

SAND2007-1593C

SAND2007-xxxxC

Concrete Fracture and Failure Modeling with Peridynamics

Stewart Silling

Paul Demmie

John Foster

Sandia National Laboratories

Walter Gerstle
University of New Mexico

Thomas Warren
Consultant

Workshop on Modeling Concrete Under High Impulsive Loadings, Austin, TX
March 21, 2007

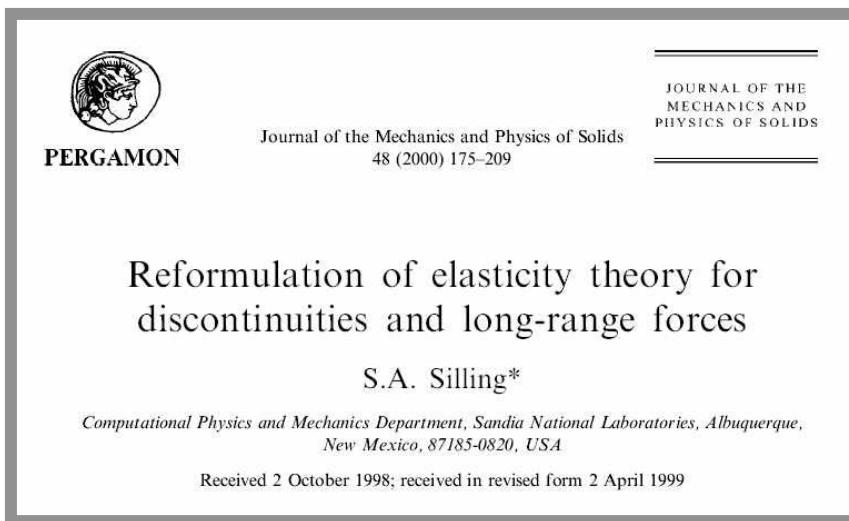
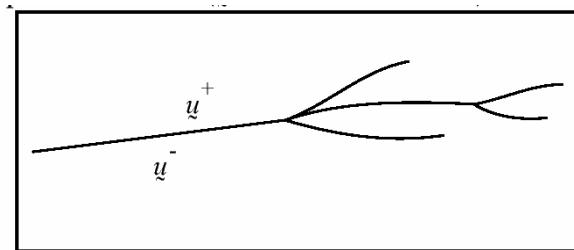
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- Theory
 - What makes this different?
- Single crack growth
- Concrete applications
 - Perforation
 - Single panel: effect of impact angle
 - Multiple panels
 - Effect of reinforcement
 - Damage accumulation due to multiple impacts
 - Fragmentation and fragment distribution
 - Blast loading
 - Deep penetration
 - Target size effect

Peridynamic theory: What makes this different

- Why is it so hard to model fracture with conventional finite element codes?
 - The fundamental PDEs do not apply on a crack.
- New approach: peridynamic theory uses integral rather than differential equations.
 - Reformulation of the fundamental equations.
 - Equations apply everywhere regardless of discontinuities.
 - No need for externally supplied “crack growth law”.
 - Cracks initiate, grow spontaneously.
 - Theory first published in 2000:



Real life:
Discontinuities can evolve in complex
patterns not known in advance.

Peridynamic theory: basic equations

Classical theory:

$$\rho \ddot{u}(\underline{x}, t) = \nabla \bullet \underline{\sigma}(\underline{x}, t) + \underline{b}(\underline{x}, t)$$

where ρ = density, \underline{u} = displacement, $\underline{\sigma}$ = stress tensor field, and \underline{b} = body force field.

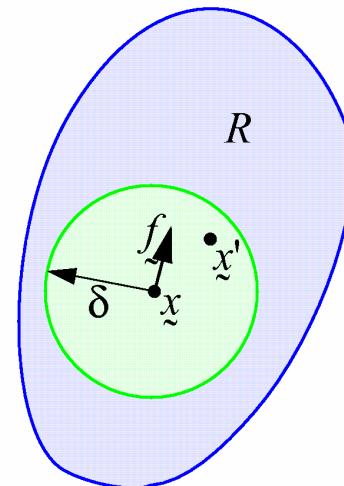
Peridynamic theory:

$$\rho \ddot{u}(\underline{x}, t) = \underline{L}_u(\underline{x}, t) + \underline{b}(\underline{x}, t)$$

where

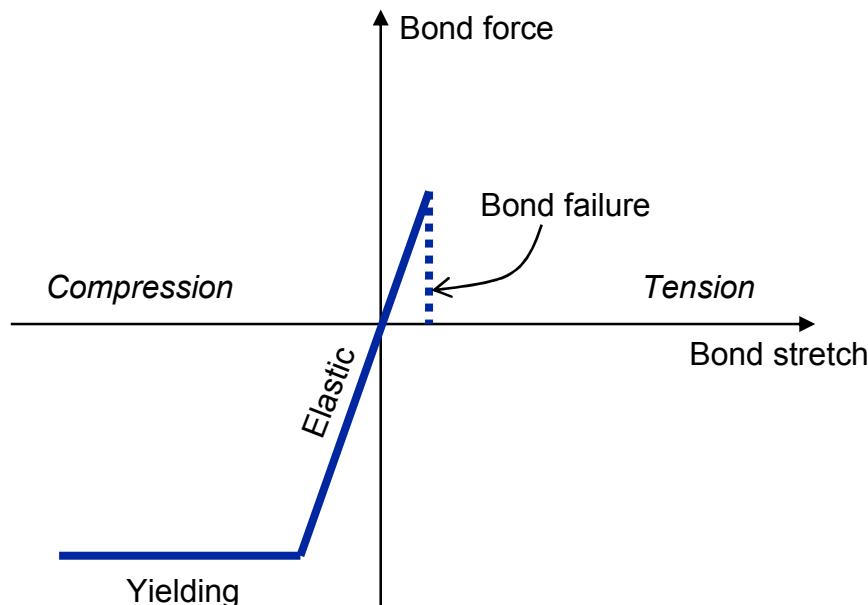
$$\underline{L}_u(\underline{x}, t) = \int_R f(\underline{u}(\underline{x}', t) - \underline{u}(\underline{x}, t), \underline{x}' - \underline{x}) dV_{\underline{x}'}$$

and f is a vector-valued function.



Peridynamic theory: Material model

- All material-specific behavior is contained in the function f .
- Material parameters come from measurable elastic-plastic and fracture data.

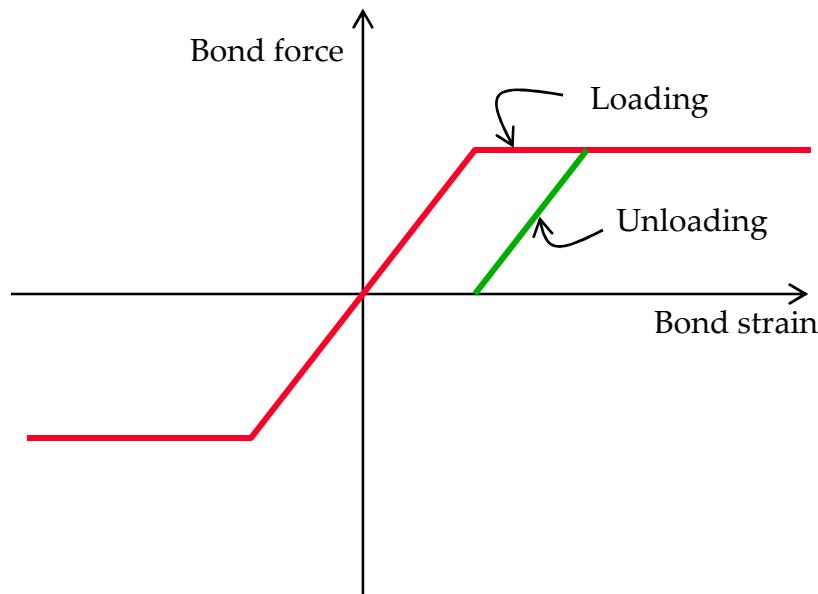


Peridynamic theory: Other constitutive models

- Visco-microelastic:

bond force = $f(r, \dot{r}, \xi)$, $r = |\xi + \eta|$ = current distance between x and x'

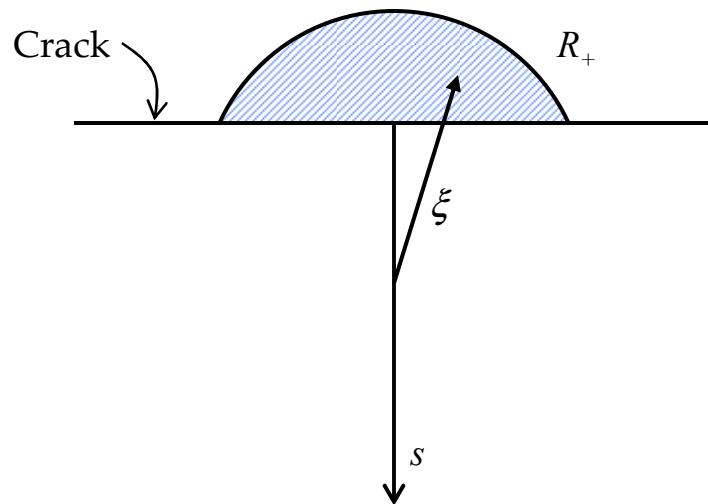
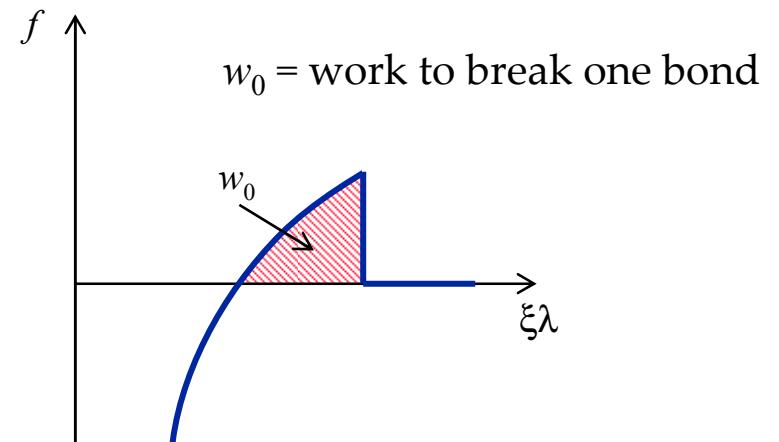
- Microplastic:



Peridynamic theory: Energy required to advance a crack

- Adding up the work needed to break all bonds across a line yields the energy release rate:

$$G = 2h \int_0^\delta \int_{R_+} w_0 dV ds$$

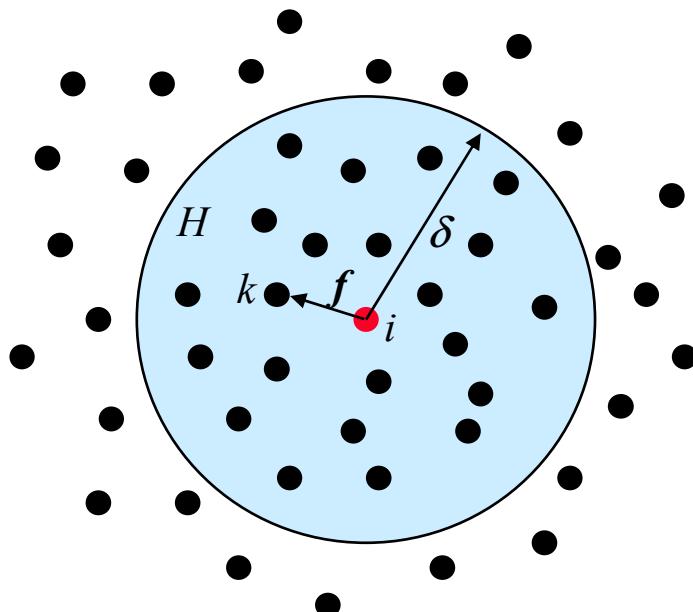


There is also a version of the J-integral that applies in this theory.

EMU numerical method

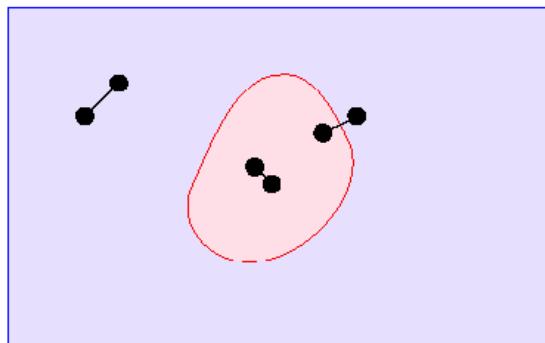
- Integral is replaced by a finite sum.
- The resulting method is meshless and Lagrangian.

$$\rho \ddot{\mathbf{u}}_i^n = \sum_{k \in H} f(\mathbf{u}_k^n - \mathbf{u}_i^n, \mathbf{x}_k - \mathbf{x}_i) \Delta V_i + \mathbf{b}(\mathbf{x}_i, t)$$



EMU numerical method: Code features

- Meshfree (no elements)
- Lagrangian (each node represents a fixed amount of material)
- Parallel (runs on multiple processors)
- Explicit (simple, reliable time integration method)
- “Unguided” crack growth.
 - No need for an externally supplied crack growth law for:
 - Initiation, growth velocity, direction, branching, arrest, . . .
 - Any number of cracks can occur spontaneously.
 - Interface bonds are treated the same as other bonds.



EMU numerical method: Relation to SPH

SPH

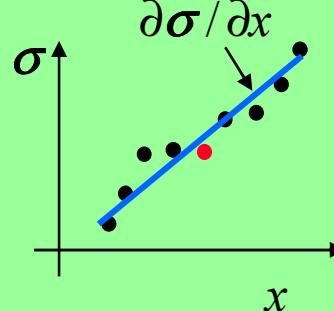
$$\frac{\partial v}{\partial x} = \int v(x') K(x') dV'$$

$$\dot{\varepsilon} = \frac{1}{2} \left(\left(\frac{\partial v}{\partial x} \right) + \left(\frac{\partial v}{\partial x} \right)^T \right)$$

$$\sigma = \sigma(\varepsilon)$$

$$\frac{\partial \sigma}{\partial x} = \int \sigma(x') K(x') dV'$$

$$\rho \ddot{u} = \frac{\partial \sigma}{\partial x} + b$$



- Both are meshless Lagrangian methods.
- Both involve integrals.
- But the basic equations are fundamentally different:
 - SPH relies on curve fitting to approximate derivatives that appear in the classical PDEs.
 - Peridynamics does not use these PDEs, relies on pair interactions.

Emu

$$\rho \ddot{u}(x) = \int f(u(x') - u(x), x' - x) dV' + b(x)$$



Discretized model: Relation to finite elements

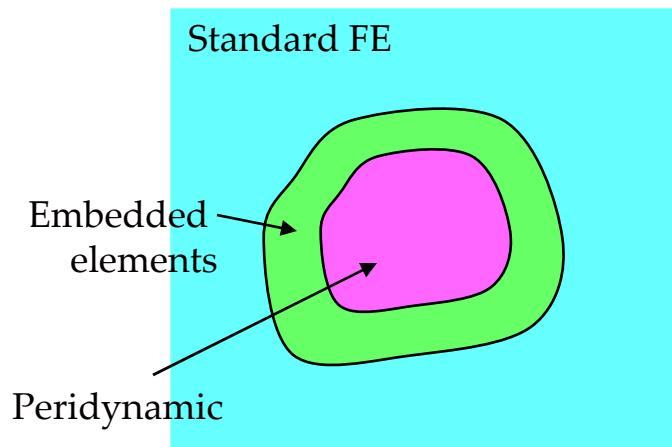
- Can solve the peridynamic equations in a framework similar to FE.
- Can include rotational degrees of freedom, leads to a micropolar model.
- Typical element stiffness matrix (for truss-like element)*:

$$\begin{bmatrix}
 \hat{f}_{jix} \\
 \hat{f}_{jiy} \\
 \hat{f}_{jiz} \\
 \hat{m}_{jix} \\
 \hat{m}_{jiy} \\
 \hat{m}_{jiz} \\
 \hat{f}_{ijx} \\
 \hat{f}_{ijy} \\
 \hat{f}_{ijz} \\
 \hat{m}_{ijx} \\
 \hat{m}_{ijy} \\
 \hat{m}_{ijz}
 \end{bmatrix} = \begin{bmatrix}
 \frac{E' A}{L} & & & & & & & & \\
 & \frac{12E'I}{L^3} & & & & & & & \\
 0 & & \frac{12E'I}{L^3} & & & & & & \\
 0 & 0 & & \frac{E'J}{L} & & & & & \\
 0 & 0 & 0 & & \frac{4E'I}{L} & & & & \\
 0 & 0 & \frac{-6E'I}{L^2} & 0 & 0 & \frac{4E'I}{L} & & & \\
 0 & \frac{-6E'I}{L^2} & 0 & 0 & 0 & & \frac{E' A}{L} & & \\
 \frac{-E' A}{L} & 0 & 0 & 0 & 0 & & & \frac{12E'I}{L^3} & \\
 0 & \frac{-12E'I}{L^3} & 0 & 0 & 0 & -\frac{6E'I}{L^2} & 0 & & \\
 0 & 0 & \frac{-12E'I}{L^3} & 0 & \frac{6E'I}{L^2} & 0 & 0 & \frac{12E'I}{L^3} & \\
 0 & 0 & 0 & \frac{-E'J}{L} & 0 & 0 & 0 & 0 & \frac{E'J}{L} \\
 0 & 0 & \frac{-6E'I}{L^2} & 0 & \frac{2E'I}{L} & 0 & 0 & \frac{6E'I}{L^2} & 0 & \frac{4E'I}{L} \\
 0 & \frac{6E'I}{L^2} & 0 & 0 & 0 & \frac{2E'I}{L} & 0 & -\frac{6E'I}{L^2} & 0 & 0 & \frac{4E'I}{L}
 \end{bmatrix} \begin{matrix} (sym) \\ \left. \begin{array}{c} \hat{u}_i \\ \hat{v}_i \\ \hat{w}_i \\ \hat{\theta}_{xi} \\ \hat{\theta}_{yi} \\ \hat{\theta}_{zi} \\ \hat{u}_j \\ \hat{v}_j \\ \hat{w}_j \\ \hat{\theta}_{xj} \\ \hat{\theta}_{yj} \\ \hat{\theta}_{zj} \end{array} \right\} \end{matrix}$$

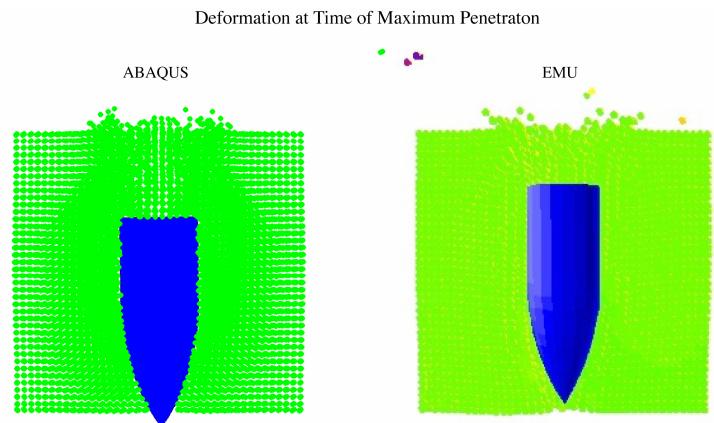
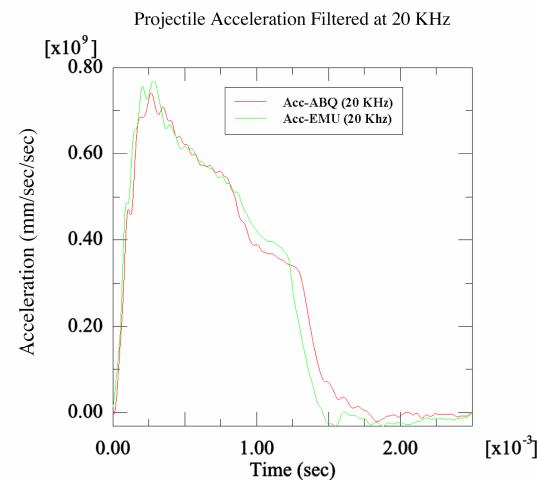
* W. Gerstle et. al., to appear in *Nuclear Engineering & Design* (2007).

Relation to finite elements: ABAQUS implementation

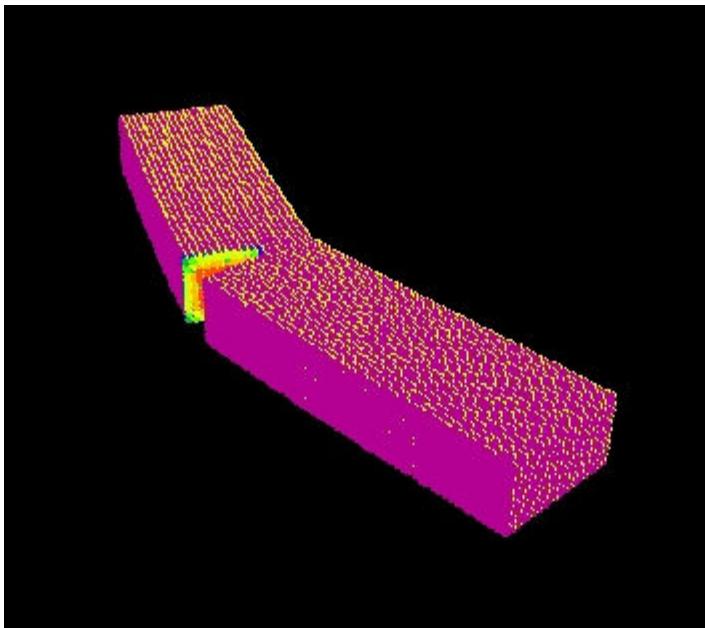
- The Emu peridynamic solution method has been implemented in a special version of ABAQUS*.
- Can interface peridynamic elements with conventional FE by using embedded elements.



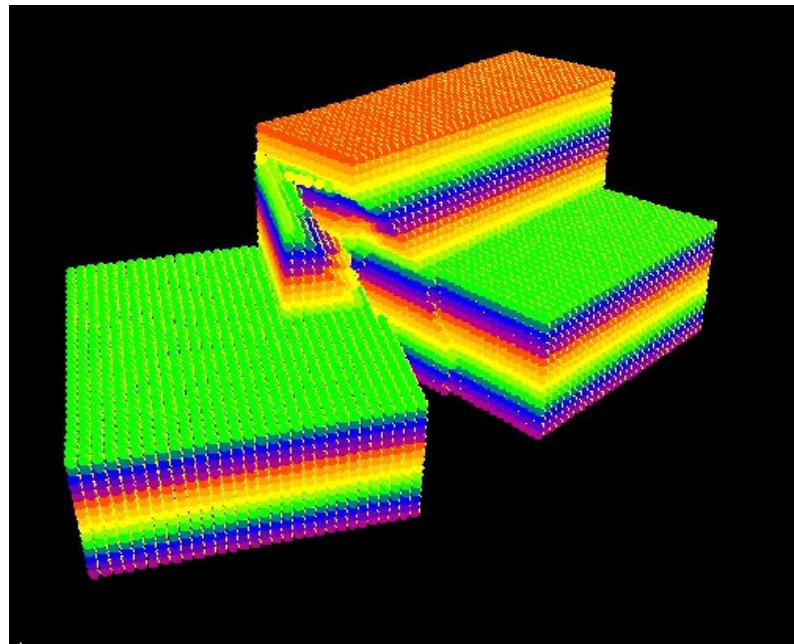
* R. Macek, LANL Report LA-14300, July 2006 .



Single crack growth in metals: Examples



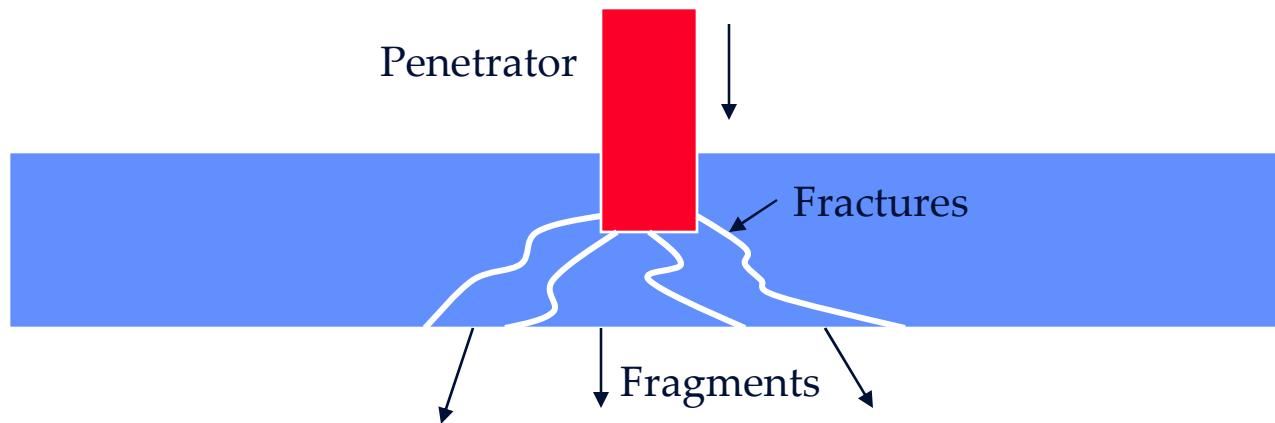
3-point bend



A more complex geometry

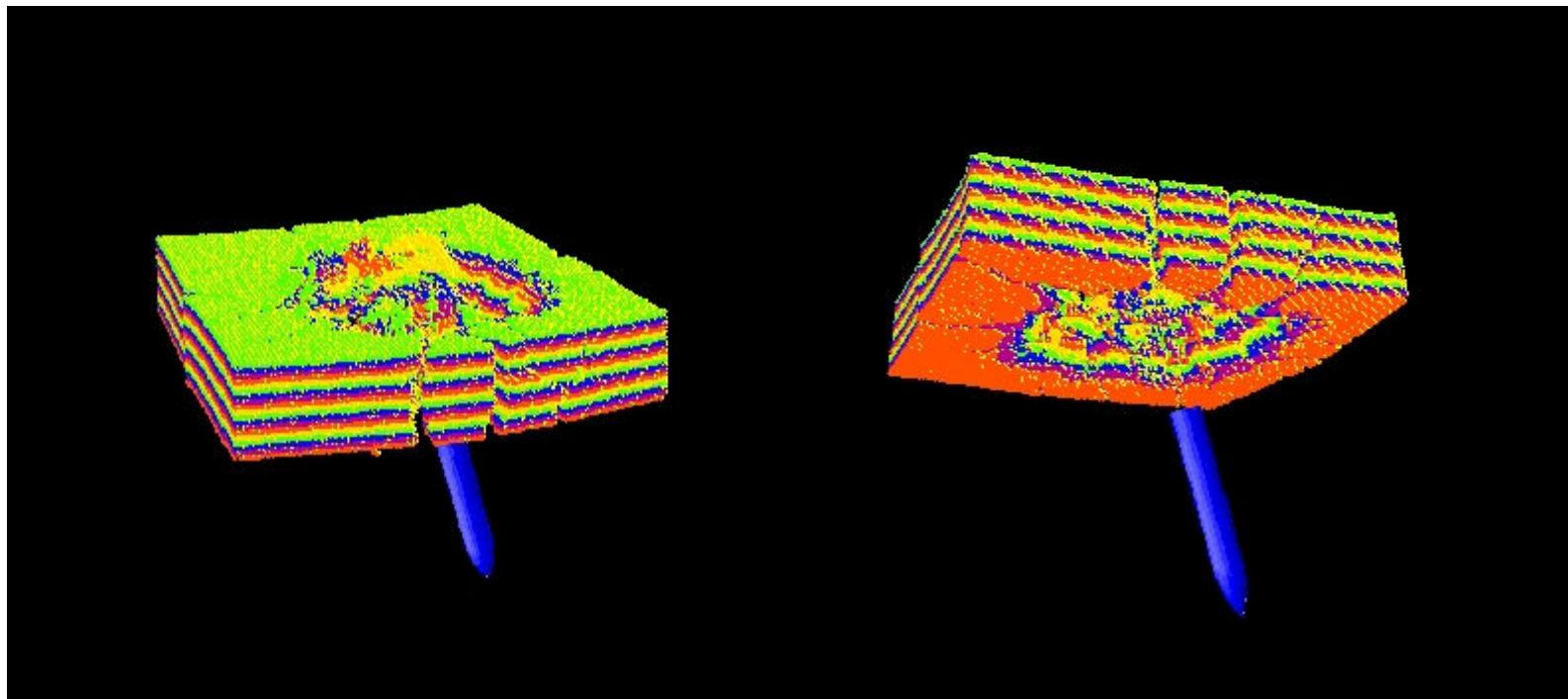
Perforation: Why use this method?

- Ability to model fracture is important for perforation.
 - Target starts weakening long before the penetrator gets through.
 - Fracture growth process determines fragment properties.



Perforation: Typical results

- Cratering has some effect on the acceleration.
 - Weakening in the exit crater “attracts” the nose (more discussion later).

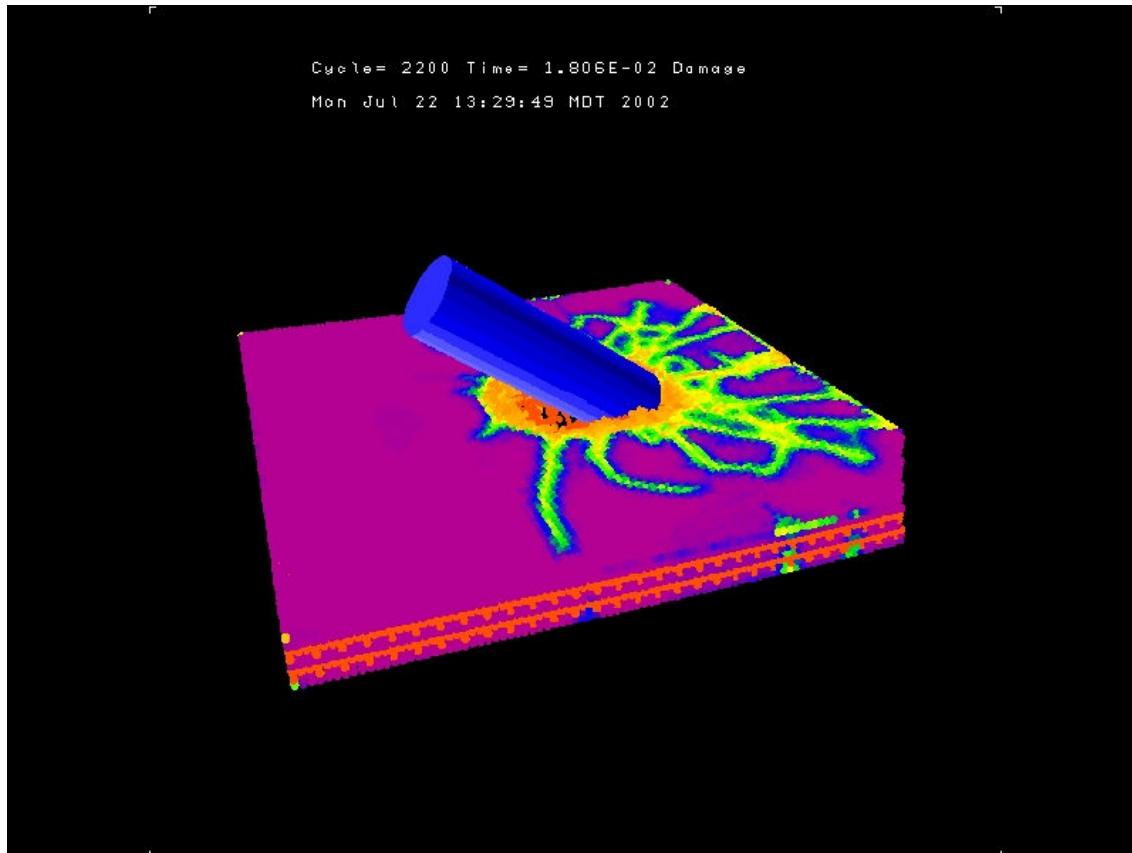


Entry crater

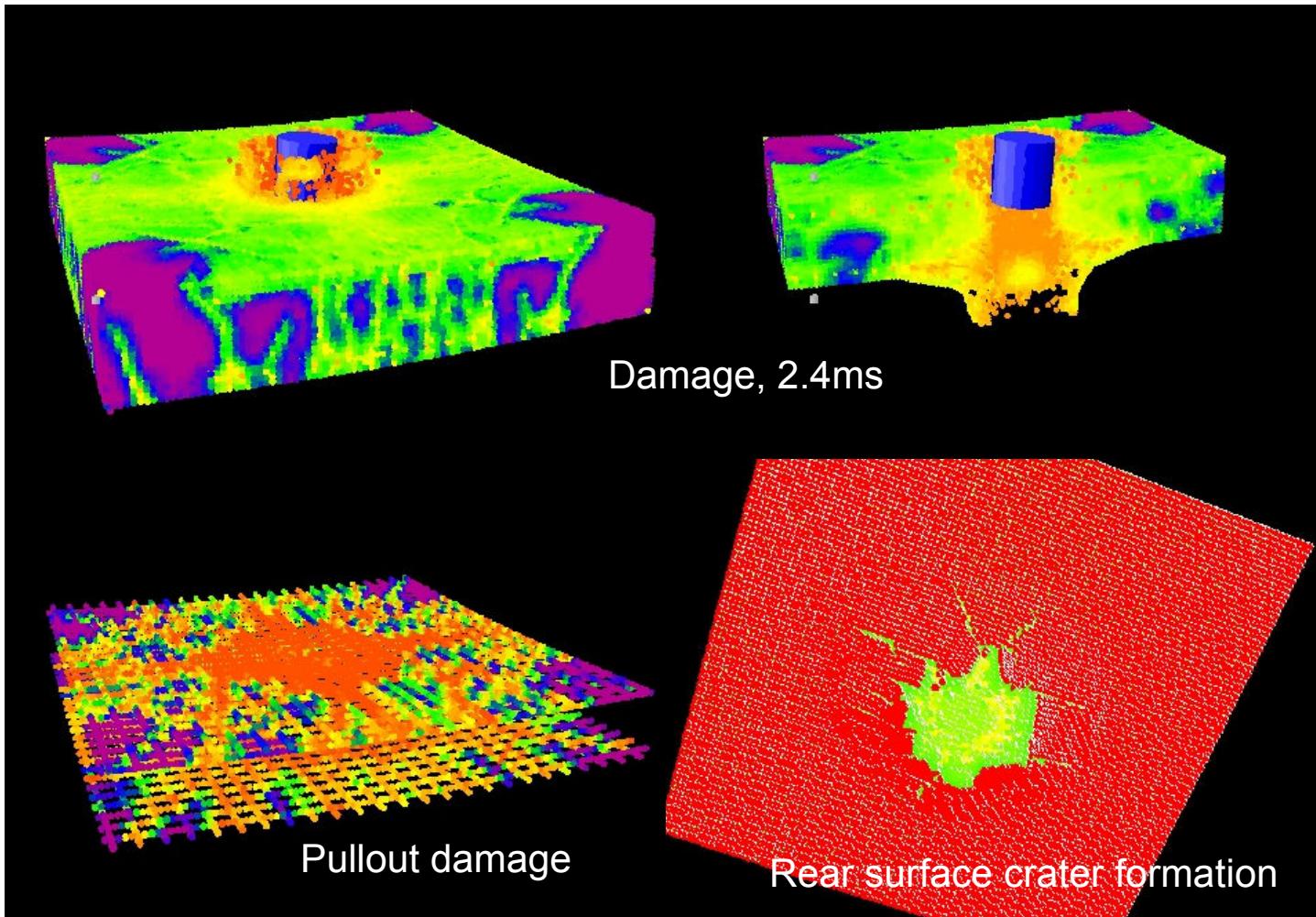
Exit crater

(Colors are included for visualization purposes only)

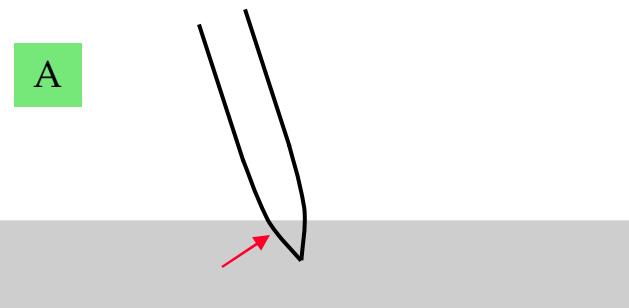
Perforation: Cracks in a target due to oblique impact



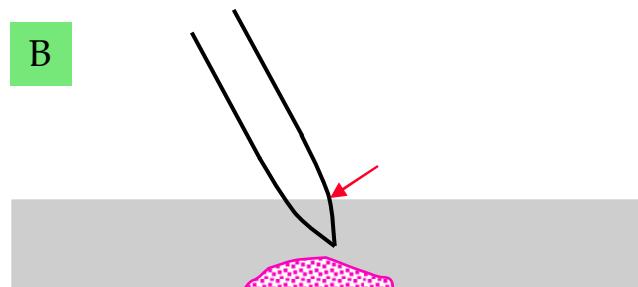
Perforation: Explicit model of concrete reinforcement



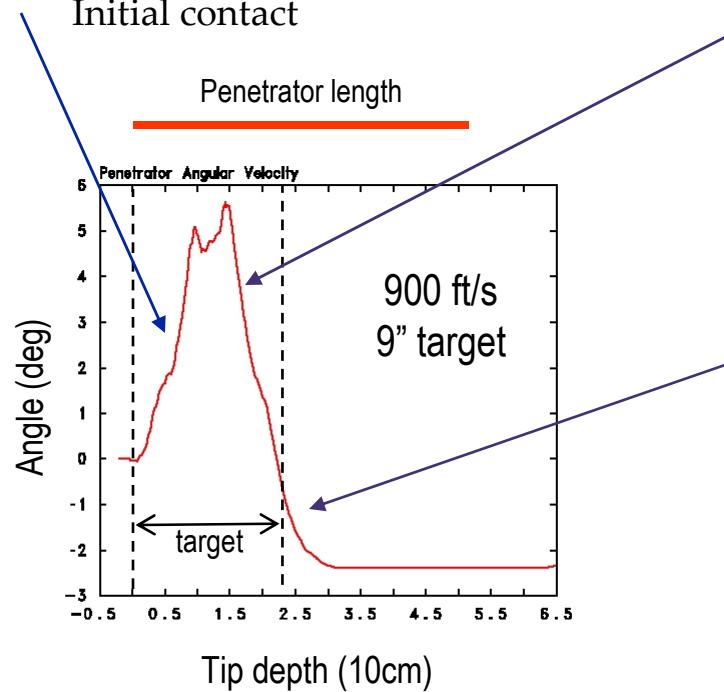
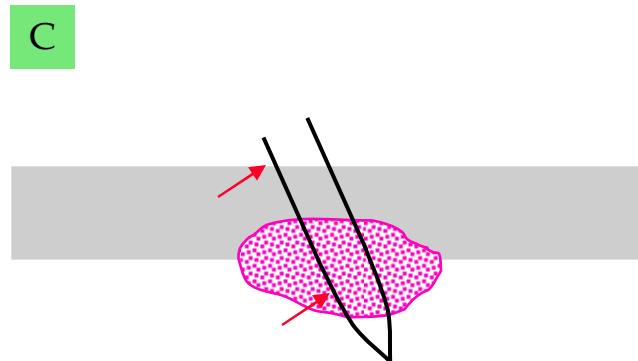
Perforation: Forces that affect projectile rotation



Initial contact



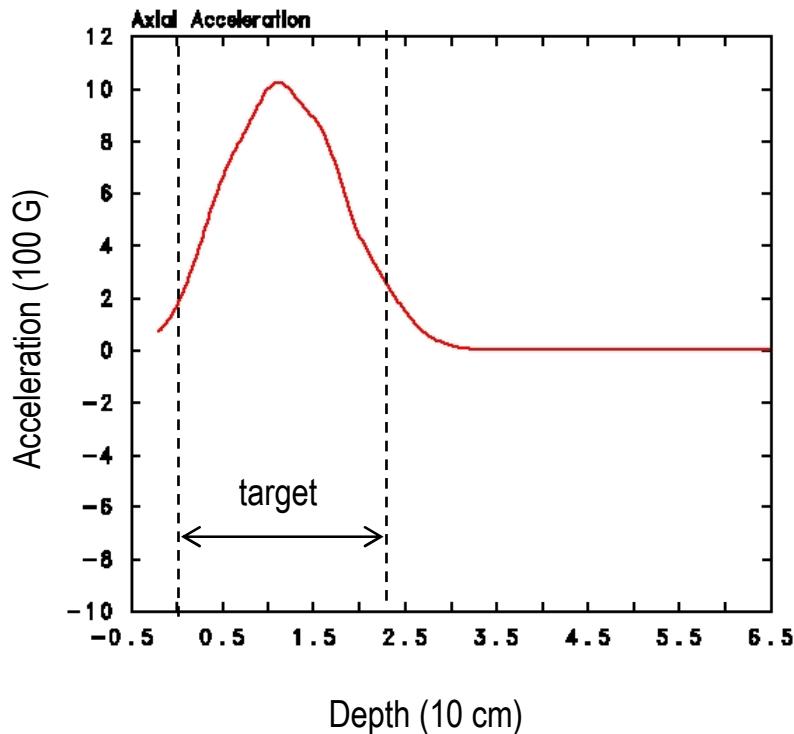
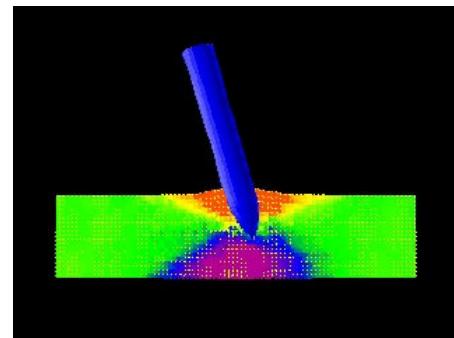
Target is weaker below the impact point



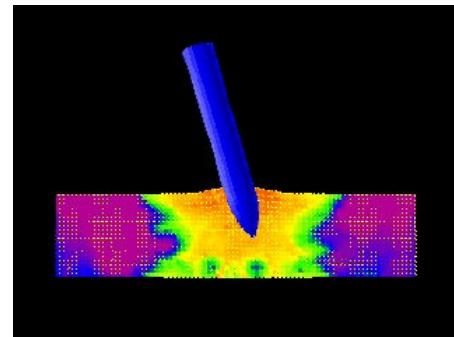
Tail slap + interaction with debris
reverses the direction of rotation

Perforation of concrete: 900 ft/s into 9" target

- Peak axial acceleration occurs with nose tip is about halfway through the target.



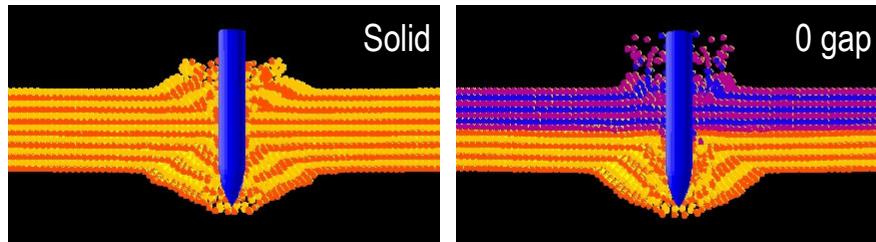
z-velocity at time of peak axial acceleration



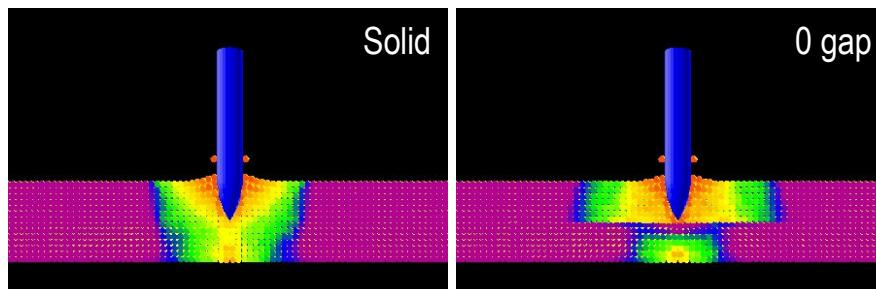
Damage at time of peak axial acceleration

Perforation: Solid vs. 2-panel target with 0mm gap

Crater shapes end up looking similar, however...

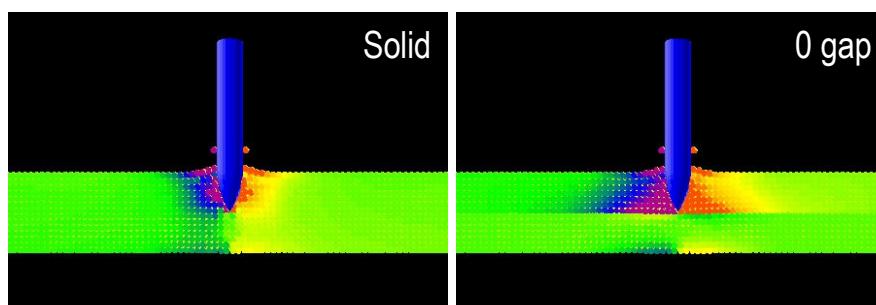


Cracks cannot propagate directly between panels.



Colors indicate damage (0.45 ms)

2-panel target shows less confinement near penetrator nose due to sliding at interface.

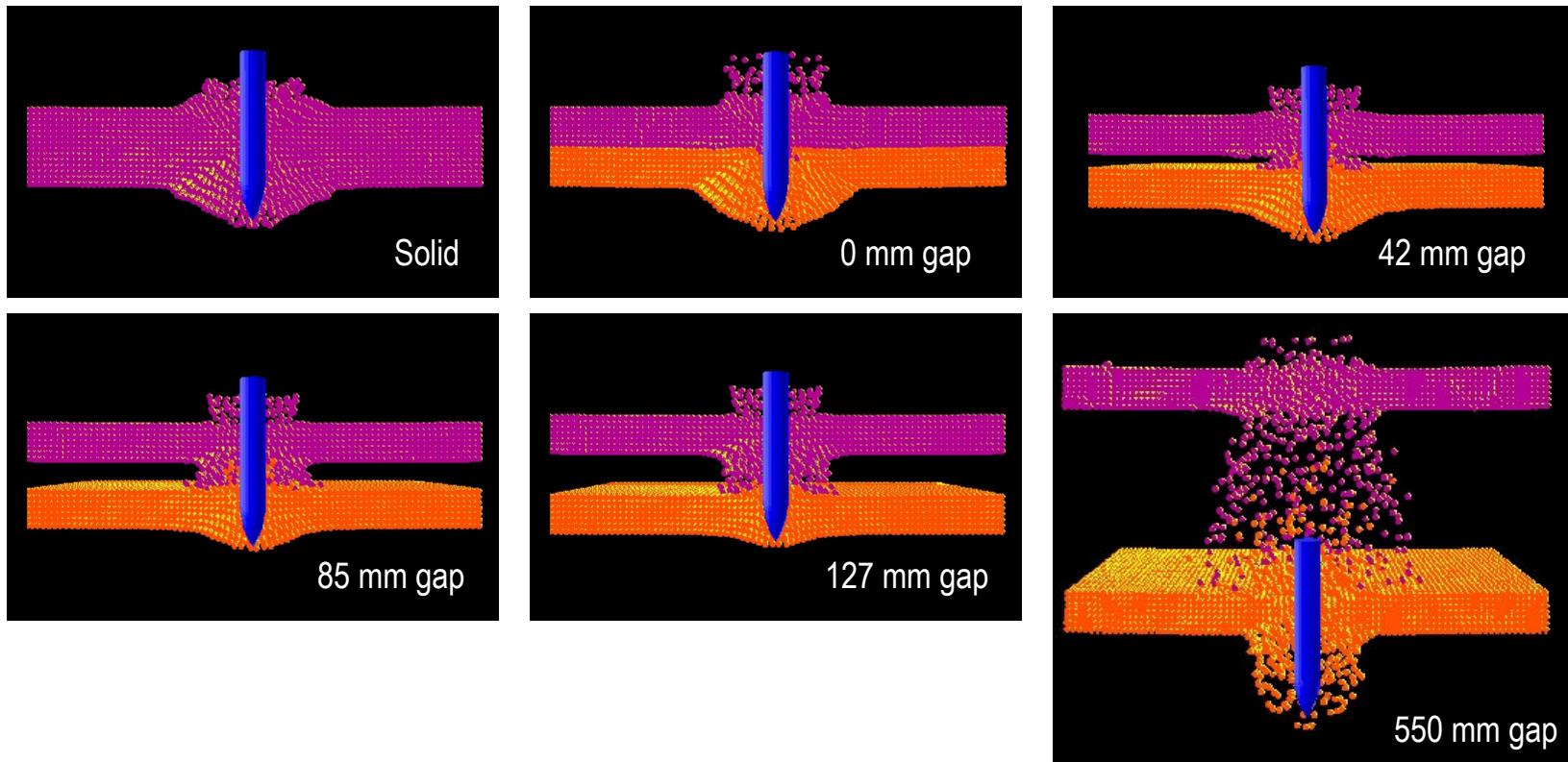


Colors indicate x component of displacement (0.45 ms)

→ x

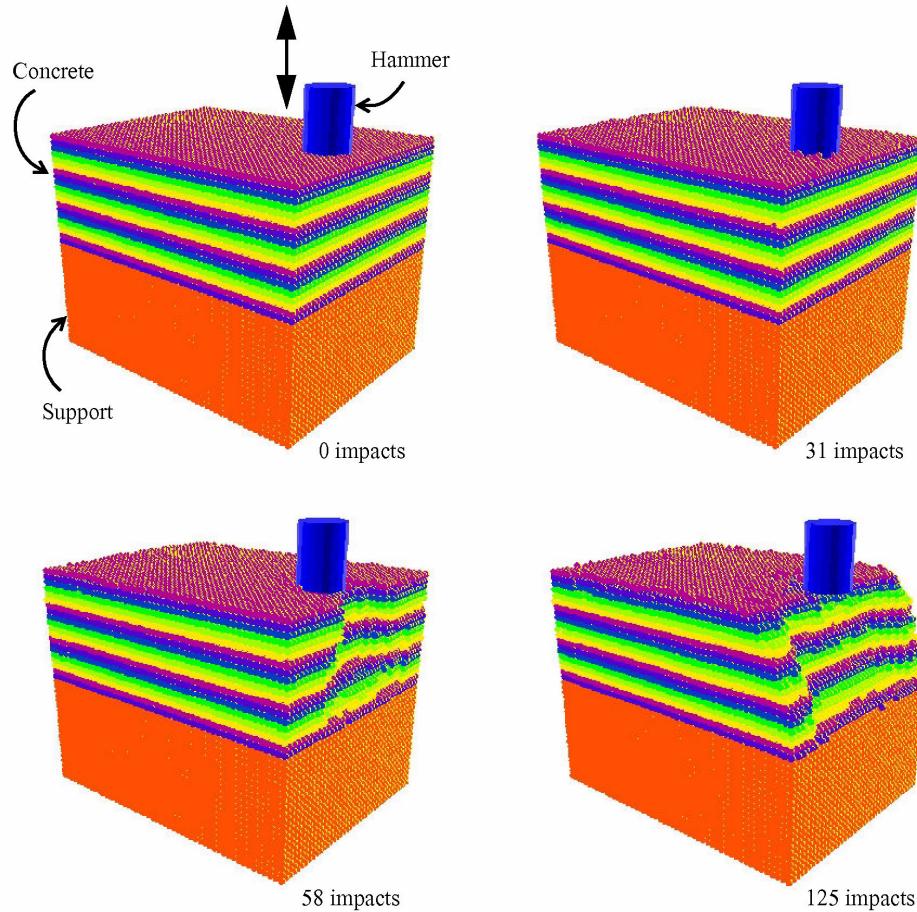
Perforation: Effect of a gap between 2 panels

- How does the separation between concrete targets affect penetrator acceleration?



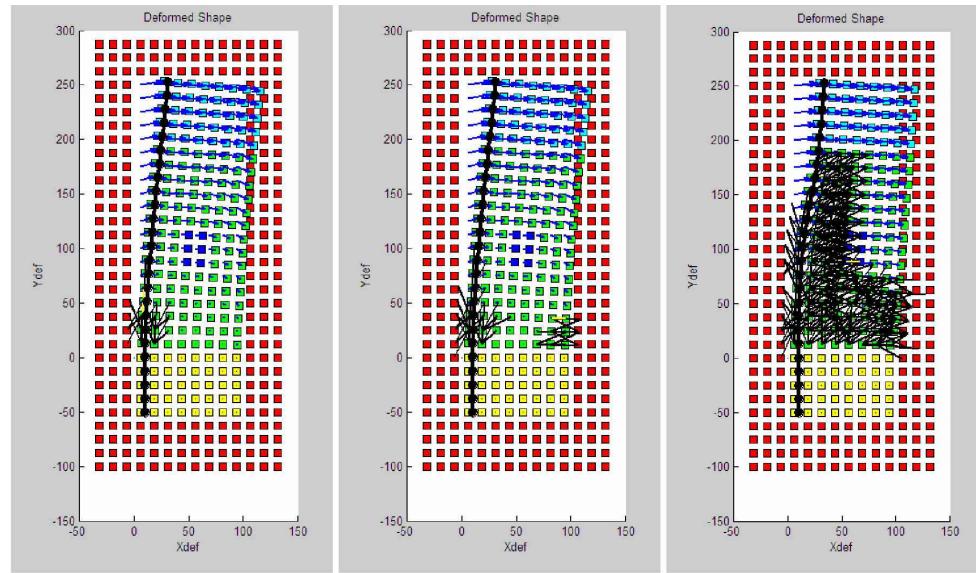
Damage accumulation from multiple impacts

- Each successive impact breaks more bonds internally.
- These coalesce into large cracks.



Degradation of elastic properties due to damage

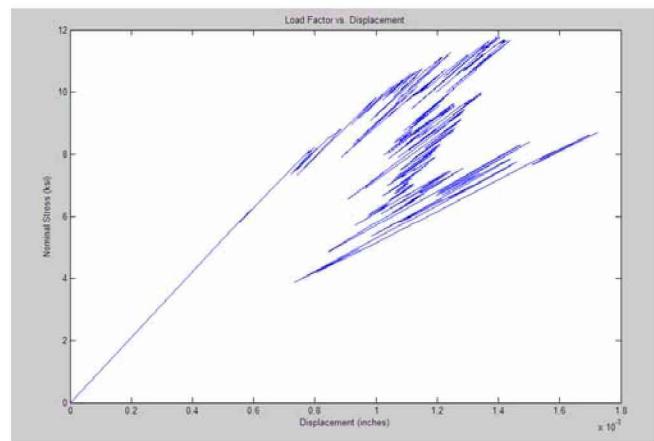
- Cantilevered concrete beam with single rebar
(W. Gerstle, SMIRT-18)



(a) 25 links broken

(b) 50 links broken

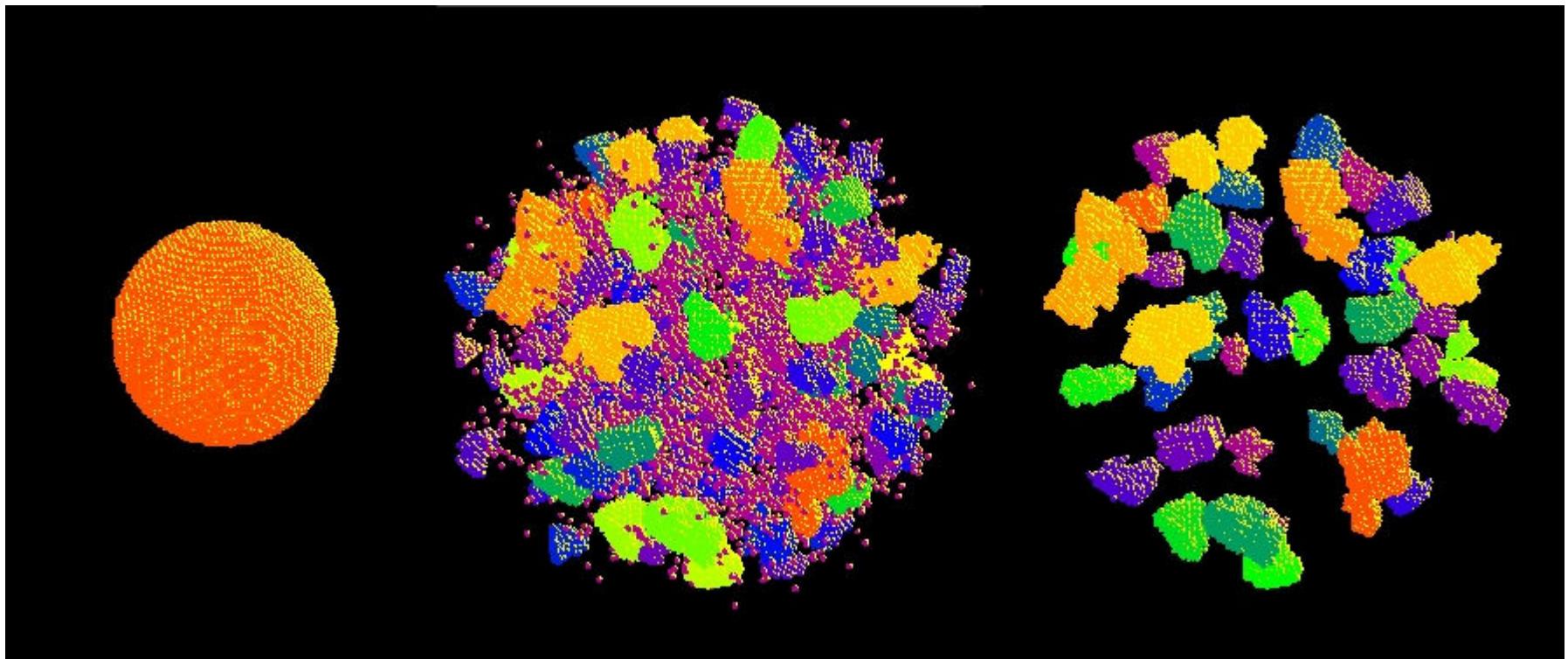
(c) 400 links broken



(d) Load versus load-point displacement

Fragmentation: Brittle sphere expansion

- Uniform initial strain rate 250 s^{-1} .



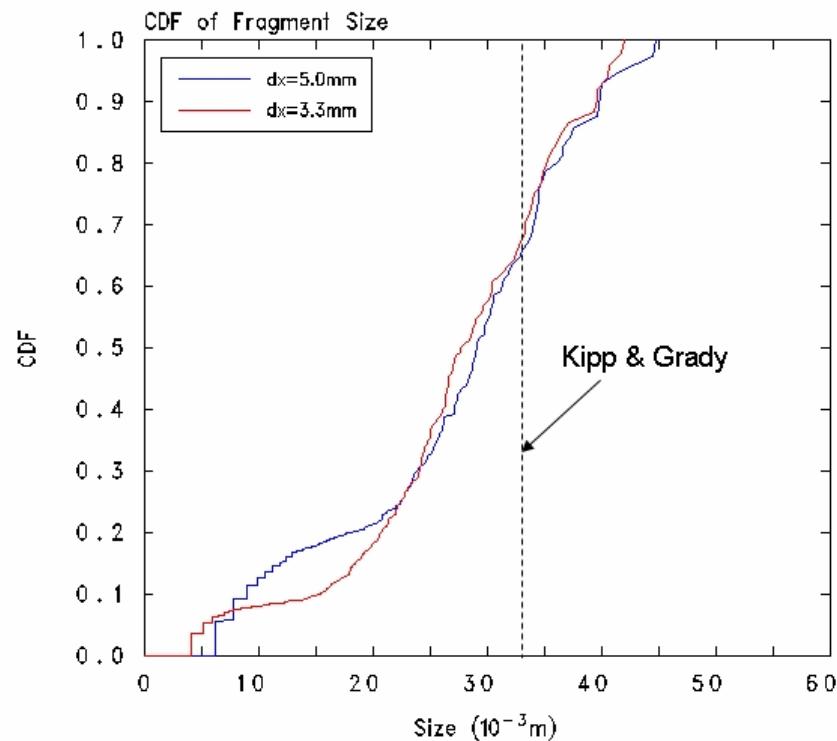
Initial

All fragments

Largest fragments

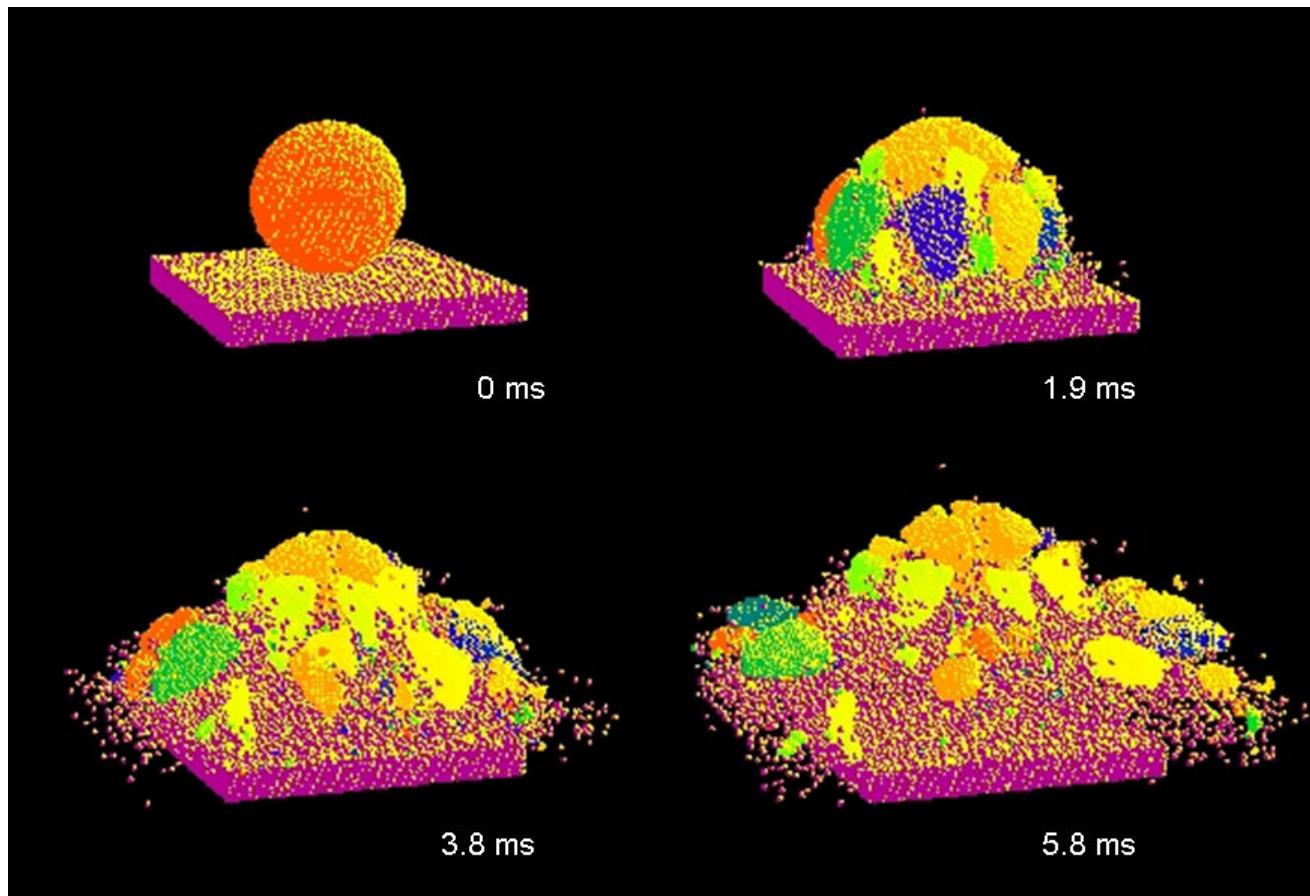
Fragmentation: Brittle sphere expansion, ctd.

- Cumulative distribution function of fragment size.
 - Fragment size from Kipp-Grady equation is also shown.



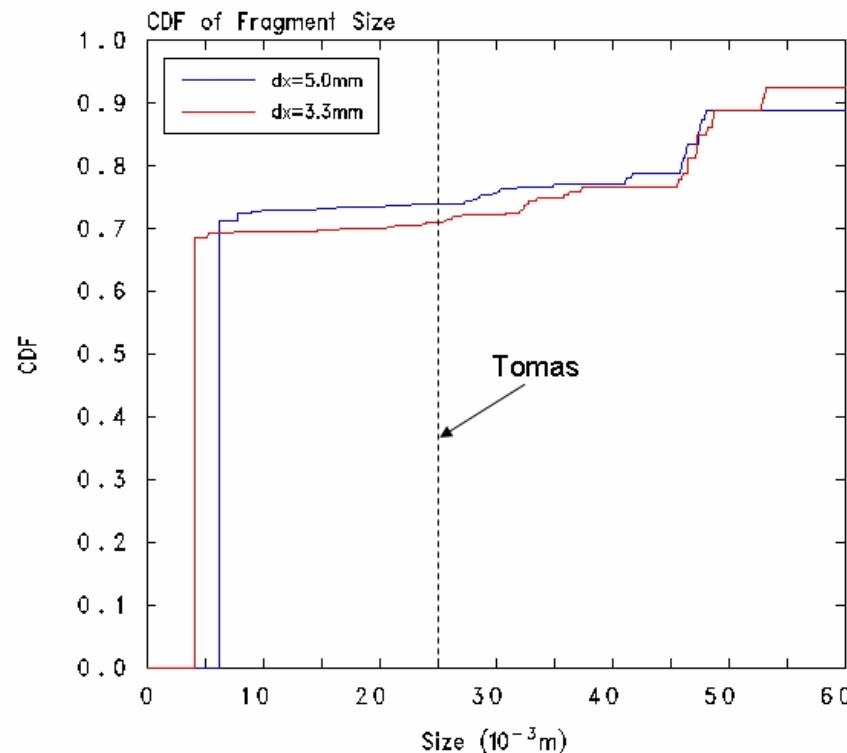
Fragmentation: Concrete sphere drop

- 15cm diameter concrete sphere against a rigid plate, 32.4 m/s.



Fragmentation: Concrete sphere drop, ctd.

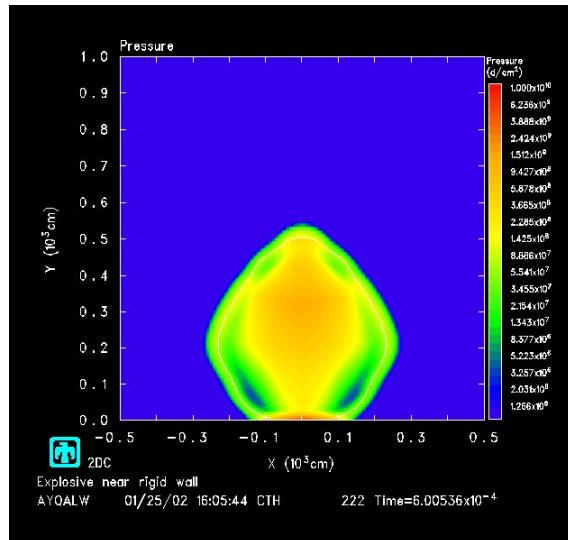
- Cumulative distribution function of fragment size (for 2 grid spacings):
 - Also shows measured mean fragment size*



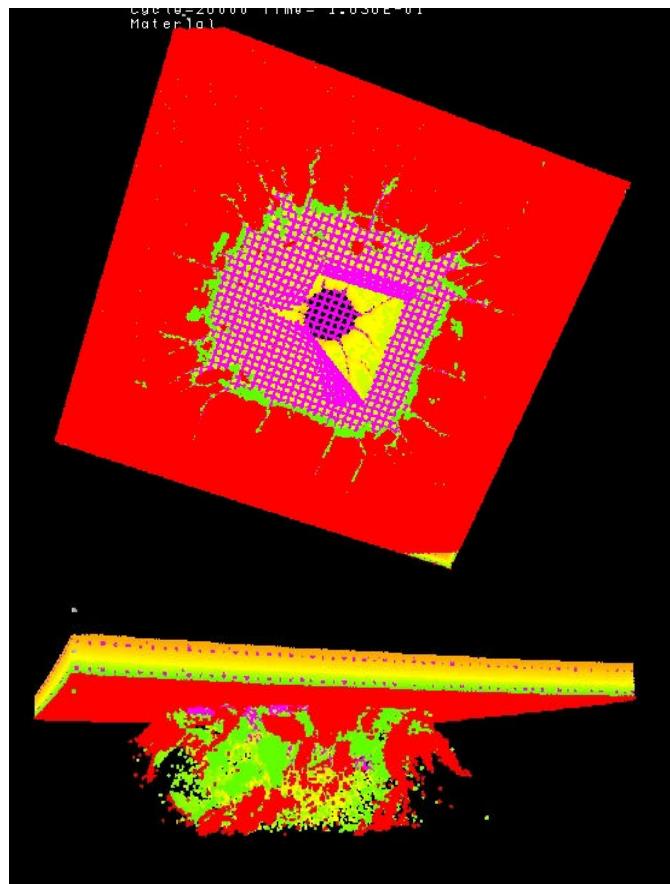
*J. Tomas et. al., *Powder Technology* **105** (1999) 39-51.

Air blast effects

- Air blast loading on a reinforced concrete panel is supplied by the CTH code.



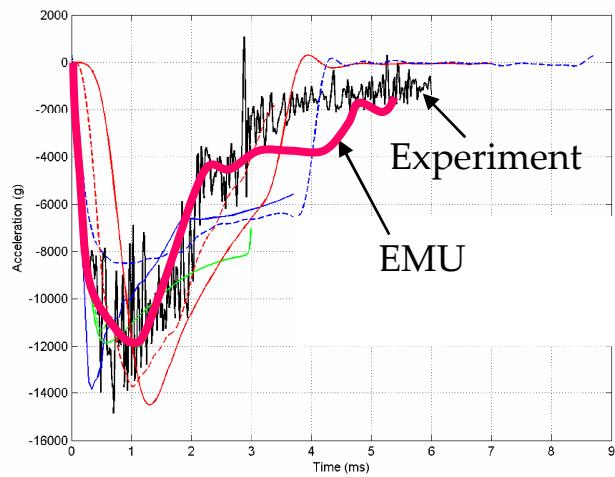
Air blast pressure field (from CTH)



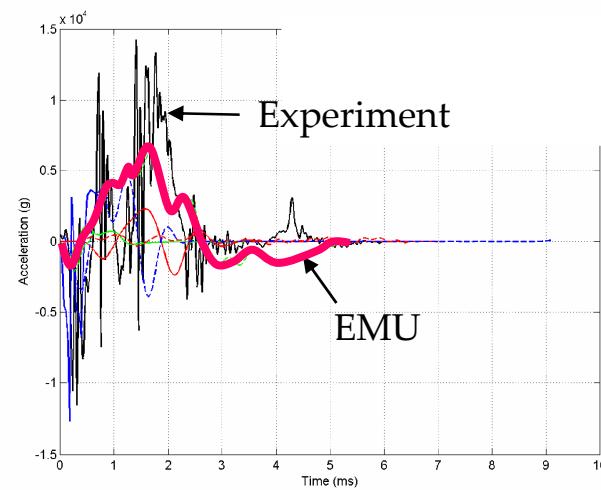
Panel response (from EMU)

Penetration benchmarking (DoD/DOE MOU): Genuine predictions

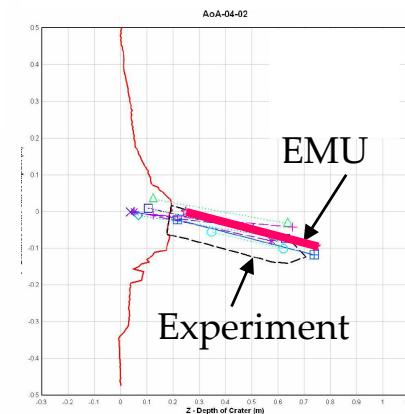
- Purpose: to exercise computational models in a predictive mode:
 - Model results are submitted before test data is released.
- 13kg steel penetrator into quality-controlled concrete targets.
 - On-board accelerometers both fore and aft.



Axial acceleration



Lateral acceleration

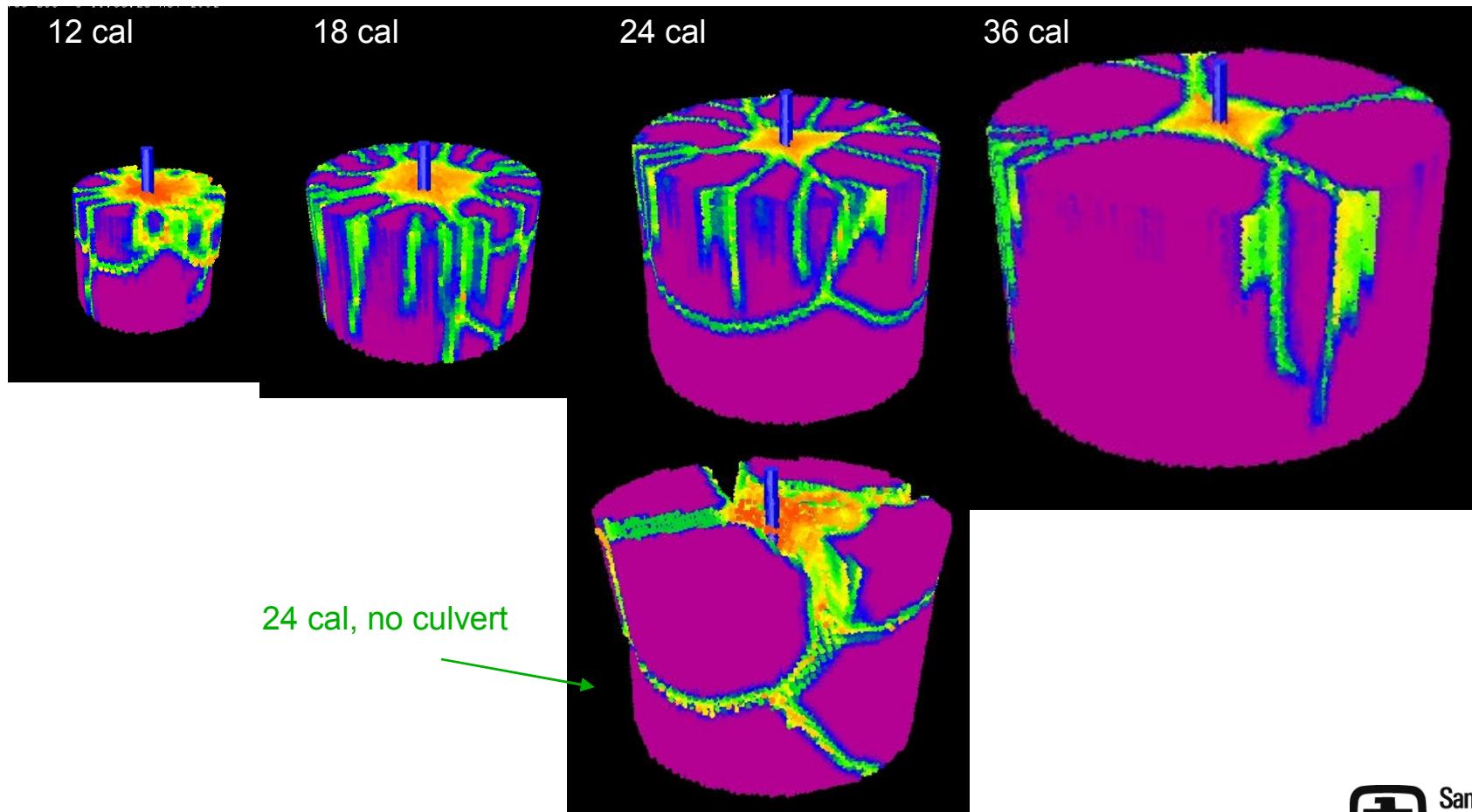


Rest position

Unlabeled curves show other codes' predictions.

Penetration: Target diameter effect study

Cut-away views show only the target material deeper than 0.43m from the top surface.

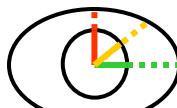


Current research: Mathematics of a more general theory

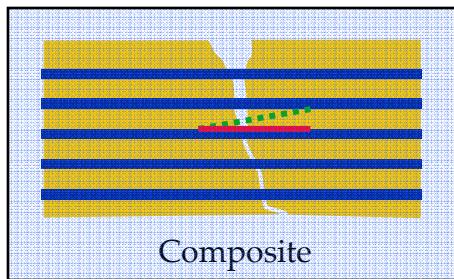
- **Peridynamic states**

- Mathematical generalization of the theory takes it far beyond what can be modeled with pair interactions.

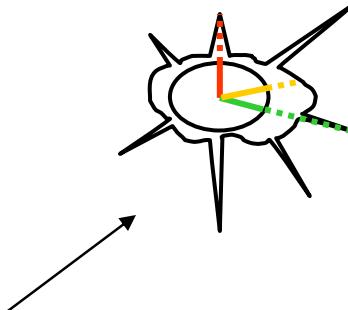
Stress tensor (classical):
• 6 “degrees of freedom”.



$$\sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{bmatrix}$$



Force state (peridynamic):
• Infinite “degrees of freedom”.



$$f = \underline{T}(x' - x)$$

Can use
conventional
material models.

Peridynamic states vs. FE: Elastic-plastic solid

- Direct comparison between a finite-element code and Emu with a conventional material model.
- Results by T. Warren:

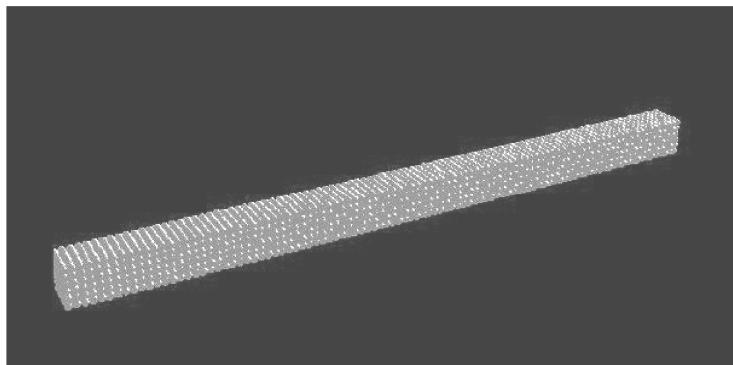


Figure 3. 3600 node discrete peridynamic lattice

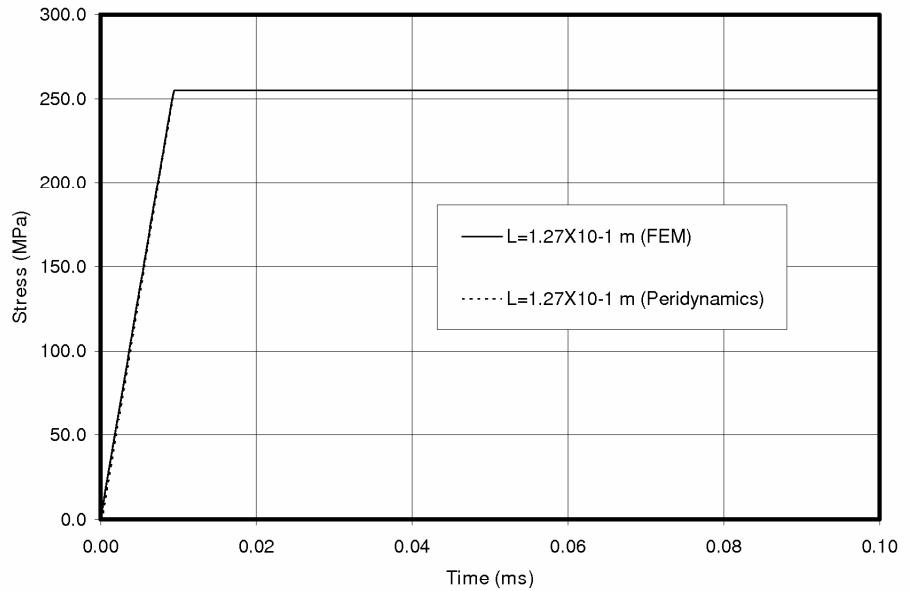


Figure 7. Stress in the bar at $L=127$ mm using both Peridynamics and FEM

Summary

- EMU fills a gap in the capabilities of conventional codes:
 - Ability to model discrete fractures.
 - Direct prediction of fragmentation.
- Current research areas related to concrete modeling:
 - Incorporation of conventional geological material models.
 - Rotational degrees of freedom.
- For more information and references: www.sandia.gov/emu/emu.htm