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Outline

• Theory

– What makes this different?

•Single crack growth

•Concrete applications

– Perforation

• Single panel: effect of impact angle

• Multiple panels

• Effect of reinforcement

– Damage accumulation due to multiple impacts

– Fragmentation and fragment distribution

– Blast loading

– Deep penetration

• Target size effect
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Peridynamic theory:
What makes this different

• Why is it so hard to model fracture with conventional finite element codes?

– The fundamental PDEs do not apply on a crack.

• New approach: peridynamic theory uses integral rather than differential equations.

– Reformulation of the fundamental equations.

– Equations apply everywhere regardless of discontinuities.

– No need for externally supplied “crack growth law”.

– Cracks initiate, grow spontaneously.

– Theory first published in 2000:

Real life: 
Discontinuities can evolve in complex 

patterns not known in advance.
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Peridynamic theory:
basic equations
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Peridynamic theory:
Material model

•All material-specific behavior is contained in the function f.

•Material parameters come from measurable elastic-plastic and fracture data.
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Peridynamic theory:
Other constitutive models

• Visco-microelastic:

• Microplastic:

),,,( force bond ξrrf &= x'xr  and between  distancecurrent =+= ηξ

Bond strain

Bond force

Loading

Unloading
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• Adding up the work needed to break all bonds across a line yields the energy release rate:

Peridynamic theory:
Energy required to advance a crack

ξλ

f

w0

w0 = work to break one bond
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There is also a version of the J-integral that applies in this theory.
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EMU numerical method

•Integral is replaced by a finite sum. 

•The resulting method is meshless and Lagrangian.
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EMU numerical method:
Code features

•Meshfree (no elements)

•Lagrangian (each node represents a fixed amount of material)

•Parallel (runs on multiple processors)

•Explicit (simple, reliable time integration method)

•“Unguided” crack growth.

– No need for an externally supplied crack growth law for:

• Initiation, growth velocity, direction, branching, arrest, … .

– Any number of cracks can occur spontaneously.

– Interface bonds are treated the same as other bonds.
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EMU numerical method:
Relation to SPH

•Both are meshless Lagrangian methods.

•Both involve integrals.

•But the basic equations are fundamentally different:

– SPH relies on curve fitting to approximate 
derivatives that appear in the classical PDEs.

– Peridynamics does not use these PDEs, relies on 
pair interactions.( )
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Discretized model:
Relation to finite elements

• Can solve the peridynamic equations in a framework similar to FE.

• Can include rotational degrees of freedom, leads to a micropolar model.

• Typical element stiffness matrix (for truss-like element)*:
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* W. Gerstle et. al., to appear in Nuclear Engineering & Design (2007).
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Relation to finite elements:
ABAQUS implementation

• The Emu peridynamic solution method 
has been implemented in a special 
version of  ABAQUS*.

• Can interface peridynamic elements with 
conventional FE by using embedded 
elements.

* R. Macek, LANL Report LA-14300, July 2006 .

Standard FE

Embedded 
elements

Peridynamic
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Single crack growth in metals:
Examples

3-point bend A more complex geometry
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Perforation:
Why use this method?

•Ability to model fracture is important for perforation.

– Target starts weakening long before the penetrator gets through.

– Fracture growth process determines fragment properties.

Fractures

Penetrator

Fragments
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Perforation:
Typical results

• Cratering has some effect on the acceleration.

– Weakening in the exit crater “attracts” the nose (more discussion later).

(Colors are for included for visualization purposes only)

Entry crater Exit crater
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Perforation:
Cracks in a target due to oblique impact
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Perforation:
Explicit model of concrete reinforcement

Damage, 2.4ms

Pullout damage Rear surface crater formation
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Perforation:
Forces that affect projectile rotation

Initial contact Target is weaker below the impact point

A B

Tail slap + interaction with debris 
reverses the direction of rotation

C

Tip depth (10cm)

A
ng
le
 (
de
g)

900 ft/s

9” target

target

Penetrator length
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Perforation of concrete:
900 ft/s into 9” target

Depth (10 cm)

A
cc
el
er
at
io
n 
(1
00
 G
)

target

• Peak axial acceleration occurs with nose tip is about halfway through the target.

z-velocity at time of peak axial acceleration

Damage at time of peak axial acceleration
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Perforation:
Solid vs. 2-panel target with 0mm gap

Solid 0 gap

0 gapSolid

0 gapSolid

Crater shapes end up looking 
similar, however…

Cracks cannot propagate 
directly between panels.

2-panel target shows less 
confinement near penetrator nose 

due to sliding at interface.

Colors indicate damage (0.45 ms)

Colors indicate x component of displacement (0.45 ms)

x
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Perforation:
Effect of a gap between 2 panels

85 mm gap 127 mm gap

0 mm gap 42 mm gapSolid

550 mm gap

• How does the separation between concrete targets affect penetrator acceleration?
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Damage accumulation from multiple impacts

• Each successive impact 
breaks more bonds 
internally.
• These coalesce into 
large cracks.
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Degradation of elastic properties due to damage

• Cantilevered concrete beam with single rebar 
(W. Gerstle, SMIRT-18)
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Fragmentation: 
Brittle sphere expansion

• Uniform initial strain rate 250 s-1.

Initial All fragments Largest fragments
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Fragmentation: 
Brittle sphere expansion, ctd.

• Cumulative distribution function of fragment size.

– Fragment size from Kipp-Grady equation is also shown.
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Fragmentation: 
Concrete sphere drop

• 15cm diameter concrete sphere against a rigid plate, 32.4 m/s.
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Fragmentation: 
Concrete sphere drop, ctd.

• Cumulative distribution function of fragment size (for 2 grid spacings):

– Also shows measured mean fragment size*

*J. Tomas et. al., Powder 
Technology 105 (1999) 39-51.
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Air blast effects

• Air blast loading on a reinforced concrete panel is supplied by the CTH code.

Air blast pressure field (from CTH)

Panel response (from EMU)
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Penetration benchmarking (DoD/DOE MOU):
Genuine predictions

• Purpose: to exercise computational models in a predictive mode: 

– Model results are submitted before test data is released.

• 13kg steel penetrator into quality-controlled concrete targets.

– On-board accelerometers both fore and aft.

EMU

Experiment

Experiment

EMU

Axial acceleration Rest position

EMU

Experiment

Lateral acceleration

Unlabeled curves show other codes’ predictions.
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Penetration:
Target diameter effect study

Cut-away views show only the target material deeper than 0.43m from the top surface.

18 cal12 cal 24 cal 36 cal

24 cal, no culvert
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Current research:
Mathematics of a more general theory

• Peridynamic states

– Mathematical generalization of the theory takes it far beyond what can be modeled 
with pair interactions.

Stress tensor (classical):
• 6 “degrees of freedom”.

Force state (peridynamic):
•Infinite “degrees of freedom”.
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Peridynamic states vs. FE:

Elastic-plastic solid

•Direct comparison between a finite-element code and Emu with a 
conventional material model.

•Results by T. Warren:
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Summary

• EMU fills a gap in the capabilities of conventional codes:
• Ability to model discrete fractures.
• Direct prediction of fragmentation.

• Current research areas related to concrete modeling:
• Incorporation of conventional geological material models.
• Rotational degrees of freedom.

• For more information and references: www.sandia.gov/emu/emu.htm
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