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Overview

• How much information can we obtain through 
observation of the mass density profile evolution 
during z-pinch implosion?
– Abel inversion of imaging data
– Continuity equation analysis to obtain kinetic energy

• How can we measure ρ(r,t) experimentally?
– Multi-frame x-ray radiography
– Time-resolved x-ray self-emission diagnostics

• K-shell spectroscopy of low-Z wire arrays
– Doppler shift measurements can give velocity
– Plasma parameters inferred in different regions, 

particularly on-axis where Abel inversion is most 
problematic



BJ 3

2D areal density images from 3D MHD simulation (Jennings)

• 3D MHD Gorgon code, circuit model with shunting resistor
• 2.5 mg W wire array, 20 mm initial diameter, 120 wires,

ad hoc perturbations to seed implosion instabilities
• 2D areal density map generated every 1 ns
• Center of image found by minimizing RMS difference 

between left and right sides
• Image is axially and left-right averaged to

produce line-integrated density N(x)

Error bars indicate difference 
in right and left sides of image
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Mass density profile from onion-peeling Abel inversion

• Assumes cylindrical symmetry
• Numerical Abel inversion method

– B. Jones et al., IEEE T. Plasma Sci, 
34, 213 (2006).

• Onion-peeling does not handle 
noisy images well, but adequate 
for this case

• Average mass density profile 
from code calculated
by summing xyz
points in radial bins

etc.
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Momentum density profile inferred from continuity equation

• Assumes cylindrical symmetry 
with only radial motion

• Derivative in integrand calculated 
numerically from linear fit to three 
time points in ρ(r,t) matrix

• Integration performed numerically 
over discrete r values
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Velocity and kinetic energy profiles from ρ and ρv profiles

• Average kinetic energy 
density profile from code 
calculated
by summing xyz points in 
radial bins

• Average velocity profile from 
code is from v = sqrt(2k/ρ)

• k(r) is valid except where ρ is 
very low; 1/ρ factor
leads to errors
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Comparison of kinetic energy evolution

• Integrate k(r) to get KE(t)
– Remove points with ρ<0.05ρmax to 

avoid division by low numbers

• Compares well with Gorgon KE 
until just before peak KE
– Abel inversion problems near the axis
– Could be a lot of azimuthal non-

uniformity (note right-left discrepancy)
– Need to check if flow has azimuthal

component near stagnation
– Note early time discrete wire 

structures leads to Abel artifacts

• Velocity of the center of mass 
gives equivalent KE
– All mass moving at

nearly same velocity

Gorgon KE
Abel/Cont. KE
CM KE
X-ray yield
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Other energetics considerations near stagnation

• From Gorgon,  ∇p force 
balances jxB force near 
stagnation

• Plasma decelerates but jxB
can continue to do work

• Can we infer a strong ∇p 
from force density via ρ(r,t)?

• Would need v, n, T profiles to 
infer p·dV work
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MLM pinhole camera produces monochromatic images

• Pinhole images are reflected 
from planar Cr/C multilayer 
mirror (MLM)

– Calculated 20% peak reflectivity, 
~5 eV photon energy bandwidth

– 34° grazing angle allows shielding 
of detector from hard x-rays

• Thin filter blocks UV/visible light, 
suppresses second harmonic 
MLM reflection

• Instrument on the Z machine 
combines MLM-reflected and 
standard pinhole cameras 
(PHC)

Cr/C MLM
40 Å period
θ = 34°

4 μm Parylene-N
+ 1000 Å Al

B. Jones et al., IEEE T. Plasma Sci. 34, 213 (2006).
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(1) Cu Baffles
(2) Pinholes

(3) W Baffles
(4) Optional Filters

(5) Alignment LEDs
(6) Optional FiltersFour-port 

flange
(at wall of Z 

vacuum 
chamber)

Alignment 
telescope

Retractable 
alignment 

mirror

Multilayer 
mirror

MCP cameras

Gate 
valve

Lead 
shield

Ball 
gimbal

To z-pinch 
source

MLM pinhole imager has been fielded on the Z accelerator

• Instrument mounts 
on 12° side-on LOS

• 3 PHCs can be 
fielded (one without 
mirror reflection)

• Ball gimble pivots to 
align with source

• Alignment under 
vacuum corrects for 
pipe sag and 
movement in Z load 
region

• Instrument is 
differentially 
pumped behind gate 
valve

B. Jones et al., Rev. Sci. Instrum. 75, 4029 (2004).

Filter slider assembly
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Three simultaneous 8-frame MCPs are now built for Z imager

• Large 34° grazing angle allows detector 
shielding from hard x-rays/brems

• Filters in front of MCP eliminate < 100 eV
photons from reflection or fluorescence at MLM

To source

Left MCP camera

Middle MCP camera (no mirror)

Right MCP camera

Filter slider

• Standard pinhole camera 
on instrument axis can be 
filtered to look at >1 keV
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Z-pinch implosion structure imaged at multiple energies

• Opaque regions of cool plasma mask core after peak x-rays
• Striations on ~277 eV frame at -0.3 ns apparently

due to MLM defect

• Nested Al wire 
array z pinch

• Simultaneous 
imaging at two 
photon energies

• Imploding fingers 
of trailing cooler 
mass in ~277 eV
images

• Al K-shell 
emitted from hot, 
dense column 
accreting on axis
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Z-pinch implosion dynamics and x-ray generation studied

Nested Cu wire arrays 277 eV
8 keV

z1617
z1616
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Z1436 copper wire array implosion studied in detail

• Simultaneous imaging at ~277 eV and ~8 keV Cu K-shell
• Gradual accretion of mass on axis during ~5 ns x-ray pulse rise
• 3D structure: zipper at stagnation, trailing mass at large radius
• No brems background on MLM-reflected images
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B. Jones et al., IEEE T. Plasma Sci. 34, 213 (2006).
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Radial structure of imploding shell studied at stagnation

• Radial line-out taken across each 277 eV image
– Average over axial structure, above cathode zipper and re-emission
– Smoothed corresponding to 480 μm camera resolution
– Error bars represent asymmetry from left to right of axis

• A diffuse shell appears to implode onto a column on axis
– 60 cm/μs shell velocity << 110 cm/μs 0D calculation
– Presence of hollow features implies opacity is not high
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Emissivity profiles inferred from Abel-inverted self-emission

• Assumptions:
– Emission is optically thin at 277 eV
– Cylindrically symmetric geometry

• Numerical Abel inversion method
– H. K. Park, Plasma Phys. Control.

Fusion 31, 2035 (1989).

• 50-60 cm/μs velocities, over
4-5 mm radial shell width

• ~4 mm/60 cm/μs ~ 7 ns, equal to 
measured FWHM of
total x-ray pulseRadius (mm)
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Estimated kinetic energy is inadequate to explain x-ray yield

• Kinetic energy is estimated 
assuming all of the mass is 
moving at 50-60 cm/μs

• KE can account for initial
x-ray rise, but not total yield

• 2D and 3D MHD calculations 
predict p·dV work driven by
j x B and Ohmic heating will 
dominate KE deposition
– D. L. Peterson et al., Phys. 

Plasmas 5, 3302 (1998).

– J. P. Chittenden et al., Plasma 
Phys. Control. Fusion
46, B457(2004).
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CR simulations to relate emissivity to plasma conditions

• Non-LTE PrismSPECT collisional-radiative code*
• 95% Al, 5% Mg over range of ni, Te
• All atomic levels for B-like through H-like; all ground state levels
• 1D radiation transport with 1 mm path length
• Optically thin emission evident for Te>100 eV

*J. J. MacFarlane et al., Proc. IFSA 2003, 457 (2004).
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L-shell continuum imaging may be more simply related to ni

• Non-LTE PrismSPECT collisional-radiative code*
• 95% Al, 5% Mg over range of ni, Te
• All atomic levels for B-like through H-like; all ground state levels
• 1D radiation transport with 1 mm path length
• Optically thin emission evident for Te>100 eV

*J. J. MacFarlane et al., Proc. IFSA 2003, 457 (2004).
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Optically thin Doppler splitting seen in low-mass Al wire array

• Oval shape—Doppler split seen on axis, 
but not in tangential view of shell

• At early time, red/blue-shifted lines are 
similar magnitude ⇒ optically thin

• Speckle could be azimuthal structure
• At later times, red-shifted line is 

attenuated by shell/trailing mass opacity
• Splitting not so obvious in Al lines—

brighter precursor emission on axis?
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Opacity in cold 
trailing mass

Doppler-shifted absorption seen in high-mass Al wire array

Z1518, Al Ly-α
t = -9.0 ns
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Opacity in cold trailing mass attenuates 
red-shifted Al Ly-α and He-α

Doppler-shifted absorption seen in high-mass Al wire array

Z1518, t = -9.0 ns

• Collisional-radiative model, radiation
transport in discrete zones (Y. Maron)

– Hot: 1.5 mm < R < 2 mm
– Cold: 2 mm < R < 9 mm

• Line shape calculations
– Stark broadening (not dominant)
– Doppler broadening/splitting (implemented for first time, δv/v=10%)

• Preliminary results (need to consider satellites):
– Hot: ni = 5 x 1019 cm-3, Te = 700 eV, v = 40 cm/μs
– Cold: ni = 5 x 1019 cm-3, Te = 150 eV, v = 30 cm/μs
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Summary

• Abel inversion yields physically relevant information 
despite deviation from cylindrical symmetry

• Continuity equation approach offers a technique for 
inferring plasma momentum and kinetic energy

• Several independent possibilities for measuring 
density profiles

• Spectroscopic techniques can offer independent 
velocity measurement, and plasma n, T  information 
(especially in stagnated pinch)

• Temperature profiles are needed in addition to say 
more about compressional heating, thermalization
rates, energy partitioning, etc.


