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1 Introduction

In the theory of iterative substructuring domain decomposition methods, we
typically assume that each subdomain is quite regular, e.g., the union of a
small set of coarse triangles or tetrahedra; see, e.g., [Toselli and Widlund, 2005,
Assumption 4.3]. However, this is often unrealistic especially if the subdomains
result from using a mesh partitioner. The subdomain boundaries might then
not even be Lipschitz continuous. We note that existing theory establishes
bounds on the convergence rate of the algorithms which are insensitive to
even large jumps in the material properties across subdomain boundaries as
reflected in the coefficients of the problem. The theory for overlapping Schwarz
methods is less restrictive as far as the subdomain shapes are concerned, see
e.g. [Toselli and Widlund, 2005, Chapter 3], but little has been known on the
effect of large changes in the coefficients; see however Sarkis [2003] and recent
work by Graham et al. [2006] and Scheichl and Vainikko [2006].

The purpose of this paper is to begin the development of a theory under
much weaker assumptions on the partitioning. We will focus on a recently
developed overlapping Schwarz method, see Dohrmann et al. [2006a], which
combines a coarse space adopted from an iterative substructuring method,
[Toselli and Widlund, 2005, Algorithm 5.16], with local preconditioner com-
ponents selected as in classical overlapping Schwarz methods, i.e., based on
solving problems on overlapping subdomains. This choice of the coarse compo-
nent will allow us to prove results which are independent of coefficient jumps.
We note that there is an earlier study of multigrid methods by Dryja et al.
[1996] in which the coarsest component is similarly borrowed from iterative
substructuring algorithms.

We will use nonoverlapping subdomains, and denote them by Ωi, i =
1, · · · , N , as well as overlapping subdomains Ω′

j , j = 1, · · · , N ′. The inter-
face between the Ωi will be denoted by Γ.

So far, complete results have only been obtained for problems in the plane.
To simplify our presentation, we will also confine ourselves to scalar elliptic
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problems of the following form:

−∇ · (ρ(x)∇u(x)) = f(x), x ∈ Ω ⊂ IR2, (1)

with a Dirichlet boundary condition on a measurable subset ∂ΩD of ∂Ω,
the boundary of Ω, and a Neumann condition on ∂ΩN = ∂Ω \ ∂ΩD. The
coefficient ρ(x) is strictly positive and assumed to be a constant ρi for x ∈ Ωi.
We use piecewise linear, continuous finite elements and triangulations with
shape regular elements and assume that each subdomain is the union of a set
of quasi uniform elements. The weak formulation of the elliptic problem is
written in terms of a bilinear form,

a(u, v) :=
N∑

i=1

ai(u, v) :=
N∑

i=1

ρi

∫

Ωi

∇u · ∇vdx.

Our study requires the generalization of some technical tools used in the
proof of a bound of the convergence rate of this type of algorithm. Some of the
standard tools are no longer available and we have to modify the basic line
of reasoning in the proof of our main result. Three auxiliary results, namely
a Poincaré inequality, a Sobolev-type inequality for finite element functions,
and a bound for certain edge terms, will be required in our proof; see Lemmas
2, 3, and 4. We will work with John domains, see Section 2, and will be
able to express our bounds on the convergence of our algorithm in terms of a
few geometric parameters. The authors are grateful to Professor Fanghua Lin
of the Courant Institute for introducing us to John domains and Poincaré’s
inequality for very general domains.

2 John domains and a Poincaré inequality

We first give a definition of a John domain; see HajÃlasz [2001] and the refer-
ences therein.

Definition 1 (John domain). A domain Ω ⊂ IRn is a John domain if
there exists a constant CJ ≥ 1 and a distinguished central point x0 ∈ Ω such
that each x ∈ Ω can be joined to it by a curve γ : [0, 1] → Ω such that
γ(0) = x, γ(1) = x0 and dist(γ(t), ∂Ω) ≥ C−1

J |x− γ(t)| for all t ∈ [0, 1].

This condition can be viewed as a twisted cone condition. We note that
certain snowflake curves with fractal boundaries are John domains and that
the length of the boundary of a John domain can be arbitrarily much larger
than its diameter; see Figure 1.

In any analysis of any domain decomposition method with more than one
level, we need a Poincaré inequality. This inequality is closely related to an
isoperimetric inequality; see Lin and Yang [2002].
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Fig. 1. The subdomains are obtained by first partitioning the unit square into
smaller squares. We then replace the middle third of each edge by the other two
edges of an equilateral triangle, increasing the length by a factor 4/3. The middle
third of each of the resulting shorter edges is then replaced in the same way and
this process is repeated until we reach the length scale of the finite element mesh.

Lemma 1 (Isoperimetric inequality). Let Ω ⊂ IRn be an open, bounded,
and connected set and let f be sufficiently smooth. Then,

inf
c∈IR

(∫

Ω

|f − c|n/(n−1) dx

)(n−1)/n

≤ γ(Ω, n)
∫

Ω

|∇f | dx,

if and only if,

[min(|A|, |B|)]1−1/n ≤ γ(Ω, n)|∂A ∩ ∂B|. (2)

Here, A ⊂ Ω is arbitrary, and B = Ω \A; γ(Ω,n) is the best possible constant
and |A|, etc., is the measure of the set A.

We note that the domain does not need to be star-shaped, Lipschitz, or John.
For two dimensions, we immediately obtain a standard Poincaré inequality by
using the Cauchy-Schwarz inequality.

Lemma 2 (Poincaré’s inequality). Let Ω ⊂ IR2 be an open, bounded, and
connected set. Then,

inf
c∈IR

‖u− c‖2L2(Ω) ≤ (γ(Ω, 2))2|Ω|‖∇u‖2L2(Ω), ∀u ∈ H1(Ω).

For n = 3 such a bound is obtained by using Hölder’s inequality several
times. In Lemma 2, we then should replace |Ω| by |Ω|2/3. We note that the
best choice of c is ūΩ , the average of u over the domain. A simple consequence
of this fact is that

‖u‖2L2(Ω) ≤ |Ω|(γ(Ω, 2)2‖∇u‖2L2(Ω) + |ūΩ |2), ∀u ∈ H1(Ω). (3)

Throughout, we will use a weighted H1(Ωi)−norm defined by
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‖u‖2H1(Ωi)
:= |u|2H1(Ωi)

+1/H2
i ‖u‖2L2(Ωi)

:=
∫

Ωi

∇u · ∇udx + 1/H2
i

∫

Ωi

|u|2dx.

Here, Hi is the diameter of Ωi. The weight originates from a dilation of a
domain with diameter 1. We will use Lemma 2 and (3) to remove L2−terms
from full H1−norms.

3 The algorithm, technical tools, and the main result

The domain Ω ⊂ IR2 is decomposed into nonoverlapping subdomains Ωi, each
of which is the union of finite elements, and with finite element nodes matching
on the boundaries of neighboring subdomains across the interface Γ , which is
the union of the parts of the subdomain boundaries which are common to at
least two subdomains. The interface Γ is composed of edges and vertices. An
edge E ij is an open subset of Γ , which contains the nodes which are shared by
the boundaries of a particular pair of subdomains Ωi and Ωj . The subdomain
vertices Vk are end points of edges and are typically shared by more than two;
see [Klawonn and Widlund, 2006, Definition 3.1] for more details on how these
sets can be defined for quite general situations. We denote the standard finite
element space of continuous, piecewise linear functions on Ωi by V h(Ωi) and
assume that these functions vanish on ∂Ωi ∩ ∂ΩD.

We will view our algorithm as an additive Schwarz method, as in [Toselli
and Widlund, 2005, Chapter 2], being defined in terms of a set of subspaces. To
simplify the discussion, we will use exact solvers for both the coarse problem
and the local ones. All that is then required for the analysis of our algorithm
is an estimate of a parameter in a stable decomposition of any elements in
the finite element space; see [Toselli and Widlund, 2005, Assumption 2.2 and
Lemma 2.5]. Thus, we need to estimate C2

0 in

N ′∑

j=0

a(uj , uj) ≤ C2
0a(u, u), ∀u ∈ V h,

for some {uj}, such that

u =
N ′∑

j=0

RT
j uj , uj ∈ Vj .

Here RT
j : Vj −→ V h is an interpolation operator from the space of the j-th

subproblem into the space V h. By using [Toselli and Widlund, 2005, Lem-
mas 2.5 and 2.10], we find that the condition number κ(Pad) of the additive
Schwarz operator can be bounded by (NC + 1)C2

0 where NC is the minimal
number of colors required to color the subdomains Ω′

j such that no pair of
intersecting subdomains have the same color.
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Associated with each space Vj is a projection Pj defined by

a(P̃ju, v) = a(u, v), ∀v ∈ Vj , and Pj = RT
j P̃j .

The additive Schwarz operator, the preconditioned operator used in our iter-
ation, is

Pad =
N ′∑

j=0

Pj .

The coarse space V0, which is described differently in Dohrmann et al.
[2006a], is spanned by functions defined by their values on the interface and
extended as discrete harmonic functions into the interior of the subdomains
Ωi. The discrete harmonic extensions minimize the energy; see [Toselli and
Widlund, 2005, Section 4.4]. There is one basis function, θVk(x), for each
subdomain vertex; it is the discrete harmonic extension of the standard nodal
basis function. There is also a basis function, θEij (x), for each edge E ij , which
equals 1 at all nodes on the edge and vanishes at all other interface nodes.
The vertex and edge functions provide a partition of unity.

The local spaces Vj , j = 1, · · ·N ′, are defined as

Vj = V h(Ω′
j) ∩H1

0 (Ω′
j).

This the same standard choice considered in [Toselli and Widlund, 2005, Chap-
ter 3]. We assume that each Ω′

j has a diameter comparable to those of the
subdomains Ωi which intersect Ω′

j ; we also assume that neighboring subdo-
mains Ωi and Ωj have comporable diameters. The overlap between the sub-
domains is characterized by parameters δj , as in [Toselli and Widlund, 2005,
Assumption 3.1]; δj is essentially the minimum width of the neighborhood
Ωj,δj of ∂Ω′

j which is also covered by neighboring overlapping subdomains.
We will assume that the width of Ωj,δj is on the order of δj everywhere; our
arguments can easily be extended to a more general case.

We can now formulate our main result, which is also valid for compressible
elasticity with Lamé parameters, provided that the coarse space is enriched
as in Dohrmann et al. [2006a].

Theorem 1 (Condition number estimate). Let Ω ⊂ IR2 be an arbitrary
John domain with a shape regular triangulation. The condition number then
satisfies

κ(Pad) ≤ C (1 + H/δ)(1 + log(H/h))3,

where C > 0 is a constant which only depends on the John and Poincaré
parameters, the number of colors required for the overlapping subdomains,
and the aspect ratios of the finite elements.

Here, H/h is shorthand for maxi(Hi/hi), as in many domain decomposition
papers; hi is the diameter of the smallest element of Ωi. Similarly, H/δ is
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the largest ratio of Hi and the smallest of the δj of the subregions Ω′
j that

intersect Ωi.
The logarithmic factor of our main result can be improved to a first power

if the subregions satisfy [Toselli and Widlund, 2005, Assumption 4.3]. If the
coefficients do not have large jumps across the interface and the coarse space
is suitably enriched, we can eliminate the logarithmic factors altogether.

To prove this theorem, we need two auxiliary results, in addition to
Poincaré’s inequality. The first is a discrete Sobolev inequality:

Lemma 3 (Discrete Sobolev inequality).

‖u‖2L∞(Ωi)
≤ C(1 + log(H/h))2‖u‖2H1(Ωi)

, ∀u ∈ V h(Ωi). (4)

The constant C > 0 depends only on the John parameter and the aspect ratios
of the finite elements.

The inequality (4) is well-known in the theory of iterative substructuring
methods. Proofs for domains satisfying an interior cone condition are given in
Bramble et al. [1986] and in [Brenner and Scott, 2002, Sect. 4.9].

The second important tool provides estimates of the edge functions.

Lemma 4. The edge function θEij can be bounded as follows:

‖θEij‖2H1(Ωi)
≤ C(1 + log(Hi/hi)), (5)

and
‖θEij‖2L2(Ωi)

≤ CH2
i (1 + log(Hi/hi)). (6)

Proofs of Lemmas 3 and 4 will be given in Dohrmann et al. [2006b]. We note
that inequality (5) can be established using ideas similar to those in [Toselli
and Widlund, 2005, Section 4.6.3]. The proof of inequality (6) requires a new
idea. We note that a uniform L2−bound holds for more regular edges.

4 Proof of Theorem 1

As in many other proofs of results on domain decomposition algorithms, we
can work on one subdomain at a time. With local bounds, there are no diffi-
culties in handling variations of the coefficients across the interface.

We recall that the coarse space is spanned by the θVk , the discrete har-
monic extensions of the restrictions of the standard nodal basis functions to
Γ , and the edge functions θEij . The vertex basis functions have bounded en-
ergy, while, according to (5), the edge functions have an energy that grows
in proportion to (1 + log(H/h)). The coarse space component u0 ∈ V0 in the
decomposition of an arbitrary finite element function u(x) is chosen as

u0(x) =
∑

k

u(Vk)θVik(x) +
∑

ij

ūEij θEij (x).
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Here, ūEij is the average of u over the edge. This interpolation formula is
the two-dimensional analog of [Toselli and Widlund, 2005, Formula (5.13)]
and it reproduces constants. In the case of regular edges, we can estimate
the edge averages by using the Cauchy–Schwarz inequality and an elementary
trace theorem. In our much more general case, we instead get two logarithmic
factors after estimating the edge averages by ‖u‖L∞ and using Lemmas 3 and
4. The norms of the vertex terms of u0 are bounded by one logarithmic factor.
Replacing u(x) by u(x) − ūΩi and using Lemma 2, to remove the L2−terms
of the H1−norms, we find that

|u0|2H1(Ωi)
≤ C(1 + log(H/h))2|u|2H1(Ωi)

,

and
a(u0, u0) ≤ C(1 + log(H/h))2a(u, u).

Similarly, we can prove

‖u− u0‖2L2(Ωi)
≤ C(1 + log(H/h))2H2

i |u|2H1(Ωi)
. (7)

In the case of regular subdomain boundaries there are no logarithmic factors
on the right hand side of (7).

We now turn to the estimate related to the local spaces. Again, we will
carry out the work on one subdomain Ωi at a time. Let w := u − u0 and
define a local term in the decomposition by uj = Ih(θjw). We will borrow
extensively from [Toselli and Widlund, 2005, Sections 3.2 and 3.6]. Thus, Ih

interpolates into V h and the θj , supported in Ω′
j , provide a partition of unity.

These functions vary between 0 and 1 and their gradients are bounded by
|∇θj | ≤ C/δj and they vanish outside the areas of overlap.

We note that there are only a fixed number of Ω′
j that intersect Ωi; we

will only consider the contribution from one of them, Ω′
j . As in our earlier

work, the only term that requires a careful estimate is ∇θjw. We cover the set
Ωj,δj with patches of diameter δj and note that on the order of H/δ of them
will suffice. We now use inequality (3) for the individual patches, estimate the
average of w by ‖w‖L∞ and use the bound for ∇θj to obtain

∫

Ωi

|∇θjw|2 ≤ C/δ2
j (δ2

j |w|2H1(Ωi)
+ (H/δ)δ2

j (1 + log(H/h))‖w‖2H1(Ωi)
).

The proof is completed by using (7) and the bound on the energy of u0.
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