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Agenda

• Context

• Fingerprinter overview

• MPM algorithm details

• Tracklet-association scoring

• Discussion
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Target fingerprinting context

• Sensor resource manager (SRM):

– Tells radar where to point and what collection mode to use (HRR/MTI/SAR)
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Target fingerprinting context

• Sensor resource manager (SRM):

– Tells radar where to point and what collection mode to use (HRR/MTI/SAR)

• Feature-aided tracker (FAT):

– Collects kinematically unambiguous measurements into tracklets

• Fingerprinter:

– Uses tracklets’ HRR profiles to resolve kinematic ambiguities, enable tracklet stitching
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Fingerprinter overview

• Tracklet representations:
– Compact, fixed-size representations of FAT-specified measurements

– Incrementally updated whenever new data is available

• Match score and likelihood calculations:
– Calculated on the fly for specific tracklet-association hypotheses when requested by FAT

– Use most-recent incremental tracklet representations

• Confidence calculation:
– Fusion of likelihoods to yield overall tracklet-association confidences and declaration/deferral

MPM

Feature-aided tracker (FAT)

Confidence 
calculation

Tracklet
representation

HRR
profiles

Match score and 
likelihood calculation

declaration
or deferral

“tracklet assignment” 
requests

“tracklet-association 
hypo scoring” requests
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MPM signature stabilization:
quantile transform

• Motivation:

– Absolute amplitudes are fickle

– Relative amplitudes are stable

– Why waste effort trying to model absolute 
amplitude variation?

• Implementation of M-quantile transform:

– Rank-order all N samples in profile in 
increasing order of amplitude

– Samples 1 to N/M → q = 1

– Samples (N/M + 1) to 2N/M → q = 2

– Samples ((N – 1)/M + 1) to N → q = M

• Effects:

– Discards unreliable information

– Preserves relevant information

– Invariant to unknown/incorrect calibration

– Enhances in-class stability

– Facilitates statistical characterization

Example: 4-quantile transform (T72, 146°–154°)

… …
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MPM template generation

• Model samplewise quantile distribution
– Assume a multinomial distribution

– Incrementally update as data becomes available

– Maintain MPM template for each aspect bin

– Hedge bets to avoid assigning probability values 
of 0 or 1

• Map samplewise probabilities to penalties
– Used to score templates against each other

– Smaller probabilities ↔ larger penalties

– Normalized to zero mean, fixed variance

• Match score is sum of samplewise penalties

• In-class and out-of-class match-score 
distributions are separable
– sin-class ~ N(0,1)

– In general, sout-of-class > sin-class

Multinomial distribution 
estimation

Probability-to-
penalty mapping

range-sample index k
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Tracklet association scoring

• Hypothesis enumeration
– List all pre-ambiguity-to-post-ambiguity joint tracklet associations (including those with “hiding” vehicles)

• Match score calculation
– Calculate match scores for each pairwise tracklet association 

• Distribution estimation
– Estimate in-class match-score distributions
– Set out-of-class match-score distributions to generic null-class priors with user-specified offsets

• Likelihood calculation
– Compare match scores to estimated match-score distributions to yield likelihoods

• Confidence calculation
– Combine likelihoods to yield confidences for each hypothesis for each template type
– Do things robustly to prevent arbitrarily bad matches from driving confidences
– Combine hypothesis likelihoods from multiple sources to get tracklet-association confidences
– Sort and threshold confidences to yield declaration or deferral

declaration
or deferral

Confidence
calculation

Likelihood
calculation

Distribution
estimation

Match score
calculation

MPM
templates

Hypothesis
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Tracklet association scoring:
hypothesis enumeration

• Example: 

– Five tracklets

– Three are pre-ambiguity; call them A, B, C

– Two are post-ambiguity; call them D, E 

• Six pairwise pre-to-post tracklet associations

– A-D, A-E, B-D, B-E, C-D, C-E

• Five pairwise “hiding-target” pairings

– A-X, B-X, C-X, D-X, E-X

• Thirteen joint association hypotheses

– Six with 2 pre-to-post, 1 hiding

– Six with 1 pre-to-post, 3 hiding

– One with 0 pre-to-post, 5 hiding 

A

B

C

D

E

?
A

B

C

D

E

H1:  {A-D, B-E, C-X} ↔ {D-A, E-B}
H2:  {A-D, B-X, C-E} ↔ {D-A, E-C}
H3:  {A-E, B-D, C-X} ↔ {D-B, E-A}
H4:  {A-E, B-X, C-D} ↔ {D-C, E-A}
H5:  {A-X, B-D, C-E} ↔ {D-B, E-C}
H6:  {A-X, B-E, C-D} ↔ {D-C, E-B}

H7:  {A-D, B-X, C-X} ↔ {D-A, E-X}
H8:  {A-E, B-X, C-X} ↔ {D-X, E-A}
H9:  {A-X, B-D, C-X} ↔ {D-B, E-X}
H10: {A-X, B-E, C-X} ↔ {D-X, E-B}
H11: {A-X, B-X, C-D} ↔ {D-C, E-X}
H12: {A-X, B-X, C-E} ↔ {D-X, E-C}

H13: {A-X, B-X, C-X} ↔ {D-X, E-X}

2 pre-to-post
1 hiding

1 pre-to-post
3 hiding

0 pre-to-post
5 hiding
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Example: MPM match scores by aspect
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Example: in-class MPM 
means and match scores

• Simple example: two-in, two-out problem
– Tracklets 1, 2 enter ambiguity

– Tracklets 3, 4 exit ambiguity

– Make pre-to-post-ambiguity assignment

• Calculate template-to-template MPM match scores for all pre-to-post tracklet pairs
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Example: in-class and out-of-class 
MPM means and match scores

• Incorporate generic in-class prior to interpolate full in-class grids

• Float generic out-of-class prior relative to in-class grid to yield out-of-class grids
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Tracklet association scoring:
likelihood calculation

• Get tracklet-association likelihoods by cross-comparing match scores with statistics 

– Model nominal in-class and out-of-class distributions as Gaussians

– Add robustness and clip likelihoods by contaminating nominal Gaussian distributions

– Average across aspect bins to get overall likelihood for MPM templates

• Get hypothesis likelihoods by combining pairwise tracklet-association likelihoods for 
all enumerated hypotheses
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Tracklet association scoring:
confidence calculation

• Compare hypothesis likelihoods to yield hypothesis confidences for each stream

• Compute pre-to-post confidence matrix from fused hypothesis confidences

– Cij is the confidence in assigning 
pre-tracklet i to post-tracklet j

– Ci0 is the confidence in assigning 
pre-tracklet i to “hiding target”

• Decision rule:

– Make declaration if maximum confidence exceeds pre-selected threshold

– Declaration can be “pre-ambiguity target is not present in post-ambiguity target set”

– Defer if no confidence exceeds pre-selected threshold
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MPM performance: baseline scenario

• Simple baseline scenario
– 2-in, 2-out, no replacement, randomized targets

– Profiles formed from publicly available MSTAR data for 10 targets

– Data available in 3, 5, or 10 randomized aspect bins (6 profiles per bin)

– Left plot: pre- and post-bins chosen independently; Right plot: pre- and post-bins identical

• Performance improves significantly with additional data or aspect consistency

• Bottom line: strong assignment capability even with only seconds of target observation
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MPM performance: additional targets

• Same experiment with additional targets

– 3-in, 3-out, no replacement, randomized targets

– Profiles formed from publicly available MSTAR data for 10 targets

– Data available in 3, 5, or 10 randomized aspect bins (6 profiles per bin)

– Left plot: pre- and post-bins chosen independently; Right plot: pre- and post-bins identical

• Bottom line: performance does not degrade significantly in more complex scenarios
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Summary

• Build in robustness to limited signature/feature variability

– Limit impact of any individual observation on the overall match score

– Limit in-class/out-of-class likelihood ratios by using contaminated 
distributions

• Model similarities within classes, not differences between classes

– Learn specific in-class distributions

– Use generic out-of-class distributions

– Enable rejection of arbitrary out-of-class targets (e.g., “hiding vehicles”)

– Essentially, ask “A or not A?”, “B or not B?” instead of “A or B?”
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