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Outline

e Theory

— What makes this different?
* Single crack growth
* Concrete applications

— Perforation
* Single panel: effect of impact angle
* Multiple panels
* Effect of reinforcement

— Damage accumulation due to multiple impacts
— Fragmentation and fragment distribution
— Blast loading

— Deep penetration
* Target size effect
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Peridynamic theory:
What makes this different

* Why is it so hard to model fracture with conventional finite element codes?
— The fundamental PDEs do not apply on a crack.
* New approach: peridynamic theory uses integral rather than differential equations.
— Reformulation of the fundamental equations.
— Equations apply everywhere regardless of discontinuities.
— No need for externally supplied “crack growth law”.
— Cracks initiate, grow spontaneously.
— Theory first published in 2000: :
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Real life:
Discontinuities can evolve in complex
patterns not known in advance.

Reformulation of elasticity theory for
discontinuities and long-range forces
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Peridynamic theory:
basic equations

Classical theory:
pi(x, 1) = Veg(x, 1) +b(x 1)

where p = density, ¥ = displacement, ¢ = stress tensor field, and 5 = body
force field.

Peridynamic theory:

where
Le0 = [fulx, ) —ulx 0,5 -x)dV,
R

and 1 is a vector-valued function.
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Peridynamic theory:
Material model

* All material-specific behavior is contained in the function f.
* Material parameters come from measurable elastic-plastic and fracture data.

} Bond force

- Bond failure
Compression -J Tension

Bond stFetch

[

sy,

Yielding
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Peridynamic theory:
Other constitutive models

¢ Visco-microelastic:

bond force= f(r,7,&), r= ‘f + 77‘ = current distance between x and x’

* Microplastic:

A
Bond force

g\ Loading

// Unloading

7
Bond strain

@ Sandia

- National
concrete-workshop-silling.ppt « March 21, 2007 « frame 6 .
protfing-pp Laboratories



Peridynamic theory:
Energy required to advance a crack

e Adding up the work needed to break all bonds across a line yields the energy release rate:

Crack x

G = 2hf [wydvds

0 R,

f

w, = work to break one bond
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EMU numerical method

* Integral is replaced by a finite sum.
* The resulting method is meshless and Lagrangian.

piil =3 fu —ul',x, — x,)AV, +b(x,,1)

ke H
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EMU numerical method:
Code features

* Meshfree (no elements)

e Lagrangian (each node represents a fixed amount of material)
e Parallel (runs on multiple processors)

* Explicit (simple, reliable time integration method)

e “Unguided” crack growth.

— No need for an externally supplied crack growth law for:
* Initiation, growth velocity, direction, branching, arrest, ... .

— Any number of cracks can occur spontaneously.
— Interface bonds are treated the same as other bonds.

./. AT
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EMU numerical method:
Relation to SPH

SPH * Both are meshless Lagrangian methods.
v _ J“’ KV e Both involve integrals. |
ox * But the basic equations are fundamentally different:
1) (v — SPH relies on curve fitting to approximate
== (—) +(—) derivatives that appear in the classical PDEs.
2(\ox) \ox . : :
— Peridynamics does not use these PDEs, relies on
o= 0'(8) pair interactions.
ao— ! ' '
= oK (x)av
do Emu
pii=—+b
o pii(x)= [ f () =uCo),x'—x)dV+b(x)
do/ gx
o1 '
» 4 x“/f" X

v

X .
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Discretized model:
Relation to finite elements

* Can solve the peridynamic equations in a framework similar to FE.
* Can include rotational degrees of freedom, leads to a micropolar model.
* Typical element stiffness matrix (for truss-like element)*:

E'A
L
12E'T
0 = (sym)
7 R i,
7 C— 7,
' 0 0 0 J A‘
e ‘ L ‘ ‘:\vf
rhj:;x 0 0 - 6? 1 0 4E'] HXi
m 6E'] L L 4E'] é)‘
Jiy — i
0 0 0 0 5
m ;. - r’ L ?zi
T | |ZEA4 0 0 0 0 o £A4 “;
/i L v,
iy —12E'] 0 0 o TOEI ,  12ET K
S % I 2 i
A _ " i " 0 X
i o 0 123E Lo, 6E2 Lo, 0 0 121;; I :
rhw L L L , gyi
W 0 0 0 —EJ 0 0 0 o EY 0.
ijz L £
0 0 - 6§ I 287 0 0 6E21 o AT
L L L L
0 6E21 0 0 o 2T, - 6122 Lo, 0 o AET
L L L )7 L ]

* W. Gerstle et. al., to appear in Nuclear Engineering & Design (2007).
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Relation to finite elements:
ABAQUS implementation

Deformation at Time of Maximum Penetraton

® The Emu peridynamic solution method | -

ABAQUS EMU

has been implemented in a special L .
version of ABAQUS*. i

* Can interface peridynamic elements with
conventional FE by using embedded

elements.
Standard FE
Projectile Acceleration Filtered at 20 KHz
[x10°]
080 [ : :
L /\x ——  Acc-ABQ (20 KHz) i
Emb e d d e d - ( \}\“ Acc-EMU (20 Khz)
2 060 - S _
elements 3 =
£ I \ ]
£ 40 1/ N ) _
g \’\\\
g i \ 1
. . [
Peridynamic 3 o) \ i
< ’ ¥
0.00 - I I | I |\‘ A V\\\\f";{("TA =
0.00 1.00 2.00 [x107]
* R. Macek, LANL Report LA-14300, July 2006 . Time (sec)
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3-point bend A more complex geometry
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A

e Ability to model fracture is important for perforation.

Perforation:
Why use this method?

— Target starts weakening long before the penetrator gets through.
— Fracture growth process determines fragment properties.

Penetrator

A

Fragments
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* Cratering has some effect on the acceleration.
— Weakening in the exit crater “attracts” the nose (more discussion later).

Entry crater Exit crater
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Damage, 2.4ms

Pullout damage
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Perforation:
Forces that affect projectile rotation

el

Initial contact Target is weaker below the impact point

Penetrator length

ool Aoy Veoely C
N
il 900 ft/s
2.l - 9’ target |
o ! | —
af ! ]
2 E Tail slap + interaction with debris
Y I N

e o8 13 235 33 23 53 e reverses the direction of rotation

Tip depth (10cm) Sandia
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Acceleration (100 G)

U il el o

Depth (10 cm)
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Crater shapes end up looking
similar, however...

Cracks cannot propagate
directly between panels.

Colors indicate damage (0.45 ms)

2-panel target shows less
confinement near penetrator nose
due to sliding at interface.

Colors indicate x component of displacement (0.45 ms)
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Perforation:
Effect of a gap between 2 panels

* How does the separation between concrete targets affect penetrator acceleration?

127 mm gap

950 mm gap
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Damage accumulation from multiple impacts

Concrete ¢ Hammer

e Each successive impact
breaks more bonds
internally.

e These coalesce into
large cracks. 0 impacts

58 impacts 125 impacts
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Degradation of elastic properties due to damage

 Cantilevered concrete beam with single rebar

(W. Gerstle, SMIRT-18)

¢
Deformed Shape Dsformed Shaps Deformed Shape 47“55'
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e Uniform initial strain rate 250 s..

Initial All fragments Largest fragments

Sandia
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Fragmentation:
Brittle sphere expansion, ctd.

e Cumulative distribution function of fragment size.
— Fragment size from Kipp-Grady equation is also shown.

5 COF of Fragment 3ize
T T T T

dx=53.0mm
0.9 r dx=3.3mm

CDF
=y
n

Kipp & Grady ]

Q 10 240 30 40 50 B0
Size (107 %m)

@ i

- National
concrete-workshop-silling.ppt « March 21, 2007 « frame 25 .
? Laboratories



Sandia
National
Laboratories

concrete-workshop-silling.ppt * March 21, 2007 « frame 26



Fragmentation:

Concrete sphere drop, ctd.

e Cumulative distribution function of fragment size (for 2 grid spacings):

— Also shows measured mean fragment size*

*]. Tomas et. al., Powder
Technology 105 (1999) 39-51.
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 Air blast loading on a reinforced concrete panel is supplied by the CTH code.

Y (10%cm)

N/

0.
-0.5 -0.3 =-0.1 0.1 0.3 0.5
@ 20¢ X (10%em}

Explasive near rigid wall
ATQALW 01/25/02 16:05:44 CTH 222 Time=6.00536x10"*

Air blast pressure field (from CTH)
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Genuine predictions

Penetration benchmarking (DoD/DOE MOU):

* Purpose: to exercise computational models in a predictive mode:
— Model results are submitted before test data is released.

* 13kg steel penetrator into quality-controlled concrete targets.
— On-board accelerometers both fore and aft.

2000 ‘ - ‘ . , ; . 157

1k
-2000f- %
\

1
-4000 05

-6000 [t 4
\ ol 4tV
Al

Acceleration (g)
Acceleration (g)

A
-8000 -
-10000 |- | B 0.5

-12000 | - i

-14000 -

-16000
0

Time (ms)

Axial acceleration Lateral acceleration

Unlabeled curves show other codes’ predictions.
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Penetration:
Target diameter effect study

Cut-away views show only the target material deeper than 0.43m from the top surface.

vvvvvv

24 cal, no culvert
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Current research:
Mathematics of a more general theory

* Peridynamic states

— Mathematical generalization of the theory takes it far beyond what can be modeled

with pair interactions.

O-ll 0-12 0-13
Stress tensor (classical): I oc=|0, 0, Oy
* 6 “degrees of freedom”. o, 0, Oy

J=L(x'-x)

Composite

Can use
conventional
material models.

Force state (peridynamic):

*Infinite “degrees of freedom”.
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Peridynamic states vs. FE:

Elastic-plastic solid

* Direct comparison between a finite-element code and Emu with a
conventional material model.

* Results by T. Warren:

300.0
250.0 /
200.0
o
% —L=1.27X10-1 m (FEM)
& 150.0
Q
2 / ------ L=1.27X10-1 m (Peridynamics)
7]
100.0 /
50.0
Figure 3. 3600 node discrete peridynamic lattice /
0.0
0.00 0.02 0.04 0.06 0.08 0.10
Time (ms)

Figure 7. Stress in the bar at L=127 mm using both Peridynamics and FEM
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Summary

- EMU fills a gap in the capabilities of conventional codes:
* Ability to model discrete fractures.
e Direct prediction of fragmentation.
® Current research areas related to concrete modeling;:
* Incorporation of conventional geological material models.
* Rotational degrees of freedom.
e For more information and references: www.sandia.gov/emu/emu.htm

@ Sandia

- National
concrete-workshop-silling.ppt « March 21, 2007 « frame 33 .
protfing-pp Laboratories



	Concrete Fracture and Failure Modeling with Peridynamics
	Outline
	Peridynamic theory:�What makes this different
	Peridynamic theory:�basic equations
	Peridynamic theory:�Material model
	Peridynamic theory:�Other constitutive models
	Peridynamic theory:�Energy required to advance a crack
	EMU numerical method
	EMU numerical method:�Code features
	EMU numerical method:�Relation to SPH
	Discretized model:�Relation to finite elements
	Relation to finite elements:�ABAQUS implementation
	Single crack growth in metals:�Examples
	Perforation:�Why use this method?
	Perforation:�Typical results
	Perforation:�Cracks in a target due to oblique impact
	Perforation:�Explicit model of concrete reinforcement
	Perforation:�Forces that affect projectile rotation
	Perforation of concrete:�900 ft/s into 9” target
	Perforation:�Solid vs. 2-panel target with 0mm gap
	Perforation:�Effect of a gap between 2 panels
	Damage accumulation from multiple impacts
	Degradation of elastic properties due to damage
	Fragmentation: �Brittle sphere expansion
	Fragmentation: �Brittle sphere expansion, ctd.
	Fragmentation: �Concrete sphere drop
	Fragmentation: �Concrete sphere drop, ctd.
	Air blast effects
	Penetration benchmarking (DoD/DOE MOU):�Genuine predictions
	Penetration:�Target diameter effect study
	Current research:�Mathematics of a more general theory
	Peridynamic states vs. FE:�Elastic-plastic solid 
	Summary

