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dr~100 um. dz~60 um., N¢=120 Each cell on injection surface obeys
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effect of azimuthal correlation
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3% correlated (2502 ns

In 3% correlated problem, bubble
N growth is reduced because current
_ igizg can flow azimuthally, rather than

; SR | radially inward along the bubble

4.949¢+06 surface.

3% correlated (2502 ns)



100% correlation evolution
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Bubble strikes axis
_ A —I|so quickly, there is
. :_E_ copious trailing
e #Imass, through which
current can reconnect

From 2506-2512, there
is bulk implosion of
material, but current
radius moves little

Note the exotic
density profiles!




visualization of current flow

100% correlation (t=2506 ns)

Beauty of 100% corr.
1 simulations is

Tl () 3 . .
| ’ | dynamics occurs in
i =oh U5 000e+( r-z plane, allowing
zeo=g b A - ) ..
7% afl A D4 visualization.

Note the formation
of the current eddy,
as well as current
jumping across the
“vacuum” gap

Note, in these
simulations,
minimum electrical
conductivity = l.e-7
* max electrical
conductivity
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Mass injection scheme can aid in the understanding and visualization
of the phenomenon of trailing mass and current. How does the network
of trailing mass change as we twiddle the knobs of the mass injection
scheme?

Results are only in their preliminary stage, but hope to use intuition
garnered from this problem to relate to the simpler 2D problems, as well
as help understand more complicated 3D wire ablation simulations
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Choice of injection velocity will determine

density profile during implosion.
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“early” implosion, shell-like distribution

m_abl (mg)

“delayed’ implosion, distributed mass profile

“delayed’ implosion, more shell-like than above
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higher velocity case: vy)=7e4(B,/60)°°
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Generates good agreement with
timing of all 3 experimental backlighting
shots BUT not shell-like enough, too

much mass on axis
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n.b. Experimental image
and resulting Abel inversion
is actually averaged over

1 ns



lower velocity case: vy=3e4(B,/60)°-°
Due to low v0 and high dm/dt, this case
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Low injection velocity ablates
and implodes too early, but
generates shell-like profile in
agreement with experiment

Higher velocity ablates and
implodes at about the right time,
but has too distributed a mass
profile.

Maybe this is a compromise?



Xtral: lower velocity case: vy=3e4(B,/60)°

P?if’f' to Pea power (I~1'5 MA)  Due to low v0 and high dm/dt, this case
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Even though we used only 3%
azimuthal correlation on the
injection surface, we can still
see long ‘““tendrils” in the
1mage.
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Trailing mass appears more
wispy in experiment, with
tendrils gradually dissipating
with distance. Simulation
tendrils cut off more abruptly.
Even so, the overall density
profile in experiment looks
more shell-like.
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I (MA)

Xtra3:

X comparison

2.4 mg cases, current drive

0.010

0.002

0.000L L .
2440 2460 2480

v3e4 corl0

YTy

v7e4_cor_all

v7e4_corlO (str_v5_zr)

t(ns)

2500

1 mg cases, voltage drive

2520

2540

15

-

3

10

——r v A | v

L

| experiment
+ v0=7e4(B/60)"-¢

v0=1e5(B/60)°¢

50

t(ns)

100

150

150

power (TW)

2440

2460

2480 2500

t(ns)

2520

2540

120

*YY*r

100
8of
60F

a0f

v

20

M

80

100




