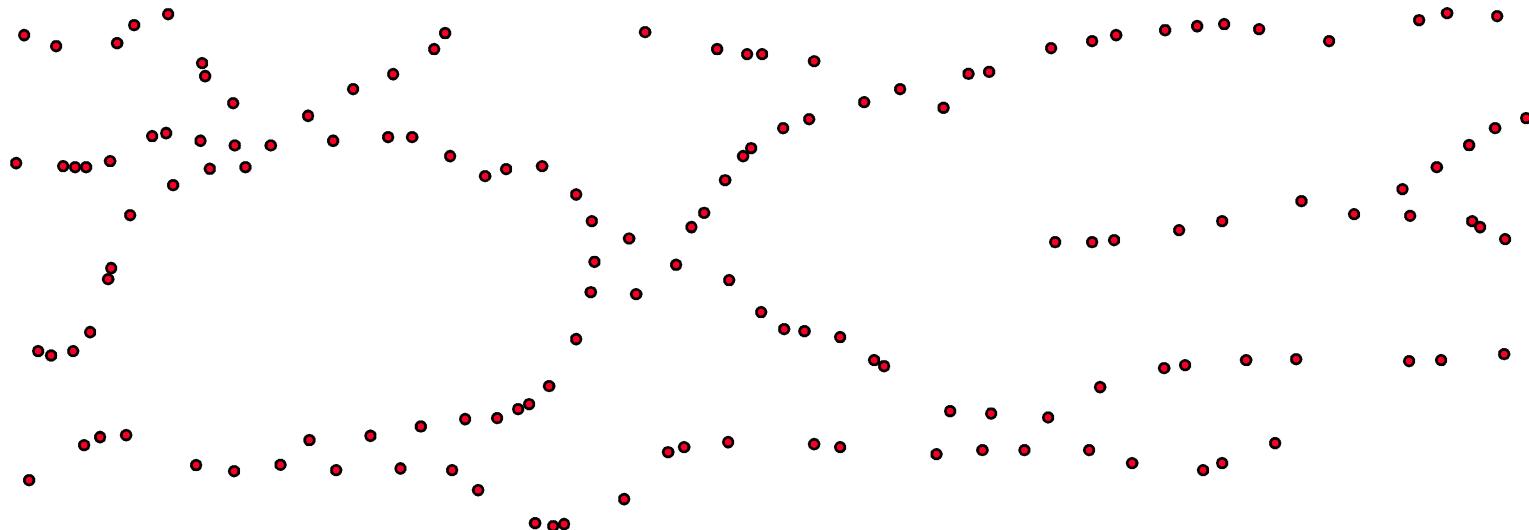
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.

Agenda

- Context
- Fingerprinter overview
- MPM algorithm details
- Tracklet-association scoring
- Discussion

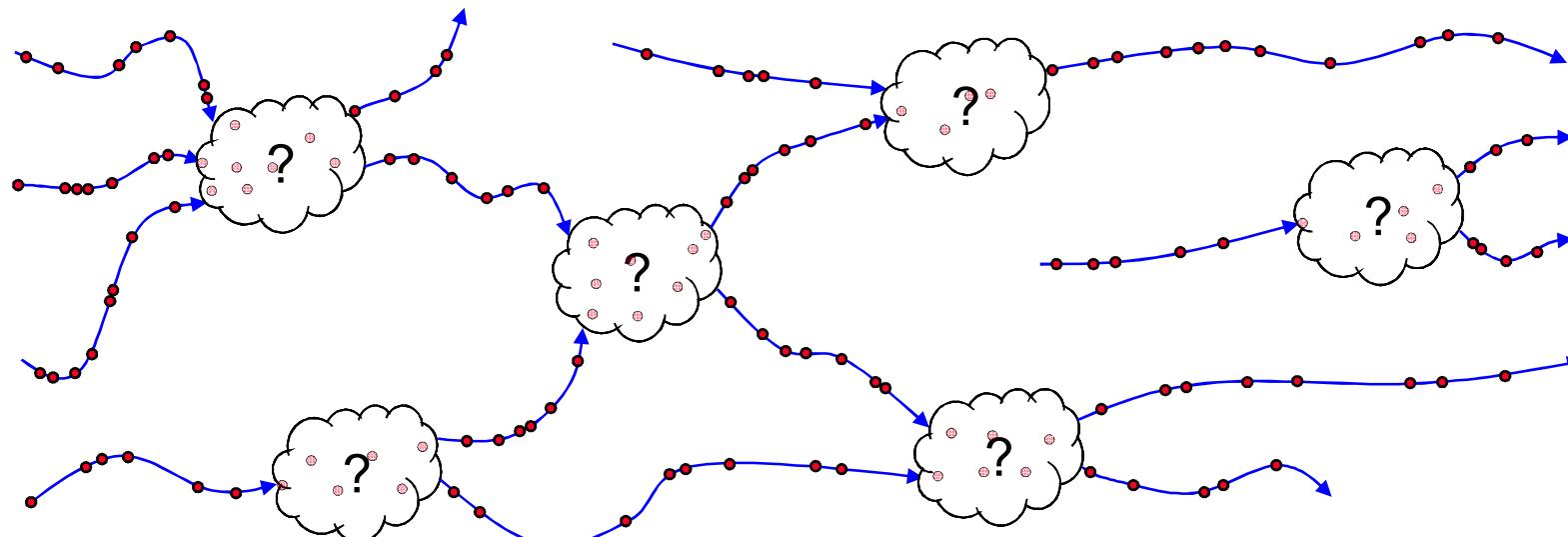
Target fingerprinting context

- Sensor resource manager (SRM):
 - Tells radar where to point and what collection mode to use (HRR/MTI/SAR)



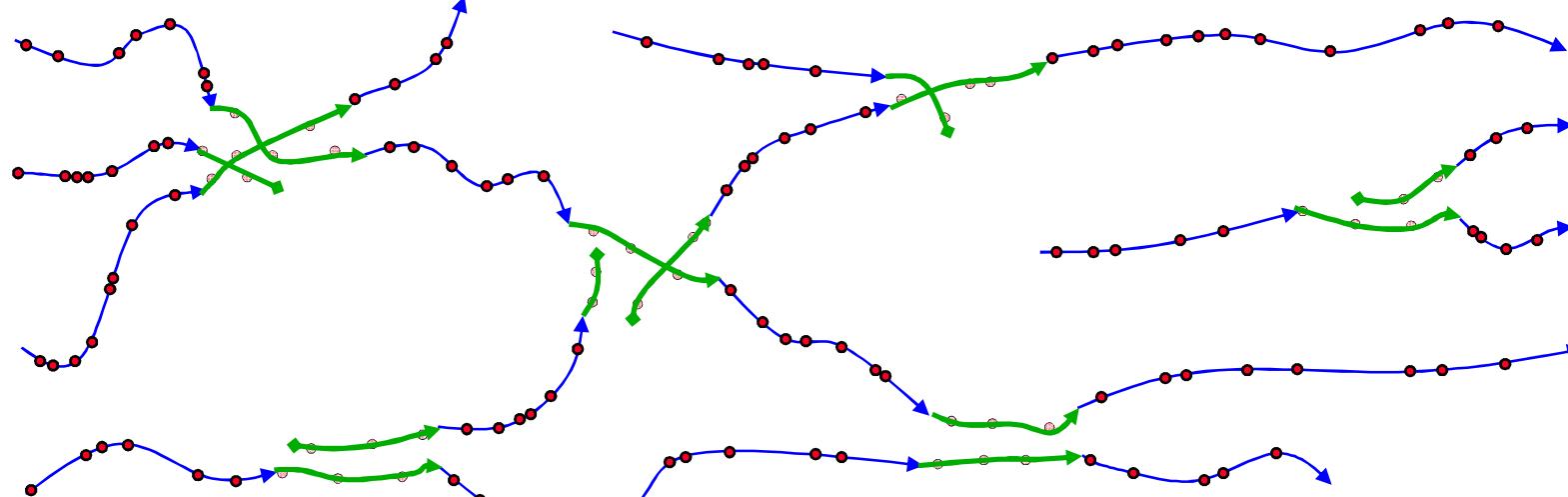
Target fingerprinting context

- Sensor resource manager (SRM):
 - Tells radar where to point and what collection mode to use (HRR/MTI/SAR)
- Feature-aided tracker (FAT):
 - Collects kinematically unambiguous measurements into tracklets

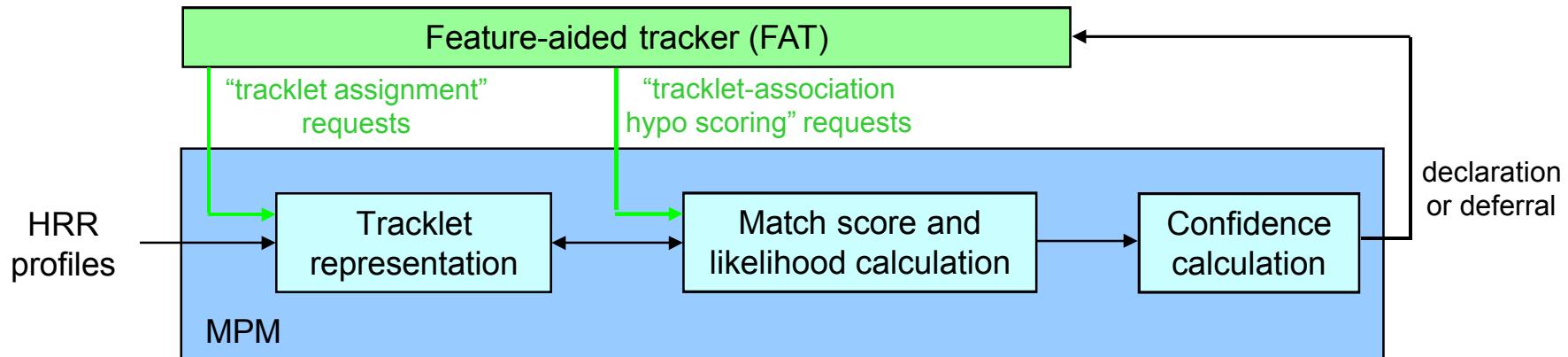


Target fingerprinting context

- Sensor resource manager (SRM):
 - Tells radar where to point and what collection mode to use (HRR/MTI/SAR)
- Feature-aided tracker (FAT):
 - Collects kinematically unambiguous measurements into tracklets
- Fingerprinter:
 - Uses tracklets' HRR profiles to resolve kinematic ambiguities, enable tracklet stitching



Fingerprinter overview

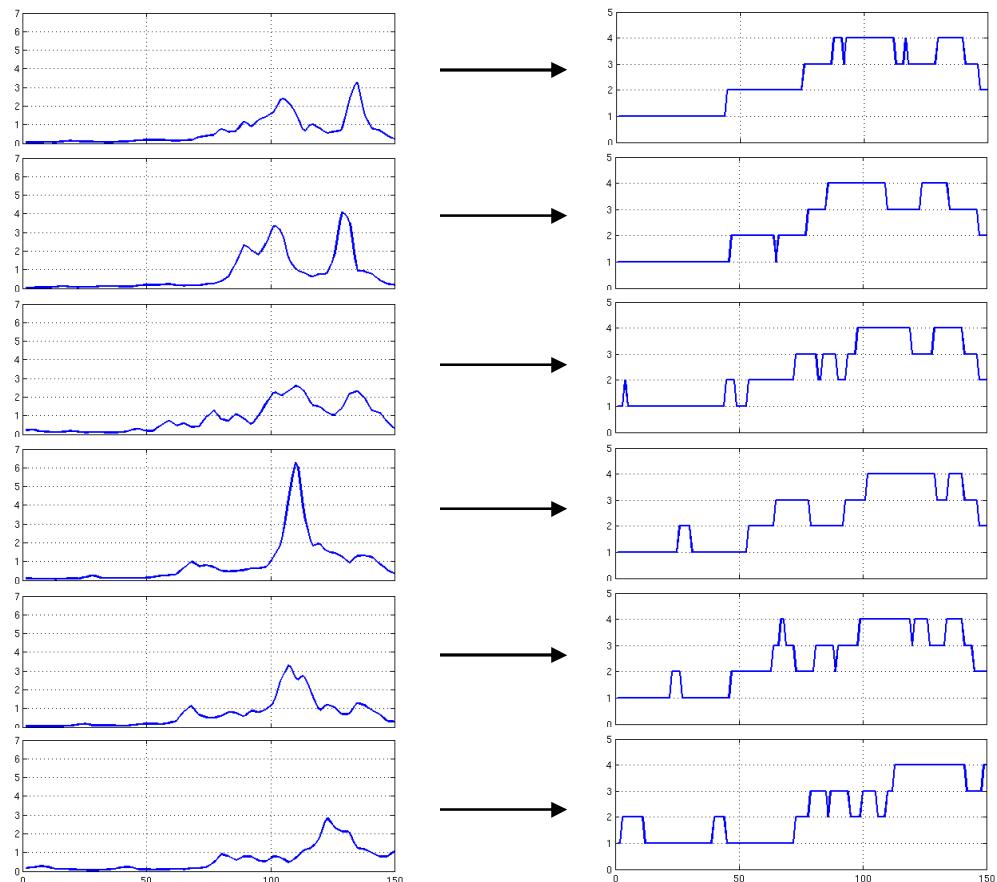


- Tracklet representations:
 - Compact, fixed-size representations of FAT-specified measurements
 - Incrementally updated whenever new data is available
- Match score and likelihood calculations:
 - Calculated on the fly for specific tracklet-association hypotheses when requested by FAT
 - Use most-recent incremental tracklet representations
- Confidence calculation:
 - Fusion of likelihoods to yield overall tracklet-association confidences and declaration/deferral

MPM signature stabilization: quantile transform

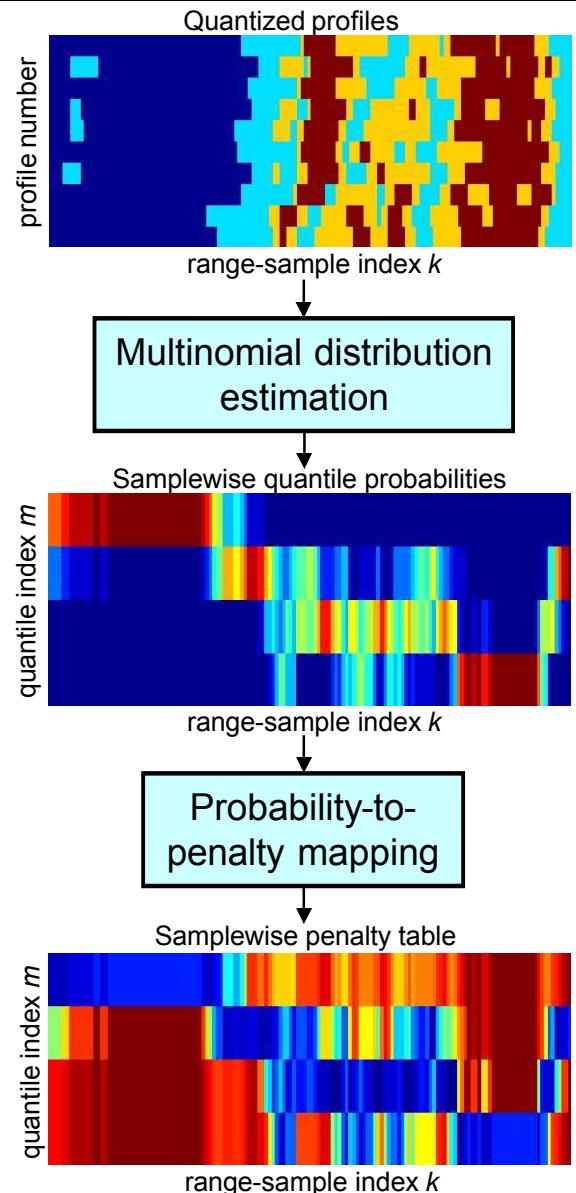
- Motivation:
 - Absolute amplitudes are fickle
 - Relative amplitudes are stable
 - Why waste effort trying to model absolute amplitude variation?
- Implementation of M -quantile transform:
 - Rank-order all N samples in profile in increasing order of amplitude
 - Samples 1 to N/M $\rightarrow q = 1$
 - Samples $(N/M + 1)$ to $2N/M$ $\rightarrow q = 2$
 - \vdots \vdots
 - Samples $((N - 1)/M + 1)$ to N $\rightarrow q = M$
- Effects:
 - Discards unreliable information
 - Preserves relevant information
 - Invariant to unknown/incorrect calibration
 - Enhances in-class stability
 - Facilitates statistical characterization

Example: 4-quantile transform (T72, 146°–154°)

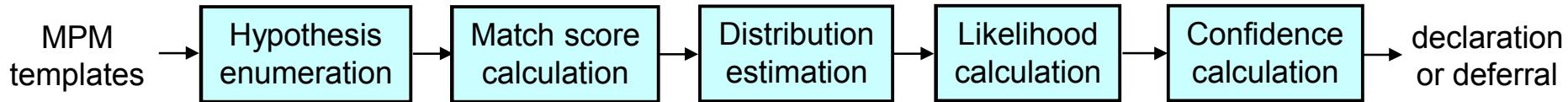


MPM template generation

- Model samplewise quantile distribution
 - Assume a multinomial distribution
 - Incrementally update as data becomes available
 - Maintain MPM template for each aspect bin
 - Hedge bets to avoid assigning probability values of 0 or 1
- Map samplewise probabilities to penalties
 - Used to score templates against each other
 - Smaller probabilities \leftrightarrow larger penalties
 - Normalized to zero mean, fixed variance
- Match score is sum of samplewise penalties
- In-class and out-of-class match-score distributions are separable
 - $s_{\text{in-class}} \sim N(0,1)$
 - In general, $s_{\text{out-of-class}} > s_{\text{in-class}}$



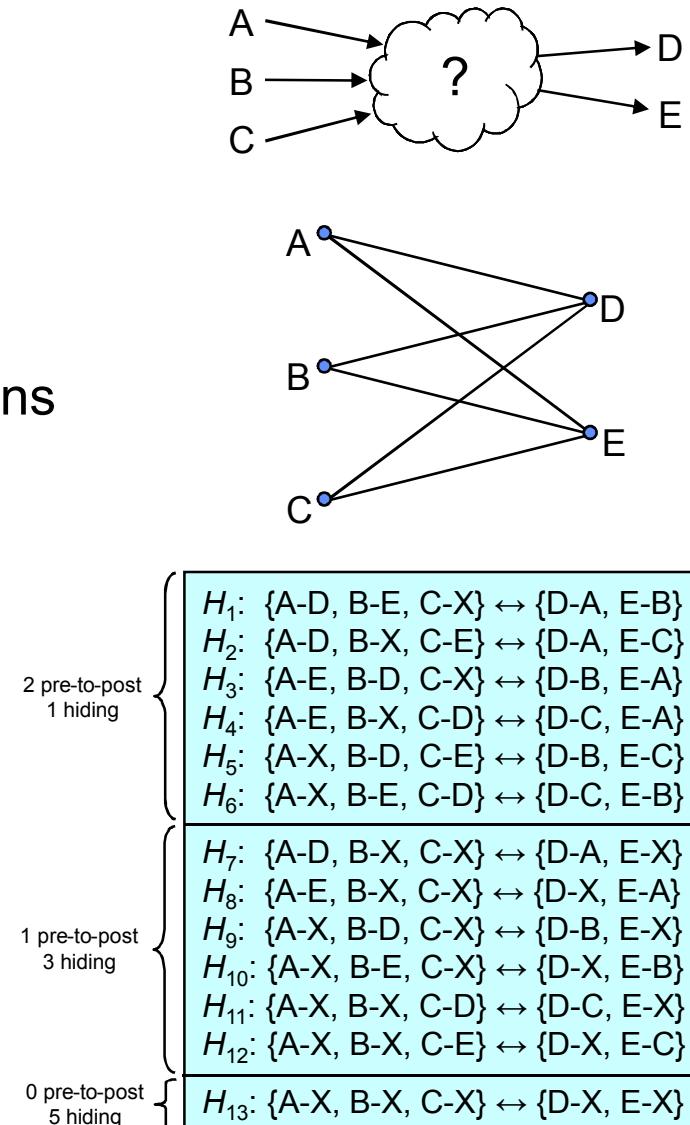
Tracklet association scoring



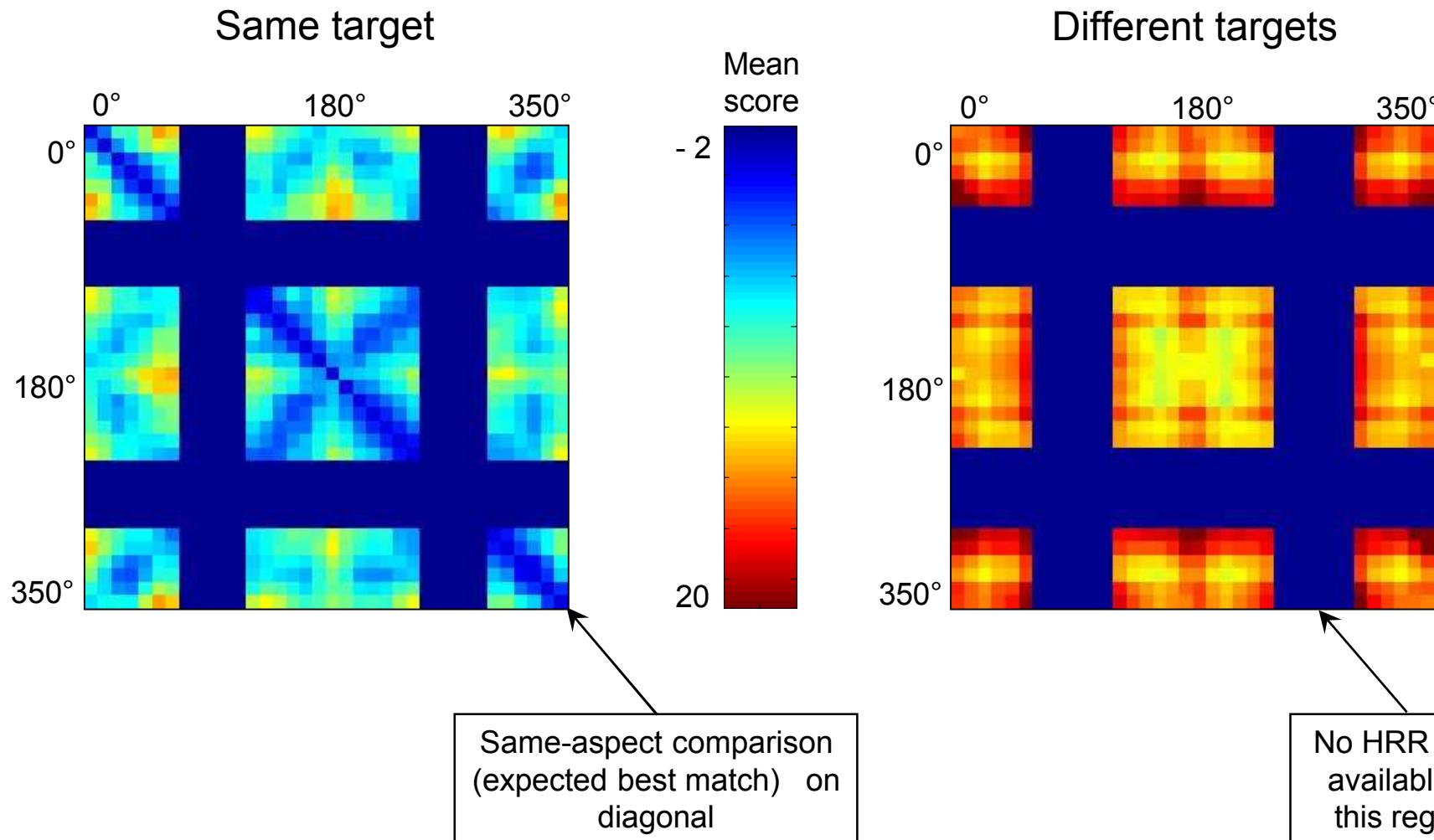
- Hypothesis enumeration
 - List all pre-ambiguity-to-post-ambiguity joint tracklet associations (including those with “hiding” vehicles)
- Match score calculation
 - Calculate match scores for each pairwise tracklet association
- Distribution estimation
 - Estimate in-class match-score distributions
 - Set out-of-class match-score distributions to generic null-class priors with user-specified offsets
- Likelihood calculation
 - Compare match scores to estimated match-score distributions to yield likelihoods
- Confidence calculation
 - Combine likelihoods to yield confidences for each hypothesis for each template type
 - Do things robustly to prevent arbitrarily bad matches from driving confidences
 - Combine hypothesis likelihoods from multiple sources to get tracklet-association confidences
 - Sort and threshold confidences to yield declaration or deferral

Tracklet association scoring: hypothesis enumeration

- Example:
 - Five tracklets
 - Three are pre-ambiguity; call them A, B, C
 - Two are post-ambiguity; call them D, E
- Six pairwise pre-to-post tracklet associations
 - A-D, A-E, B-D, B-E, C-D, C-E
- Five pairwise “hiding-target” pairings
 - A-X, B-X, C-X, D-X, E-X
- Thirteen joint association hypotheses
 - Six with 2 pre-to-post, 1 hiding
 - Six with 1 pre-to-post, 3 hiding
 - One with 0 pre-to-post, 5 hiding

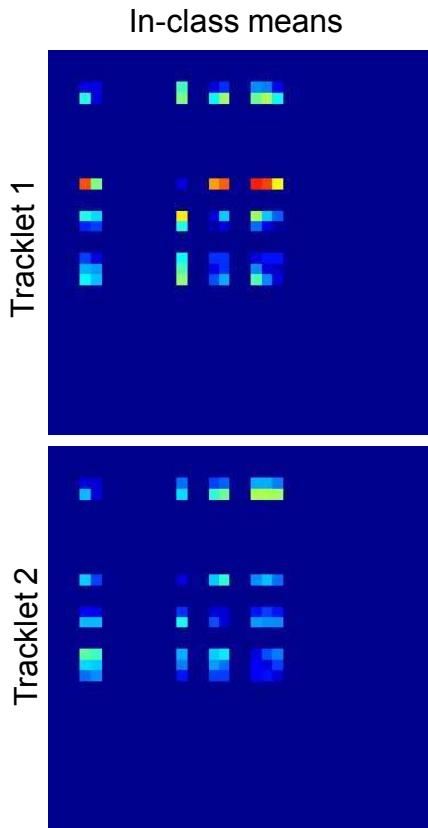
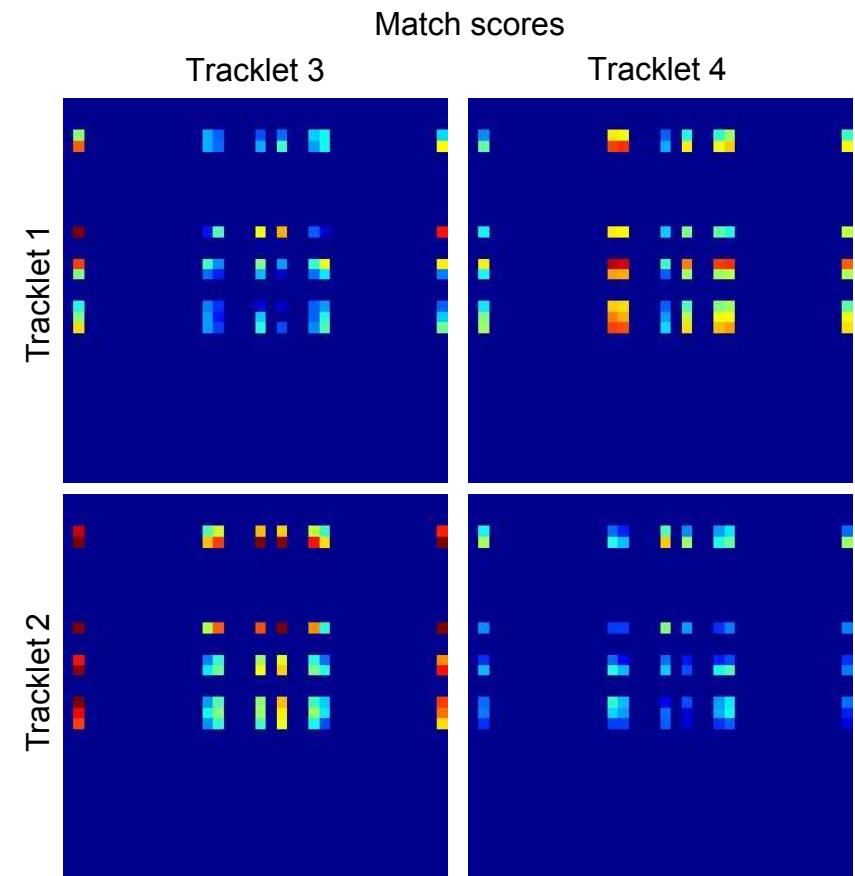


Example: MPM match scores by aspect



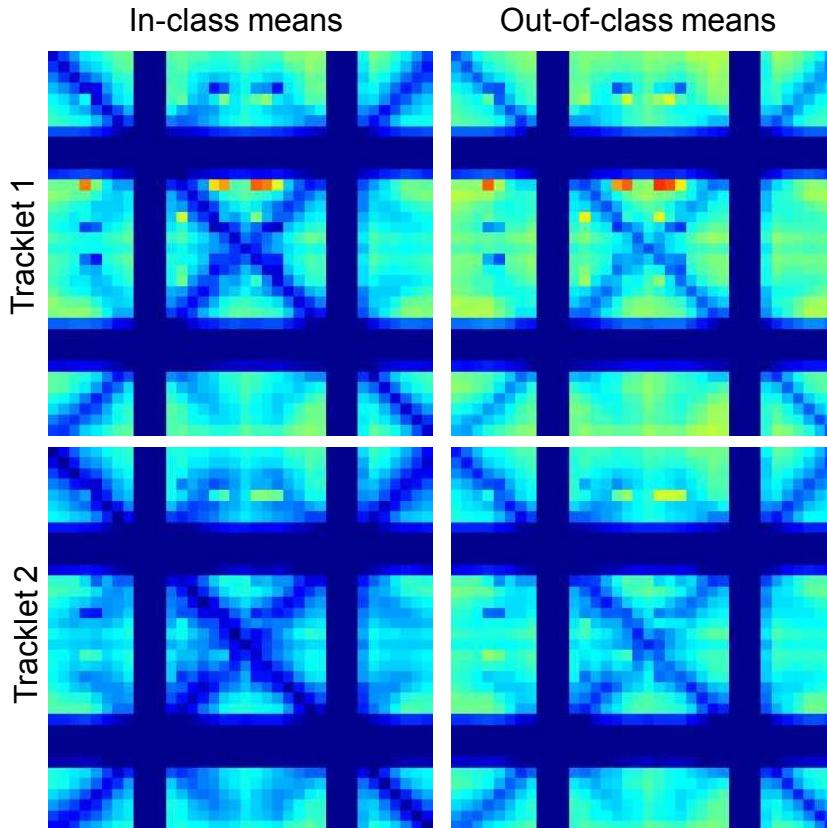
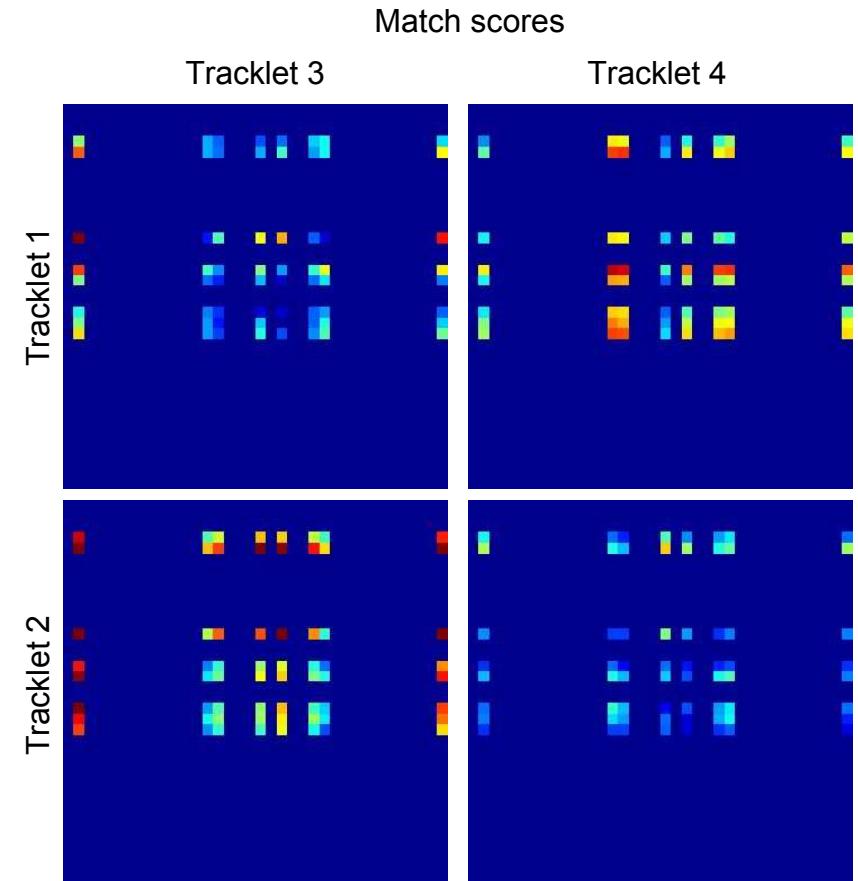
Example: in-class MPM means and match scores

- Simple example: two-in, two-out problem
 - Tracklets 1, 2 enter ambiguity
 - Tracklets 3, 4 exit ambiguity
 - Make pre-to-post-ambiguity assignment
- Calculate template-to-template MPM match scores for all pre-to-post tracklet pairs



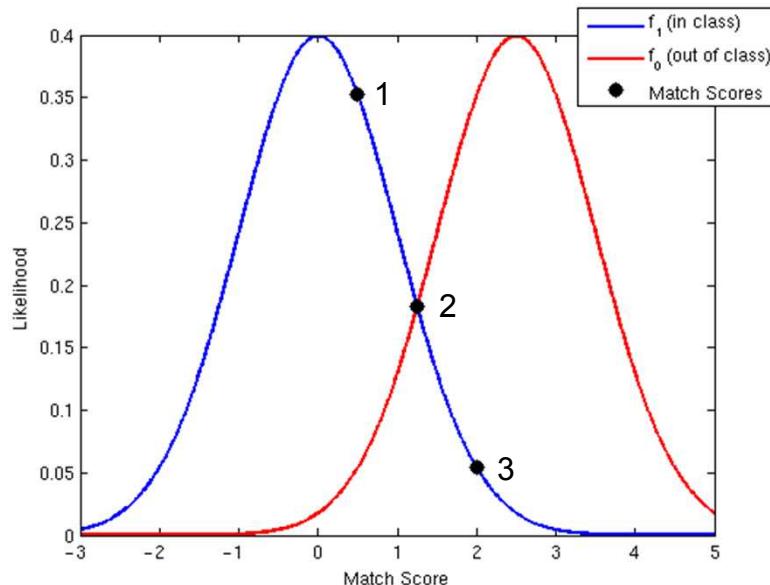
Example: in-class and out-of-class MPM means and match scores

- Incorporate generic in-class prior to interpolate full in-class grids
- Float generic out-of-class prior relative to in-class grid to yield out-of-class grids



Tracklet association scoring: likelihood calculation

- Get tracklet-association likelihoods by cross-comparing match scores with statistics
 - Model nominal in-class and out-of-class distributions as Gaussians
 - Add robustness and clip likelihoods by contaminating nominal Gaussian distributions
 - Average across aspect bins to get overall likelihood for MPM templates
- Get hypothesis likelihoods by combining pairwise tracklet-association likelihoods for all enumerated hypotheses



$$LLR = \log\left(\frac{f_1(x)}{f_0(x)}\right)$$

Point	Score	LLR
1	0.50	1.875
2	1.25	0
3	2.00	-1.875

Tracklet association scoring: confidence calculation

- Compare hypothesis likelihoods to yield hypothesis confidences for each stream

$$C_{\text{stream}}(H_i) = \frac{L_{\text{stream}}(H_i)}{\sum_{j=1}^{N_H} L_{\text{stream}}(H_j)}$$

- Compute pre-to-post confidence matrix from fused hypothesis confidences

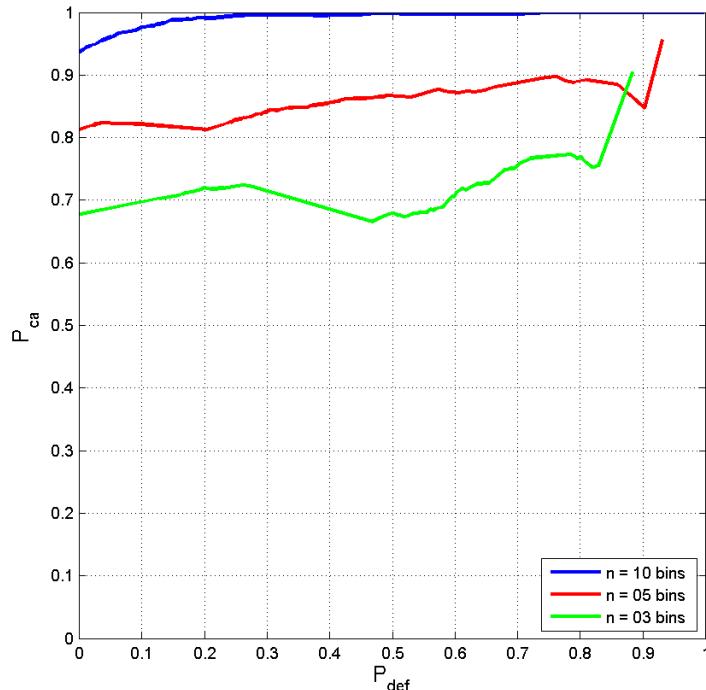
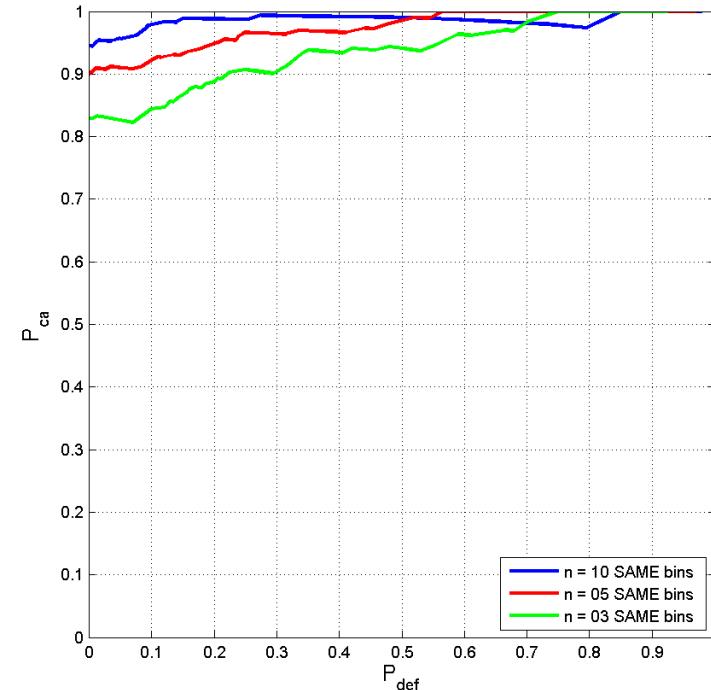
- C_{ij} is the confidence in assigning pre-tracklet i to post-tracklet j
- C_{i0} is the confidence in assigning pre-tracklet i to “hiding target”

		Post		
		3	4	null
Pre	1	C_{13}	C_{14}	C_{10}
	2	C_{23}	C_{24}	C_{20}

$$\sum_j C_{ij} = 1$$

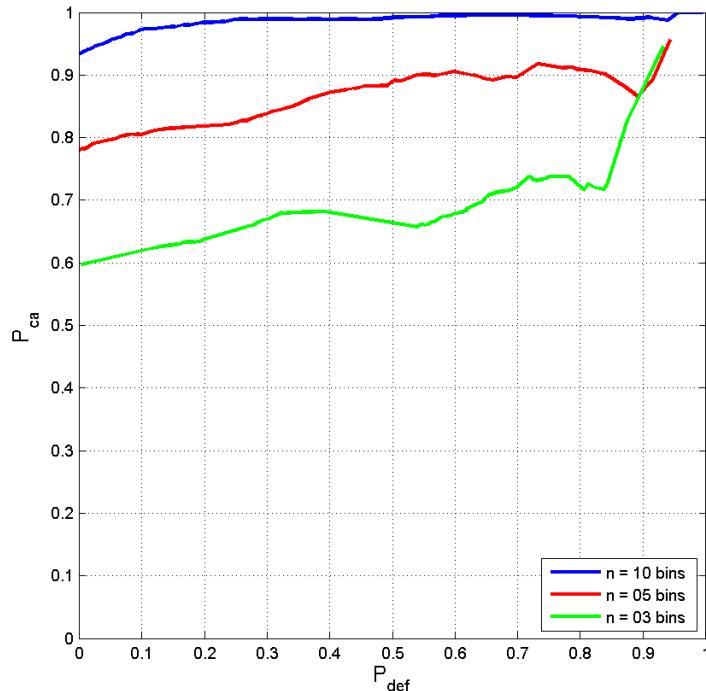
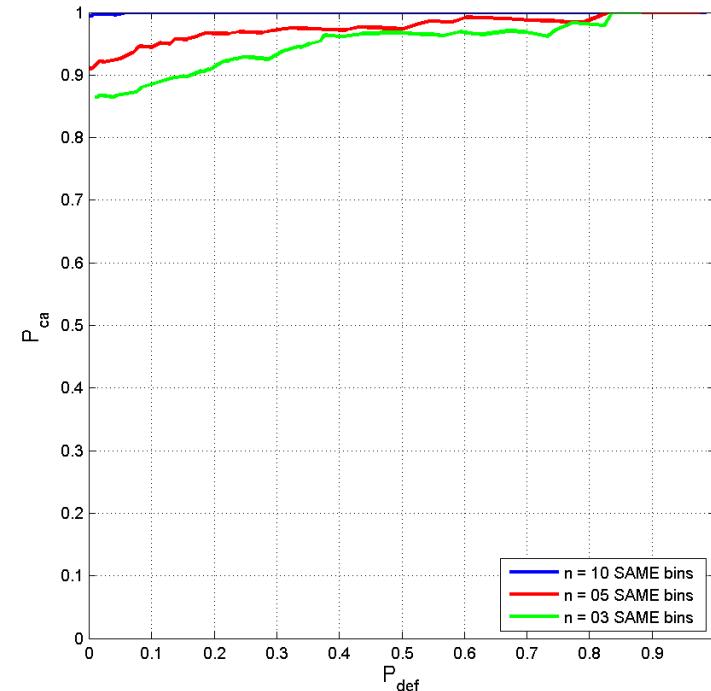
- Decision rule:
 - Make declaration if maximum confidence exceeds pre-selected threshold
 - Declaration can be “pre-ambiguity target is not present in post-ambiguity target set”
 - Defer if no confidence exceeds pre-selected threshold

MPM performance: baseline scenario



- Simple baseline scenario
 - 2-in, 2-out, no replacement, randomized targets
 - Profiles formed from publicly available MSTAR data for 10 targets
 - Data available in 3, 5, or 10 randomized aspect bins (6 profiles per bin)
 - Left plot: pre- and post-bins chosen independently; Right plot: pre- and post-bins identical
- Performance improves significantly with additional data or aspect consistency
- Bottom line: strong assignment capability even with only seconds of target observation

MPM performance: additional targets



- Same experiment with additional targets
 - 3-in, 3-out, no replacement, randomized targets
 - Profiles formed from publicly available MSTAR data for 10 targets
 - Data available in 3, 5, or 10 randomized aspect bins (6 profiles per bin)
 - Left plot: pre- and post-bins chosen independently; Right plot: pre- and post-bins identical
- Bottom line: performance does not degrade significantly in more complex scenarios

Summary

- Build in robustness to limited signature/feature variability
 - Limit impact of any individual observation on the overall match score
 - Limit in-class/out-of-class likelihood ratios by using contaminated distributions
- Model similarities within classes, not differences between classes
 - Learn specific in-class distributions
 - Use generic out-of-class distributions
 - Enable rejection of arbitrary out-of-class targets (e.g., “hiding vehicles”)
 - Essentially, ask “A or not A?”, “B or not B?” instead of “A or B?”

Sandia contacts

Sensor Exploitation Applications
Sandia National Laboratories
Albuquerque, New Mexico

Melissa L. Koudelka
mlkoude@sandia.gov
(505) 284-8843

John A. Richards
jaricha@sandia.gov
(505) 845-8229