SAND2007-1986C

G-Space: A Linear Time Graph Layout

Brian Wylie, Jeffrey Baumes, and Timothy M. Shead

Abstract - We describe G-Space (Geodesic Space), a straightforward linear time layout algorithm that draws undirected graphs
based purely on their topological features. The algorithm is divided into two phases. The first phase is an embedding of the graph
into a 2-D plane using geodesic distances as coordinates. These coordinates are computed with the same process used by HDE
(High-Dimensional Embedding) algorithms. In our case we do a Low-Dimensional Embedding (LDE), and directly map the geodesic
distances into a two dimensional geometric space. The second phase is the resolution of the many-to-one mappings that frequently
occur within the low dimensional embedding. The resulting layout appears to have advantages over existing methods: it can be
computed rapidly, and it can be used to answer topological questions quickly and intuitively.

Index Terms: Graph layout, graph drawing, graph visualization, graphs and networks, information visualization.

1 INTRODUCTION

Graph drawing is an active area of research and has been well
studied for many years. There are many approaches to graph layout
including force-directed, multi-level hierarchies, High Dimensional
Embedding (HDE), and topological feature-based methods. Further,
combinations of these techniques have been demonstrated, including
the excellent visual results of [1].

Our proposed approach to graph layout is primarily motivated by
the desire to provide a ‘real time’ layout capability for fluid user
interaction and rapid feedback. Terabyte-sized relational databases
are now common place, and graphs are often implicitly embedded in
them. A single database may contain a countless number of graphs
through combining information in various ways. Specifically, the use
case we want to support is layouts applied to interactive database
queries (give me all the emails in the Enron database between
September and December, for instance). The user may make many
such queries and for graph layout to be useful in this context the
result set must be laid out and displayed within seconds.

A second motivation is to provide more explicit topological
information to the user. Often layouts of highly connected graphs
may obfuscate straight forward questions such as...

- Which vertices have a direct connection to the query vertex?

- How many ‘hops’ (topologically) does it take to get from one
vertex to another?

- Is a vertex ‘closer’ (geodesically) to this vertex or that vertex?

- What is the shortest path between two vertices, what are the nth
shortest paths?

Or course in the real world, the questions above will be more
specific and targeted, “Show me anyone that has had either direct or
indirect exchange with Person X in the last 30 days”.

We believe our approach successfully satisfies both motivations
and conveys clear topological information about complex graphs in
linear time. We discuss the specific details of the G-Space layout,
and compare both the visual quality and performance of G-Space
with other popular layout algorithms. As with any approach there are
some limitations to G-Space (namely the many-to-one mapping that
occur within the LDE), so we discuss the approaches we used to
mitigate these issues.

The G-Space layout algorithm makes extensive use of the Titan
Informatics Toolkit [2]. Titan is a Sandia National Laboratories
project that combines information visualization with scientific
visualization within the VTK framework.

Brian Wylie: Sandia National Laboratories, bnwylie@sandia.gov
Jeff Baumes: Kitware, Inc., jeff.baumes@kitware.com
Timothy M. Shead: Sandia National Laboratories, tshead@sandia.gov

2 RELATED WORK

Force-directed layouts have become the mainstay of graph layout
algorithms [3]. The force-directed algorithm simulates the forces of a
system where adjacent vertices are connected with springs, and the
energy of the system is decreased over time until the system
stabilizes. Although it often produces pleasing results on small
graphs, simple force-directed placement is often impractical for large
graphs due to its algorithmic complexity. Also, given the nature of
the vertex placement, force directed layout can sometime be difficult
to interpret. Notably, the areas of greatest interest (high vertex or
edge concentration) are often the least interpretable. In spite of its
shortcomings, the force-directed approach has been the foundation
on which many graph layout algorithms have been built.

The Graph Drawing with Intelligent Placement algorithm (GRIP)
is one of the algorithms based on the force-directed approach [4].
GRIP first produces a sequence of vertex sets with decreasing size
from V to Vk, where Vk = 3. The set Vk is placed deterministically
based on the relative geodesic positions among the three vertices.
GRIP places additional vertices in Vk-1 based on their positions
relative to each other then performs a force-directed layout on the
added vertices. This process continues until all vertices have been
placed. This algorithm has efficient runtimes in practice.

The high-dimensional embedding (HDE) algorithm is a recent
advancement in graph layout strategies [5]. HDE first extracts m
graph vertices with high distance from each other. The vertices are
given an m-dimensional coordinate, where each coordinate value
represents the distance from one vertex to another. The algorithm
extracts the principal components of this high-dimensional space in
order to reduce the dimensionality to two or three dimensions for
placing the vertices. HDE is a very fast algorithm whose core
involves only m linear breadth-first searches. The layout procedure is
however prone to producing long, thin graphs, especially when
performed on trees or tree-like graphs [1].

The Algebraic multigrid Computation of Eigenvectors (ACE)
layout algorithm relies heavily on matrix computations to produce
the layout [6]. This procedure iteratively coarsens the graph, and
then projects the graph using the eigenvectors of the graph’s
Laplacian representation. The eigenvectors of the coarse graph are
used as the initial solutions to the coarser graph, resulting in rapid
convergence.

FM3 is another algorithm based on force directed layout [7]. The
algorithm reduces the quadratic nature of the force directed
technique by coarsening the graph into a hierarchy of fixed-diameter
graphs. During refinement, the repulsive forces, which normally
take quadratic time to compute, instead are computed in O(N log N)
time with an efficient quad tree structure.



TopoLayout is a new layout approach which combines many of
the algorithms described above, along with simple tree and clique
layout strategies [1].  Using detection algorithms including
connected components, tree, and clique detection, TopoLayout is
able to classify regions of the graph and apply the best layout
algorithm to each region.

3 APPROACH

Our graph layout approach appears to be suitable for analyzing graph
structures on multiple scales under various use cases; it can be used
to visualize extremely large graphs representing a database of
relationships in its entirety, or it can be used to show the results of a
targeted point-to-point query (e.g. Kevin Bacon query). The first
phase of our approach was originally inspired by the point-to-point
case so we’ll begin our explanation there.

31 LDE (Low Dimensional Embedding)

Clearly, LDE is a play on the term HDE (High Dimensional
Embedding) and we adopted it in homage of the work done by [5].
When we started our work, we were not yet familiar with HDE and
were only interested in two dimensional embeddings. Our work was
motivated by the following use case: given a database containing a
large social network, a user wishes to see the ‘meta-relationship’
(shortest path, types of relationships along the shortest path,
identified critical links, etc) between two individuals. Thus the LDE
process is essentially HDE with two pivot points. Assume the graph
shown in Figure 1:

o
Jane Flo
Martha  C'M o
Bubbles
o) o ®
Sally Joe
Fred
Jeff ® Tonk
()
Fig. 1. Example email network.
42 @
Jane Flo
Cem 32.@
: _.l‘vlartha 23
G A 22 Bubbles
® ) ® 31
Fred J
Sally oe
1,4
Jel;f1. Tonk
+™
T 400@
*

Fig. 2. Giving geodesic coordinates to the graph vertices based on
their distance from pivot points.

The user wishes to display the meta-relationship between two
vertices ‘Martha’ and ‘Tonk’. The LDE process selects those two
vertices as pivot points and conducts a breadth-first search from
each. Every vertex now has an associated two-tuple containing its
geodesic distance from each of the two pivot points. Using these
geodesic tuples we simply map each vertex into two dimensional
geometric space as shown in Figure 3:

Marthal Fred
Clem Flo
De 3 () —@
Sally
Jan
J @ o
°¢1 " [ Bubbles
l‘.
Jeﬁ\[— Tonk
@
3
D91

Fig. 3. Direct mapping of geodesic coordinates into two dimensional
space.

You can see from Figures 2 and 3 that the ‘Jeff” and ‘Bubbles’
vertices both have a geodesic coordinate of 3,1 (a many-to-one
mapping in the embedding process). Where HDE resolves these
many-to-one mappings using higher dimensions and principle
components analysis (PCA), LDE accepts the many-to-one mappings
and resolves them using a different technique (see section 3.3). The
advantage to this approach is that there is no need to run 50 or 100
breadth-first searches (BFS), embed the graph into a 100
dimensional space, do a PCA, compute projections with maximal
variance and then project down to two dimensions.

The simplicity of the low dimensional embedding exposes many
interesting geometric properties within the layout, as shown in
Figures 4 — 7:

Martha
Dgz

Fig. 4. The geodesic embedding ensures that the shortest path
between the pivot points is guaranteed to be along the dashed green
line. Longer paths form ‘arcs’ into the positive quadrant.

I Fred K4
—— *
Martha ‘ o°
Clem | o¢* Flo
Dg2 O—0—>—@
Sally %'
..’ ® Jan
Jot [ _Bubbles
o (a®
" (s
’." Jefﬁ Tonk
.
()
0.‘
Dg1

Fig. 5. The dark blue line represents geodesic equidistance between
the pivot points. ‘Flo’ has a shorter path to ‘Tonk’ than to ‘Martha’
simply based on this geometric property.



*
I‘o‘ Fred
Mart‘m’ ‘
K¢ Clem Flo
B2 o— —@
M Sally ‘ o
Jan K4
Joeo—o .
L Bubbles K¢
50 B
( [\ K
R *
Jeff Tqmk
*
o
Dgﬂ 0‘.

Fig. 6. The distance from a vertex to a pivot vertex can never be
greater than its distance to the other pivot vertex + the shortest path
between the pivots. Thus, the two dark blue lines mark the
‘boundaries’ of the layout.

Tonk Jeff Joe Martha
..........,-/.\._..-..._.-...........‘......
2 BubbleS g :

Jane

Sally

Clem Fred

Flo.

Fig.7. If the diagram is rotated 135 degrees clockwise, the shortest
path will be along the top and geodesic equidistance is the vertical line
in the center.

3.2 Generalizing the LDE process

The above examples use a point-to-point query where the two pivot
points for the LDE were specified by the user. As mentioned in the
HDE work, pivot points can be automatically computed. In our case,
we run a total of three BFS searches. The first BFS begins at a
random vertex within the graph, finds a ‘pseudo-peripheral’* vertex,
and passes that vertex as the starting-point for the second BFS. The
second BFS provides vertices with the first component of their
geodesic tuple, and identifies a second ‘pseudo-peripheral’ vertex.
This vertex becomes the starting-point for the third BFS, which
provides each vertex with the second component of the geodesic
tuple. The running time of this phase is O(V+E).

In our testing the algorithm appeared fairly insensitive to the
particular choice of peripheral vertices, initially we had been more
formal about the pivot choices. In fact, the normal procedure for
finding ‘pseudo-peripheral’ vertices is to conduct a series of BFS
passes until the passes give convergence on the two pivot points.
Figure 8 demonstrates the layout resulting from the generalized LDE
process with automatic pivot calculation:

’ Peripheral vertices have a shortest path equal to the diameter of the
graph (the longest shortest path), pseudo-peripheral vertices have a
long short path but are not guaranteed to have the longest.

& GSpace. (=T
File Views Action Help
& 19O NP B

El
Groph 2.

Graph L Query.

|
NN

D> Execs Query_| > Executs Veta Data Quary |
Graph 2 Query

Select cencer, e
coler from emal

. weicht, weight &5

D> Exeoute Query_ | D> Exeoute Veta Deia Query |

erual Seed I
Dataise and Quer., | Detailed record informati.. |

I IIIIIIIIIITIFIIIFI

Lebels ¥ Autoseed [0

Fig. 8: Automatic LDE layout of the Enron email database (322k
edges, 75k vertices) [8].

3.3 Resolving the Many-to-One Mappings

As we investigated the resulting LDE layouts there were immediate
reservations about their limited “resolution”. Although the layouts
were intriguing, they contained a high percentage of vertices which
had “collided” into the same geodesic “bins”. A large graph (50k
vertices) with a graph diameter of 6 will have at most 36 “bins” in
which to map the vertices, drastically limiting the value of placing
the graph into a two dimensional geometric space. We need a
systematic way of resolving the many-to-one mappings that occur
with LDE.

An initial attempt was made to use the LDE mapping as the
starting condition for a force-directed layout, which would push/pull
the vertices apart to achieve the finer resolution. The resulting
layouts did appear to benefit slightly from a reduction of large local
minima; however due the space filling nature of the repulsive forces
the final layout was indistinguishable from the ‘globs’’ that are
typical of force directed layout. Although this particular test bore no
fruit, it did lead to the additional observation that filling all available
space is not in-and-of-itself a useful goal. In fact, packing vertices
with similar attributes together can provide users with additional
insight into their shared natures.

3.3.1 Vertex “Bundling”

Inspired by the terrific edge bundling technique of [9], we adopted
the term “Vertex Bundling” to describe how vertices can be packed
together based on their connectivity attributes. Vertices have edge
obligations to other vertices, if you have the same obligations as
another set of vertices, bundle yourself together and minimize the
space you take up. If you take the small graph in Figure 9, you see
that traditionally the vertices are pushed apart to fill the available
space. We suggest the opposite approach, grouping the vertices
together into ‘semantic’ bundles which, like the edge bundling
technique, simplify the layout and bring clarity to the topological
relationships within the graph.

T Naturally we mean ‘glob’ in the scientific sense, as in a ‘glumply glob
of uninterpretable goo.’



Typical
Force Directed
Space Filling

o | @
@ @@

Space Minimizing
Vertex Bundles

Fig. 9. Simplifying graph layout, and clarifying topological relationships
with the use of vertex bundles.

LDE Mappings with
)

() many vertices falling
into the same bins.

G
@ @

( (] feo ‘o
) Q
e ‘. [ [

Pulling the vertices out
of the bins with the use
of Vertex Bundles

Fig. 10. Applying the vertex bundling technique to pull vertices out of
the many-to-one bins that occur with LDE.

So with the technique of vertex bundling we can now return to
our original goal of resolving the many-to-one mappings that occur
in the LDE of the graph into two dimensional space..

3.3.2  Vertex “Bundle” Maps

On the large scale, vertex bundling can be used to resolve a
significant portion of our many-to-one mapping problem. We now
use the problematic geodesic bins as an ally to create a ‘scaffolding’
of control points. Each vertex has an edge to one of more other
vertices, at this point all vertices lie within a bin (control point), so
we simply traverse the vertex list, determining which vertices have
edges to which control points and bundle all vertices with edges to
the same control points.

After the graph has been through the LDE phase and looks like
the layout shown on the left side of Figure 11, we now pass the graph
through the vertex bundling process and in a manner similar to
marching cubes, each vertex has its edges tested against a case table
of control points to see which vertex bundle it will be a member of.
The entire graph is processed from first vertex to last, and depending
on which case is ‘matched’ the vertex is offset some relative amount
from its current position. The running time of this phase is O(V+E).

Currently we call out 14 different cases (and 11 additional sub-
cases) that are split out from the LDE bins (see Figure 12). The 25
defined cases are as follows. For each vertex the following are
determined:

1) Edges only go to vertices in 1 bin: case 0

2) Edges go to vertices of 2 bins: cases 1 — 11

3) If you are case 1-11 and also have edges back to the main

bin then you are placed very close to your bundle but biased
toward the main bin (see inset Figure 13): cases 12 — 22

4) If you do not meet any of these 23 cases, but you have one
or more edge connections within the same bin you stay in
the bin: case 23

5) If none of these apply then you are marked as an
“Unresolved Vertex” (see Section 3.4).

The diagram in Figure 12, at first looks oddly biased towards the
bottom left corner. When splitting out the vertex bundles an even
distribution seems more effective, until the realization that these
bundle maps are applied at every bin within the LDE layout. So the
diagram will need to mesh well when placed next to, above, and
below your neighbours who are also applying the diagram to their

vertices.
o B ; /

Fig. 11. On the left an LDE layout of a subset of the Enron database
(1374 Vertices, 2241 Edges). On the right the same layout after the
Vertex “Bundling” pass. Vertex Bundling significantly mitigates the
many-to-one mappings and helps convey topological information.

WX

Main Bin

5

8

Fig. 12. Vertex “Bundle” Map. For each geodesic bin created by the
LDE, the following vertex bundle map is applied.



2 aspace [E[E=1ES

File Views Acton Help
BM=20 HI NP «~
Gt

Mets Data (verties)

v Urvesoved CLabot 2 Auosesd o sl S I

Fig. 13. Enlarged image of Figure 10 with insets showing layout detail.

3.4 Unresolved Vertices

As described in section 3.3.2, there are currently 24 cases where the
vertices are split out to specific locations based on topological
obligations. If a vertex does not match any of the cases in the vertex
bundle table, that may indicate a ‘problem’ with the layout. In
practice we find that synthetic graphs with regular topology can be
difficult for G-Space to resolve. Many example datasets which are
variations of 2D grids tend to not fare well in G-Space.

However we do understand the importance of user
notification/feedback when potential problems with the layout may
exist, so unresolved vertices are specifically marked, accumulated,
and displayed to the user as areas of interest they may want to
investigate further. All figures in the results section of this paper
include the percentage of unresolved vertices within that particular
layout.

Fig. 14: An example of unresolved vertices (in red) on a 2D grid which
folds over on itself.

T GSpace. =13
File Views Action Help

BHEZ0PNEI NP@ +~» @

Edges:
Avg Degree: 26.70
Nur

m nents:
Unresolved Vertices: & (0.7
)

¥ Shaw Unresolved [ Lebels ¥ AutoSeed [0 Manuial Sed|
1

Fig. 15: IMDB 1999 (N=1181 E=31,527): In this IMDB dataset only 8
vertices were categorized as “unresolved” out of 1181 total.

Fig. 16: bi_walsh(N=77,251 E=183,945): G-Space fails to resolve the
2D grids in this dataset (you can see the areas in red where the each
grid folds over on itself). G-Space has marked these areas in red
(10454 unresolved vertices).

3.5 Current Issues with G-Space Layout

As we mentioned G-Space does not fare well when processing input
graphs with well structured topology (grids, trees, etc). The BFS
searches are trying to impose structure on the layout, and if the graph
already has a well defined structure the result may be a layout such
as the one in Figure 16.

The issue with unresolved vertices in itself is not that horrible;
the vertices are tracked, marked, and highlighted so that the user can
see them. By far, the current worst unaddressed issue is the direct
descendants of those unresolved vertices. As demonstrated in Figure
17, the unresolved vertices (4 red vertices top right) all have children
that are not connected anywhere else so those children are
mistakenly placed together and not marked as unresolved. Obviously
the layout is misleading to the user and we hope to address this case
as quickly as possible.

Fig. 17. A dark corner in G-Space. Unresolved vertices can have their
children mistakenly placed together.



4 RESULTS

= Gspce BER
File Views Action Help
BHMEO THY ALA +~» B

Gragh 1

Manual Sesd|

Fig. 18: IMDB 1999 (N=1181 E=31,527): The dataset consists of all
actors who are at most 2 hops from the actor Jake Gyllenhaal in the
movie October Sky. Jake is in the cluster surrounded by the blue
circle.

The IMDB 1999 dataset provides an excellent demonstration of the
G-Space layout. This graph consists of all actors who are at most 2
hops from the actor Jake Gyllenhaal in the movie October Sky. Two
actors are linked if they were in a movie or TV program together that
was released in 1999. G-Space places Jake in the blue cluster, and
we can readily see that the clusters circled in green are one ‘hop’
away, while every other cluster is one hop away from those (feel free
to count ‘hops’ in Figure 18 to confirm this for yourself). The small
diameter of this graph is obvious in the G-Space layout, unlike other
layout algorithms. Vertex bundles make it easy to see the groups of
actors, count the hops between them, and quickly understand the
global topological features of a graph.

The quality of the visual layout of G-Space is hard to quantify
when comparing it to other layout techniques. The angular lines and
extremely tight clusters give the appearance that the layout is
showing a small graph, and so we wanted to give some visual
‘registration’ with Figure 19. The color matched circles enclose the
same vertex sets in both layouts. The dataset shown is a subset of the
Enron email database (1374 Vertices, 2241 Edges). The remarkable
correlation between the visual appearances of the layouts is partially
because they were rotated and scaled to better show cluster
similarity.

On a qualitative level, when exploring the two layouts side by
side, with linked selection, the GSpace layout conveys better global
graph structure and allows more detailed inspection of topological
relationship.

Fig. 19: Correlation of the GSpace layout to a traditional force directed
layout. Color matched circles represent similar sets of vertices
between the two layouts. Data: subset of Enron database (1374
Vertices, 2241 Edges).

Figures 20 and 21 show the results of the GSpace algorithm on a
number of real-world and synthetic graphs. For a description of
these graphs, see [1] and [10]. All runtimes were under a third of a
second, and the layout was performed more quickly than the other

algorithms in all cases tested. Note, however, that the GSpace
experiments were run on a different machine than that used in the
TopoLayout paper, so GSpace times should be only roughly
compared against the other runtimes.

Both the Spider and Flower layouts suffer from the limitation of
only using geodesic information from two vertices. Since these
datasets contain many long tendrils, all but two of the tendrils will
have correlated geodesic coordinates and be placed in similar
locations. In the Flower dataset, two of the “petals” of the flower are
protrude from the center to the left and right, while the other petals
are merged into a vertical line. A similar situation occurs in the
Spider dataset.

All layout experiments were run on a laptop with an Intel Dual
Core 2.0GHz processor, 2GB RAM, running Windows XP.

5 CONCLUSIONS AND FUTURE WORK

We have shown that the G-Space algorithm is an efficient method for
laying out a graph without the use of force directed placement. G-
Space is a useful technique where the topological relationships
between vertices can be seen quickly and intuitively. Through the
use of vertex bundles, we are able to resolve many of the many-to-
one mapping issues inherent in the low dimensional embedding. The
speed and clarity of G-Space is particularly useful in scenarios where
an analyst is conducting interactive queries of a large database, and
expects immediate layouts.

There are a number of areas in which G-Space can be improved.
We would like to decrease the number of unresolved vertices in the
diagram, to separate more vertices from the main bins. This would
involve determining the common topological structures that cause
vertices to be placed in the main bin, and pulling these vertices out
into separate bundles in a meaningful way.

Sub-trees are a particular nuisance to the algorithm since they fall
along vertical lines, instead of being spread out. By discovering
treelike structures within the graph, we may layout trees using a
standard tree layout algorithm. These tree views could be accessed
by either zooming in on the tree, or by clicking on specialized glyphs
which brings up a separate tree view.

G-Space should also be improved in order to make better use of
screen space. Currently, vertex bundles are small in order to ensure
that they will not overlap with other bundles, assuming that all types
of bundles may exist. It would be reasonable to spread out vertex
bundles when we know there are no other bundles in close
proximity. Also, the layout normally produces a triangular shape. It
would be more ideal to modify the algorithm to evenly fill a standard
rectangular viewing area.

ACKNOWLEDGMENTS

We would like to thank Tamara Munzner and Daniel Archambault
who developed the TopoLayout algorithm and have run extensive
layout experiments. The TopoLayout team have been extremely
helpful in making their algorithms, graph data sources, and results
available, which has allows us to do much of our comparative
analysis.

Funding was provided by the Accelerated Strategic Computing
Initiative’s Visual Interactive Environment for Weapons Simulations
(ASCI/VIEWS) program. The work was performed at Sandia
National Laboratories.  Sandia is a multi-program laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy under Contract DE-AC04-
94AL85000.

REFERENCES

[1] D. Archambault, T. Munzner, D. Auber. “TopoLayout: multi-level
graph layout by topological features.” IEEE Transactions on
Visualization and Computer Graphics, 13(2):305-317, 2006.

[2] B. Wylie and J. Baumes. “The Titan Informatics Toolkit.” Not yet
published.



(3]

T. Fruchterman and E. Reingold. “Graph drawing by force-directed
placement.” Softw. Pract. Exp., 21(11):1129-1164, 1991.

P. Gajer and S. G. Kobourov. “GRIP: Graph drawing with intelligent
placement.” Journal of Graph Algorithms and Applications, 6(3):203-
224,2002.

Y. Koren and D. Harel. “Graph drawing by high-dimensional
embedding.” In Proc. Graph Drawing (GD'02), volume 2528 of LNCS,
pages 207-219, 2002.

Y. Koren, L. Carmel, and D. Harel. “Drawing huge graphs by algebraic
multigrid optimization.” Multiscale Modeling and Simulation, 1(4):645-
673,2003.

S. Hachul and M. Jiinger. “Drawing large graphs with a potential-field-
based multilevel algorithm.” In Proc. 12th Int. Symp. on Graph
Drawing, volume 3383 of LNCS, pages 285-295. Springer-Verlag,
2004.

J. Shetty and J. Adibi. The Enron Email Dataset Database Schema and

(9]

[10]

http://www.isi.edu/~adibi/Enron/Enron_Dataset Report.pdf. Accessed
March 30, 2007.

D. Holten. “Hierarchical Edge Bundles: Visualization of Adjacency
Relations in Hierarchical Data.” IEEE Transactions on Visualization
and Computer Graphics, 12(5):741-748, 2006.

S. Hachul and M. Jiinger. “An experimental comparison of fast
algorithms for drawing general large graphs.” In Proc. 13th Int. Symp.
on Graph Drawing. Springer-Verlag, 2005.

Brief Statistical Report. Available online at
GSpace
0.04 (unresolved vertices 1.3%) GRIP FM? TopoLayout
091 .
I I I I o I I I N I T
ey a‘?f/'gﬂ_,@ T
o e |
) fietitatet ! :
3 sietteledeter4d 1
< P )
1
III IT} !
:_f A B
B (€ 8456
— S ESioiedo
{" DAl Gl o
O
) |
=) 1
1
1
i
1
i
1
]
0.01 (unresolved vertices 0.7%)
2
)
a
=
\

Fig. 20: Tests on real-world data sets. The runtime is given for each case in seconds. Note that the runtimes between
GSpace and the other algorithms are only a rough comparison since they were run on different machines (see [1]). The
pass-through percentage is the percentage of vertices which had no type, and had no connections to other vertices in

its group.



GSpace
0.06 (unresolved vertices 22.2%)
ACE HDE GRIP FM® TopoLayout
[._[ft:,k 035 0.14 43 1199 3135
o s
[5]
o
o
0.02 (unresolved vertices 0.1%)
. { [ - t:a:"w\ (Y 0% .02 TI® [
e . t- 2%
5 / ] / » g gg' h m.\:-:x e ez-g::
g 1 / ﬂ;‘?” q{ﬁzxﬁlmaﬁa
0.02 (unresolved vertices 0.1%)
£
ncv::l.\xe oy 0.09 216 17.46 0z
2 =k
® FZN
= s, - < v
8 e b 4
5 LIS
0.04 (unresolved vertices 17.4%)
\ FideT L) [ 0% o1 EE TR
e y
(] —— =y ! \/ “
© | - ) - e
a ~X=.
’ ¥ 7@ | "
0.09 (unresolved vertices 2.2%)
\ [(Flower wrs wIs = EEL] T TR
= | B B AT
g e “T" i - B ()
8 —_— : ) Py
[ A — AN\
I—Q 3 T g [u ]\
0.32 (unresolved vertices 15.8%)
Ty oTe e 134,28 573
< By -
) f CSL)
s ' / s
I / / > L
= / ‘:: v

Fig. 21: Tests on synthetic data sets. The runtime is given for each case in seconds. All layouts using algorithms other than GSpace were
conducted in [1]. Note that the runtimes are only a rough comparison since GSpace was run on a different machine. The unresolved vertex
percentage represents those vertices that were not bundled and did not have connections to other vertices within the group.





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


