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1 Introduction

In the theory of iterative substructuring domain decomposition methods, we
typically assume that each subdomain is quite regular, e.g., the union of a
small set of coarse triangles or tetrahedra; see, e.g., [Toselli and Widlund, 2005,
Assumption 4.3]. However, this is often unrealistic especially if the subdomains
result from using a mesh partitioner. The subdomain boundaries might then
not even be Lipschitz continuous. We note that existing theory establishes
bounds on the convergence rate of the algorithms which are insensitive to
even large jumps in the material properties across subdomain boundaries as
reflected in the coefficients of the problem. The theory for overlapping Schwarz
methods is less restrictive as far as the subdomain shapes are concerned, see
e.g. [Toselli and Widlund, 2005, Chapter 3], but little has been known on the
effect of large changes in the coefficients; see however Sarkis [2003] and recent
work by Graham et al. [2006] and Scheichl and Vainikko [2006].

The purpose of this paper is to begin the development of a theory under
much weaker assumptions on the partitioning. We will focus on a recently
developed overlapping Schwarz method, see Dohrmann et al. [2006a], which
combines a coarse space adopted from an iterative substructuring method,
[Toselli and Widlund, 2005, Algorithm 5.16], with local preconditioner com-
ponents selected as in classical overlapping Schwarz methods, i.e., based on
solving problems on overlapping subdomains. This choice of the coarse compo-
nent will allow us to prove results which are independent of coefficient jumps.
We note that there is an earlier study of multigrid methods by Dryja et al.
[1996] in which the coarsest component is similarly borrowed from iterative
substructuring algorithms.

We will use nonoverlapping subdomains, and denote them by (2;,i =
L,---, N, as well as overlapping subdomains (2/,j = 1,---,N'. The inter-
face between the (2; will be denoted by I

So far, complete results have only been obtained for problems in the plane.
To simplify our presentation, we will also confine ourselves to scalar elliptic
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problems of the following form:
V- (p(x)Vu(z)) = f(z), =€ 2cCR? (1)

with a Dirichlet boundary condition on a measurable subset 9f2p of 912,
the boundary of {2, and a Neumann condition on 92y = 92\ 02p. The
coefficient p(x) is strictly positive and assumed to be a constant p; for x € (2;.
We use piecewise linear, continuous finite elements and triangulations with
shape regular elements and assume that each subdomain is the union of a set
of quasi uniform elements. The weak formulation of the elliptic problem is
written in terms of a bilinear form,

N N
a(u,v) = Zai(u,v) = sz/ Vu - Vudz.
i=1

i=1

Our study requires the generalization of some technical tools used in the
proof of a bound of the convergence rate of this type of algorithm. Some of the
standard tools are no longer available and we have to modify the basic line
of reasoning in the proof of our main result. Three auxiliary results, namely
a Poincaré inequality, a Sobolev-type inequality for finite element functions,
and a bound for certain edge terms, will be required in our proof; see Lemmas
2, 3, and 4. We will work with John domains, see Section 2, and will be
able to express our bounds on the convergence of our algorithm in terms of a
few geometric parameters. The authors are grateful to Professor Fanghua Lin
of the Courant Institute for introducing us to John domains and Poincaré’s
inequality for very general domains.

2 John domains and a Poincaré inequality

We first give a definition of a John domain; see Hajtasz [2001] and the refer-
ences therein.

Definition 1 (John domain). A domain 2 C R" is a John domain if
there exists a constant Cy > 1 and a distinguished central point xo € {2 such
that each x € (2 can be joined to it by a curve v : [0,1] — 2 such that
7(0) = 2, (1) = 2 and dist(y(t),082) > C; |z —y(t)| for all t € [0, 1].

This condition can be viewed as a twisted cone condition. We note that
certain snowflake curves with fractal boundaries are John domains and that
the length of the boundary of a John domain can be arbitrarily much larger
than its diameter; see Figure 1.

In any analysis of any domain decomposition method with more than one
level, we need a Poincaré inequality. This inequality is closely related to an
isoperimetric inequality; see Lin and Yang [2002].
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Fig. 1. The subdomains are obtained by first partitioning the unit square into
smaller squares. We then replace the middle third of each edge by the other two
edges of an equilateral triangle, increasing the length by a factor 4/3. The middle
third of each of the resulting shorter edges is then replaced in the same way and
this process is repeated until we reach the length scale of the finite element mesh.

Lemma 1 (Isoperimetric inequality). Let 2 C R" be an open, bounded,
and connected set and let f be sufficiently smooth. Then,

(n=1)/n
inf (/ |f — ™/ (n=1) dm) < 7(Q7n)/ |V f|dz,
17 Q

ceR
if and only if,
[min(| A, [B))]' /" < 4(2,n)[0ANOB|. (2)

Here, A C (2 is arbitrary, and B = 2\ A; v(£2,n) is the best possible constant
and |A|, etc., is the measure of the set A.

We note that the domain does not need to be star-shaped, Lipschitz, or John.
For two dimensions, we immediately obtain a standard Poincaré inequality by
using the Cauchy-Schwarz inequality.

Lemma 2 (Poincaré’s inequality). Let {2 C IR? be an open, bounded, and
connected set. Then,

inf [lu— el o) < (22 2IVul ) Vo H()

For n = 3 such a bound is obtained by using Hoélder’s inequality several
times. In Lemma 2, we then should replace [£2| by |£2|?/3. We note that the
best choice of ¢ is @y, the average of u over the domain. A simple consequence
of this fact is that

lull?, ) < 1210 (2,22(IVullZ, (o) + laal®), Yue H'(2).  (3)

Throughout, we will use a weighted H!(§2;)—norm defined by
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||u|\%p(gi) = |u\%{1(9i)+1/H3||u\|%2mi) ::/Q VU'VUdI+1/HZ-2/ lu|?dz.

i

Here, H; is the diameter of (2;. The weight originates from a dilation of a
domain with diameter 1. We will use Lemma 2 and (3) to remove Lo—terms
from full H' —norms.

3 The algorithm, technical tools, and the main result

The domain 2 C IR? is decomposed into nonoverlapping subdomains {2;, each
of which is the union of finite elements, and with finite element nodes matching
on the boundaries of neighboring subdomains across the interface I", which is
the union of the parts of the subdomain boundaries which are common to at
least two subdomains. The interface I" is composed of edges and vertices. An
edge £ is an open subset of I', which contains the nodes which are shared by
the boundaries of a particular pair of subdomains {2; and {2;. The subdomain
vertices V¥ are end points of edges and are typically shared by more than two;
see [Klawonn and Widlund, 2006, Definition 3.1] for more details on how these
sets can be defined for quite general situations. We denote the standard finite
element space of continuous, piecewise linear functions on £2; by V"(£2;) and
assume that these functions vanish on 0f2; N 0f2p.

We will view our algorithm as an additive Schwarz method, as in [Toselli
and Widlund, 2005, Chapter 2], being defined in terms of a set of subspaces. To
simplify the discussion, we will use exact solvers for both the coarse problem
and the local ones. All that is then required for the analysis of our algorithm
is an estimate of a parameter in a stable decomposition of any elements in
the finite element space; see [Toselli and Widlund, 2005, Assumption 2.2 and
Lemma 2.5]. Thus, we need to estimate CZ in

N/
Za(uj,uj) < Cla(u,u), YueVh
j=0

for some {u;}, such that

N’

U= ZR;‘»Fuj, u; € Vj.
=0

Here R]T Vi — V" is an interpolation operator from the space of the j-th
subproblem into the space V". By using [Toselli and Widlund, 2005, Lem-
mas 2.5 and 2.10], we find that the condition number k(P,4) of the additive
Schwarz operator can be bounded by (N¢ + 1)C2 where N¢ is the minimal
number of colors required to color the subdomains Q; such that no pair of
intersecting subdomains have the same color.
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Associated with each space Vj is a projection P; defined by
a(Pju,v) = a(u,v), Yo € Vj, and P; = R;‘-ij.

The additive Schwarz operator, the preconditioned operator used in our iter-
ation, is

N
Py = ZPj.
j=0

The coarse space Vp, which is described differently in Dohrmann et al.
[2006a], is spanned by functions defined by their values on the interface and
extended as discrete harmonic functions into the interior of the subdomains
£2;. The discrete harmonic extensions minimize the energy; see [Toselli and
Widlund, 2005, Section 4.4]. There is one basis function, 6y« (x), for each
subdomain vertex; it is the discrete harmonic extension of the standard nodal
basis function. There is also a basis function, ¢:; (), for each edge £, which
equals 1 at all nodes on the edge and vanishes at all other interface nodes.
The vertex and edge functions provide a partition of unity.

The local spaces V;,j =1,--- N’, are defined as

Vi = Vh@) 0 H()).

This the same standard choice considered in [Toselli and Widlund, 2005, Chap-
ter 3]. We assume that each (2; has a diameter comparable to those of the
subdomains §2; which intersect Q;; we also assume that neighboring subdo-
mains 2; and 2; have comporable diameters. The overlap between the sub-
domains is characterized by parameters d;, as in [Toselli and Widlund, 2005,
Assumption 3.1]; 6; is essentially the minimum width of the neighborhood
25, of 8()} which is also covered by neighboring overlapping subdomains.
We will assume that the width of §2; 5. is on the order of 4, everywhere; our
arguments can easily be extended to a more general case.

We can now formulate our main result, which is also valid for compressible
elasticity with Lamé parameters, provided that the coarse space is enriched
as in Dohrmann et al. [2006a].

Theorem 1 (Condition number estimate). Let 2 C IR? be an arbitrary
John domain with a shape reqular triangulation. The condition number then
satisfies

K(Pad) < C (14 H/8)(1+ log(H/h))®,

where C' > 0 is a constant which only depends on the John and Poincaré
parameters, the number of colors required for the overlapping subdomains,
and the aspect ratios of the finite elements.

Here, H/h is shorthand for max;(H;/h;), as in many domain decomposition
papers; h; is the diameter of the smallest element of (2;. Similarly, H/§ is
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the largest ratio of H; and the smallest of the J; of the subregions Q; that
intersect §2;.

The logarithmic factor of our main result can be improved to a first power
if the subregions satisfy [Toselli and Widlund, 2005, Assumption 4.3]. If the
coefficients do not have large jumps across the interface and the coarse space
is suitably enriched, we can eliminate the logarithmic factors altogether.

To prove this theorem, we need two auxiliary results, in addition to
Poincaré’s inequality. The first is a discrete Sobolev inequality:

Lemma 3 (Discrete Sobolev inequality).
lull? (o) < CA+log(H/M)?ullfn(g,), Yue V(). (4)

The constant C > 0 depends only on the John parameter and the aspect ratios
of the finite elements.

The inequality (4) is well-known in the theory of iterative substructuring
methods. Proofs for domains satisfying an interior cone condition are given in
Bramble et al. [1986] and in [Brenner and Scott, 2002, Sect. 4.9].

The second important tool provides estimates of the edge functions.

Lemma 4. The edge function 0g:; can be bounded as follows:

[|0g:s

(2, < O+ log(H;/hy), (5)

and

10gi5 117, (0,) < CHP(1+log(H;/hy))- (6)

Proofs of Lemmas 3 and 4 will be given in Dohrmann et al. [2006b]. We note
that inequality (5) can be established using ideas similar to those in [Toselli
and Widlund, 2005, Section 4.6.3]. The proof of inequality (6) requires a new
idea. We note that a uniform Ly—bound holds for more regular edges.

4 Proof of Theorem 1

As in many other proofs of results on domain decomposition algorithms, we
can work on one subdomain at a time. With local bounds, there are no diffi-
culties in handling variations of the coefficients across the interface.

We recall that the coarse space is spanned by the 6y, the discrete har-
monic extensions of the restrictions of the standard nodal basis functions to
I', and the edge functions fg:;. The vertex basis functions have bounded en-
ergy, while, according to (5), the edge functions have an energy that grows
in proportion to (1 + log(H/h)). The coarse space component uy € V; in the
decomposition of an arbitrary finite element function u(x) is chosen as

up(z) = ZU(Vk)9vz*k($)+Zﬂsu9sm‘($)-

k
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Here, ugi; is the average of u over the edge. This interpolation formula is
the two-dimensional analog of [Toselli and Widlund, 2005, Formula (5.13)]
and it reproduces constants. In the case of regular edges, we can estimate
the edge averages by using the Cauchy—Schwarz inequality and an elementary
trace theorem. In our much more general case, we instead get two logarithmic
factors after estimating the edge averages by ||u||r., and using Lemmas 3 and
4. The norms of the vertex terms of uy are bounded by one logarithmic factor.
Replacing u(z) by u(z) — 4g, and using Lemma 2, to remove the Ly—terms
of the H'—norms, we find that

o3 () < C(1+log(H/R))?|ulF g,

and
(o, uo) < C(1+ log(H/h))2a(u, u).

Similarly, we can prove
lu—uoll2, () < C(L+log(H/h)*H[ult q,)- (7)

In the case of regular subdomain boundaries there are no logarithmic factors
on the right hand side of (7).

We now turn to the estimate related to the local spaces. Again, we will
carry out the work on one subdomain §2; at a time. Let w := u — ug and
define a local term in the decomposition by u; = I"(;w). We will borrow
extensively from [Toselli and Widlund, 2005, Sections 3.2 and 3.6]. Thus, I"
interpolates into V" and the 0;, supported in _Q;», provide a partition of unity.
These functions vary between 0 and 1 and their gradients are bounded by
|[V8;| < C/d; and they vanish outside the areas of overlap.

We note that there are only a fixed number of Q; that intersect (2;; we
will only consider the contribution from one of them, §2;. As in our earlier
work, the only term that requires a careful estimate is V8;w. We cover the set
(2; s, with patches of diameter §; and note that on the order of H/d of them
will suffice. We now use inequality (3) for the individual patches, estimate the
average of w by ||w||z. and use the bound for V#; to obtain

V050 < O3 @l o + (/D)L + log(H M0 o)

‘Q’L

The proof is completed by using (7) and the bound on the energy of wg.
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