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« Sensor resource manager (SRM):
— Tells radar where to point and what collection mode to use (HRR/MTI/SAR)
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» Sensor resource manager (SRM):
— Tells radar where to point and what collection mode to use (HRR/MTI/SAR)

» Feature-aided tracker (FAT):
— Collects kinematically unambiguous measurements into tracklets
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* Sensor resource manager (SRM):
— Tells radar where to point and what collection mode to use (HRR/MTI/SAR)
» Feature-aided tracker (FAT):
— Collects kinematically unambiguous measurements into tracklets
» Fingerprinter:
— Uses tracklets’ HRR profiles to resolve kinematic ambiguities, enable tracklet stitching
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Feature-aided tracker (FAT)

declaration
or deferral

HRR _ Tracklet . |  Match score and ,| Confidence
profiles representation likelihood calculation calculation

A

MPM

» Tracklet representations:
— Compact, fixed-size representations of FAT-specified measurements
— Incrementally updated whenever new data is available

« Match score and likelihood calculations:
— Calculated on the fly for specific tracklet-association hypotheses when requested by FAT
— Use most-recent incremental tracklet representations

» Confidence calculation:
— Fusion of likelihoods to yield overall tracklet-association confidences and declaration/deferral
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* Motivation: Example: 4-quantile transform (T72, 146°—154°)
— Absolute amplitudes are fickle

— Relative amplitudes are stable

— Why waste effort trying to model absolute
amplitude variation?

* Implementation of M-quantile transform:

— Rank-order all N samples in profile in
increasing order of amplitude

— Samples 1 to N'M — qg=1
— Samples (NIM + 1)to 2NIM — q =2

— Samples (N-1)/M+1)toN — q=M

» Effects:
— Discards unreliable information
— Preserves relevant information
— Invariant to unknown/incorrect calibration
— Enhances in-class stability
— Facilitates statistical characterization
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Quantized profiles

P

range-sample index k

* Model samplewise quantile distribution
— Assume a multinomial distribution
— Incrementally update as data becomes available
— Maintain MPM template for each aspect bin

— Hedge bets to avoid assigning probability values
of 0 or 1 Multinomial distribution
estimation

profile number

« Map samplewise probabilities to penalties
— Used to score templates against each other
— Smaller probabilities « larger penalties
— Normalized to zero mean, fixed variance

Samplewise quantile probabilities

quantile index m

|

range-sample index k

» Match score is sum of samplewise penalties

Probability-to-

. Ir]-class_and out-of-class match-score penalty mapping
distributions are separable _
Samplewise penalty table
- Sin-class ~ N(0’1)
- In general’ Sout—of—class > Sin-class
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MPM Hypothesis Match score | || Distribution | | Likelihood | || Confidence declaration
templates enumeration calculation | | estimation | | calculation calculation or deferral

Hypothesis enumeration
— List all pre-ambiguity-to-post-ambiguity joint tracklet associations (including those with “hiding” vehicles)

Match score calculation
— Calculate match scores for each pairwise tracklet association

Distribution estimation
— Estimate in-class match-score distributions
— Set out-of-class match-score distributions to generic null-class priors with user-specified offsets

Likelihood calculation
— Compare match scores to estimated match-score distributions to yield likelihoods

Confidence calculation
— Combine likelihoods to yield confidences for each hypothesis for each template type
— Do things robustly to prevent arbitrarily bad matches from driving confidences
— Combine hypothesis likelihoods from multiple sources to get tracklet-association confidences
— Sort and threshold confidences to yield declaration or deferral
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« Example: 3
— Five tracklets c—" E
— Three are pre-ambiguity; call them A, B, C
— Two are post-ambiguity; call them D, E A
D
» Six pairwise pre-to-post tracklet associations B
~ A-D, AE, B-D, B-E, C-D, C-E ) -
 Five pairwise “hiding-target” pairings | H: a0 BE CX) (DA EB)
H,: {A-D, B-X, C-E} < {D-A, E-C}
- A'X, B'X, C'X, D'X, E'X 2pre-to-post< H3Z {A-E, B-D, C-X}H{D-B, E-A}

1 hiding H,: {A-E, B-X, C-D} < {D-C, E-A}
Hg: {A-X, B-D, C-E} < {D-B, E-C}

» Thirteen joint association hypotheses > Zﬁ ii)é E)E( E)D(i:igi E)B(:
— Six with 2 pre-to-post, 1 hiding H; {A-E, B-X, C-X} <> {D-X, E-A}
— Six with 1 pre-to-post, 3 hiding e 3 | 1 (X, BE, G o (DX, E.B]
— One with 0 pre-to-post, 5 hiding A NCTECR= g Soier

-

0 pre-to-post{ H,s: {A-X, B-X, C-X} < {D-X, E-X}

5 hiding
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Same target Different targets

180°

350°

Same-aspect comparison No HRR data
(expected best match) on available in
diagonal this region
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' « Simple example: two-in, two-out problem

— Tracklets 1, 2 enter ambiguity
— Tracklets 3, 4 exit ambiguity
— Make pre-to-post-ambiguity assignment

» Calculate template-to-template MPM match scores for all pre-to-post tracklet pairs

Match scores
In-class means Tracklet 3 Tracklet 4

Tracklet 1
Tracklet 1

Tracklet 2
Tracklet 2
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* Incorporate generic in-class prior to interpolate full in-class grids

 Float generic out-of-class prior relative to in-class grid to yield out-of-class grids

Match scores
Tracklet 3 Tracklet 4

In-class means

Out-of-class means

Tracklet 1
Tracklet 1

Tracklet 2
Tracklet 2
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» Get tracklet-association likelihoods by cross-comparing match scores with statistics
— Model nominal in-class and out-of-class distributions as Gaussians
— Add robustness and clip likelihoods by contaminating nominal Gaussian distributions
— Average across aspect bins to get overall likelihood for MPM templates

» Get hypothesis likelihoods by combining pairwise tracklet-association likelihoods for
all enumerated hypotheses

—T, (in class)

1, (out of class)
0.35 ®  Match Scores X
LLR = log SHi(x)
03F il
Jo(x)
0.25
:;2 0.2 Point Score LLR
~ 015 1 0.50 1.875
- 2 1.25 0
3 2.00 -1.875
0.05

Match Score
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« Compare hypothesis likelihoods to yield hypothesis confidences for each stream

Lo (H,
Cstream (Hl) — v stream ( i )

2 Lusun (H)

J=1

« Compute pre-to-post confidence matrix from fused hypothesis confidences

— C; is the confidence in assigning Post
pre-tracklet j to post-tracklet j 3 4 nul
— C;, is the confidence in assigning 1l culculco

pre-tracklet j to “hiding target”

Pre

Y C, =1
J

2 | Cos | Cyy | Cyo

» Decision rule:
— Make declaration if maximum confidence exceeds pre-selected threshold
— Declaration can be “pre-ambiguity target is not present in post-ambiguity target set”
— Defer if no confidence exceeds pre-selected threshold
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« Simple baseline scenario

— 2-in, 2-out, no replacement, randomized targets

L | L 1 L 1 | T
0 0.1 02 03 04 05 0.6 07 08 09 1
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I T

— Profiles formed from publicly available MSTAR data for 10 targets
— Data available in 3, 5, or 10 randomized aspect bins (6 profiles per bin)
— Left plot: pre- and post-bins chosen independently; Right plot: pre- and post-bins identical

T
07 08 09

« Performance improves significantly with additional data or aspect consistency

« Bottom line: strong assignment capability even with only seconds of target observation
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« Same experiment with additional targets
— 3-in, 3-out, no replacement, randomized targets
— Profiles formed from publicly available MSTAR data for 10 targets
— Data available in 3, 5, or 10 randomized aspect bins (6 profiles per bin)
— Left plot: pre- and post-bins chosen independently; Right plot: pre- and post-bins identical

» Bottom line: performance does not degrade significantly in more complex scenarios
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* Build in robustness to limited signature/feature variability
— Limit impact of any individual observation on the overall match score

— Limit in-class/out-of-class likelihood ratios by using contaminated
distributions

* Model similarities within classes, not differences between classes
— Learn specific in-class distributions
— Use generic out-of-class distributions
— Enable rejection of arbitrary out-of-class targets (e.g., “hiding vehicles”)
— Essentially, ask “A or not A?”, “B or not B?” instead of “A or B?”
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