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Verification and validation of software in the field of scientific computing is increasingly
being recognized as a critical part of the software, algorithm, and model development
cycle. Multi-mechanics coupling represents an important and challenging role in providing
confidence in the integrated multi-mechanics codes. This paper presents an overview of the
math models implemented within the Sandia National Laboratories Advanced Simulation
and Computing SIERRA Mechanics code project that supports the engulfed object-in-a-fire
scenario. This scenario is characterized by coupling turbulent fluid mechanics, combustion,
soot generation and transport, participating media radiation (PMR), thermal conduction
and in the case of propellant fires, reacting Lagrangian particles. Attaining an adequate
state of code verification for such a complex engineering mechanics scenario represents a
daunting challenge. A systematic approach is therefore required. Examples of single and
multiple mechanics verification methodologies will be presented.

Nomenclature

u velocity, m/s
ρ Density, kg/m3

p Pressure, N/m2

τij Viscous stress tensor, kg/m-s2

µ Viscosity, kg/m-s
h Enthalpy, kJ/kg
q Heat flux, W/m2

Pr Prandtl number
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Sc Schmidt number
Y Mass fraction
ω Reaction rate, kg/s-m3

D Diffusion coefficient, m2/s
T Temperature, K
Q Volumetric heating, W/m3

k Thermal conductivity, W/m-K
Cp Specific heat, kJ/kg-K
Subscript
i Component
t Turbulent
p Particle
◦ Reference condition

I. Introduction

The objective of this paper is to present several different solutions suitable for verification of multi-
mechanic applications using a suite of computational codes, Fuego, Calore, and Syrinx, developed at Sandia
National Laboratories. These application codes are built within the SIERRA framework which provides data
structures, scalable parallelism, and a common interface for modern linear and nonlinear solvers, all within
a fully unstructured mesh environment. Additionally, code coupling is naturally supported via surface and
volume transfers (currently done via linear interpolation) on potentially non-conformal meshes. In utilizing
the SIERRA framework, these codes can be coupled to solve a variety of multi-mechanic applications which
involve heat transfer between fluid/fluid, fluid/solid and fluid/solid/PMR regions. Systematic code and
solution verification has been carried out using these coupled suite of codes for various models using a
variety of techniques including: code-code comparisons, similarity solutions, boundary layer solutions, exact
solutions, and the method of manufactured solutions.

The objective of code verification is to reveal coding mistakes that affect the order of accuracy and
to determine if the governing discretized equations are being solved correctly. Quite often, the process of
verification reveals algorithmic issues that would otherwise remain unknown. For example, detailed time
accuracy verification studies has provided further understanding of stabilized finite volume methods.1

In practice, a variety of comparison techniques exist for verification. For example, benchmark and code-
to-code comparison is not considered rigorous due to the errors that exist in other code solutions, such
as from discretization and iteration. Analytic solutions and the method of manufactured solutions remain
the most powerful methods for code verification, since they provide a means to obtain quantitative error
estimations in space and time.

Roache2–4 has made the distinction between code verification and calculation verification, where calcu-
lation verification involves grid refinement required for every problem solution to assess the magnitude, not
order, of the discretization error. Discretization errors, distinguished from modeling and iteration errors, is
defined as the difference between the exact solution to the continuum governing equations and the solution to
the algebraic systems representation due to discretization of the continuum equations. The order of accuracy
can be determined by comparing the discretization error on successively refined grids. Thus, it is desirable
to have an exact solution for comparision to determine the discretization errors.

The problems of interest to this project typically involve fire/object interaction applications that repre-
sents a set of transport equations that are coupled via surface or volume terms. For example, participating
media radiation couples to the fluid mechanics via a volume term; the divergence of the radiative flux appears
in the energy equation (see Eq. 11 ) for the fluids, while the temperature, emissivity, and absorption coef-
ficients are required for the radiative transport equation, Eq. 26. In the case of a fluid-thermal conduction
interface, coupling occurs via surface boundary conditions. The same applies for a radiation-solid interface.
All of the couplings must be verified to be of the same order of accuracy as the discretizations used in each
of the separate mechanics in order to maintain a consistent discretization scheme for the coupled problem.

The following paper first provides a description of the equation sets utilized within these codes and the
methodology to solve the equations. Next, a description of the single mechanics verification problems and
results are provided for analytical, semi-analytical and manufactured verification problems. When possible,
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analytical solutions are used to verify the order of accuracy of the numerical scheme. However, the ability
to use analytical solutions to verify a typical turbulence model implementation is not possible. Therefore,
the method of manufactured solutions (MMS) is applied to a traditional two equation Reynolds Averaged
Navier-Stokes (RANS) turbulence model verification study. In the case of multi-mechanics coupling, the use
of analytical solutions is also limited. However, multi-mechanics verification using analytical solutions for a
physics suite germane to the scenario of interest can be demonstrated. Examples of analytical solutions for the
coupling of radiative transport and thermal conduction will be presented. In most cases, verification of multi-
mechanics coupling must be demonstrated by the use of the MMS. The use of the method of manufactured
solutions for a conjugate heat transfer verification study will be presented. This study is especially useful
towards understanding the introduced numerical error when coupling through non-conformal and, possibly,
disparate topological meshes. Techniques to verify the Lagrangian/Eulerian particle/fluid mechanics coupling
will also be presented. Such verification test range from simple terminal velocity calculations to detailed
momentum coupling between the Lagrangian and Eulerian field. The ability to demonstrate verification
between a turbulent flow field and particle dispersion is demonstrated by comparing analytical particle
spreading rates with the computed spreading rates.

Using a systematic verification approach starting with single mechanics verification and ending with
multi-mechanics coupling verification can provide a resonable level of confidence in a multi-mechanics
simulation tool. However, completing a full verification plan for a multi-mechanics code project such as
Fuego/Calore/Syrinx represents a time consuming, challanging task. This paper, therefore, represents a cur-
rent state of verification with current algorithmic implementations openly presented. Verification represents
an ongoing effort for the combined project.

II. Equation Set

II.A. Fluid Mechanics

The equations that describe a turbulent reacting flow follow.

II.A.1. Continuity

∂ρ̄

∂t
+

∂

∂xj
ρ̄ũj = 0, (1)

II.A.2. Momentum

The Favre-filtered momentum equations used for turbulent transport are

∂ρ̄ũi

∂t
+

∂ρ̄ũiũj

∂xj
= −

∂p

∂xi
+

∂τ̄ij

∂xj
+

∂τuiuj

∂xj
+ (ρ̄ − ρ◦) gi, (2)

where the turbulent stress τuiuj
is defined as

τuiuj
≡ −ρ̄(ũiuj − ũiũj). (3)

For RANS simulations, τuiuj
represents the Reynolds stress tensor and can be reduced to the form

τuiuj
= −ρu′′

i u′′
j by substitution of the Favre decomposition ui ≡ ũi + u′′

i for each variable and simplifying.
The deviatoric (trace-free) part of the stress tensor is defined as

τD
uiuj

≡ τuiuj
−

1

3
τukuk

δij

= τuiuj
+

2

3
ρ̄k̃δij (4)

where the turbulent kinetic energy is defined as k̃ ≡ 1
2 ũ′′

ku′′
k . The deviatoric part of the Reynolds stress

tensor is modeled by the Boussinesq approximation which relates the Reynolds stresses to the filtered strain
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rate tensor through a modeled turbulent viscosity µt, resulting in

τD
uiuj

= µt

(
∂ũi

∂xj
+

∂ũj

∂xi

)
−

2

3
µt

∂ũk

∂xk
δij

= 2µt

(
S̃ij −

1

3
S̃kkδij

)
, (5)

where the filtered strain rate tensor is defined by

S̃ij ≡
1

2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
. (6)

Substituting this into Equation 4 yields the modeled form of the full Reynolds stress tensor (Kuo,5 p. 445)

τuiuj
= 2µt

(
S̃ij −

1

3
S̃kkδij

)
−

2

3
ρ̄k̃δij . (7)

For LES, τuiuj
in Equation 2 represents the subgrid stress tensor. The deviatoric part of the subgrid

stress tensor is defined as

τD
uiuj

≡ τuiuj
−

1

3
τukuk

δij

= τuiuj
+

2

3
ρ̄q2δij , (8)

where the subgrid turbulent kinetic energy is defined as q2 ≡ 1
2 (ũkuk − ũkũk).

The subgrid turbulent kinetic energy is then modeled similar to RANS closures as

τuiuj
= 2µt

(
S̃ij −

1

3
S̃kkδij

)
. (9)

In general, the Fuego simulation tool supports a variety of turbulence models including: RANS models,
e.g. standard k-ε, low Reynolds k-ε, v2-f model of Durbin; and LES models, Ksgs, and the static and
dynamic coefficient Smagorinsky model. For purposes of this verification paper, the model of interest, which
will not be explitely outlined, is the standard k-ε RANS model with wall functions.

II.A.3. Conservation of Energy

The integral form of the Favre-filtered energy equation, here shown for static enthalpy, used for turbulent
transport is

∂ρ̄h̃

∂t
+

∂ρ̄h̃ũj

∂xj
= −

∂q̄j

∂xj
−

∂τhuj

∂xj
−

∂q̄r
i

∂xi
(10)

+
Dp

Dt
+ τ̄ij

∂ũj

∂xj
. (11)

When the low Mach number equation set is in use, the last two terms of the above equation are neglected.

The participating media radiation coupling is provided by the flux divergence term,
∂q̄r

i

∂xi
.

When a simple Fickian diffusion velocity approximation is assumed the mean diffusive heat flux vector
q̄j is

q̄j = −

[
µ

Pr

∂h

∂xj
−

µ

Pr

K∑

k=1

hk
∂Yk

∂xj

]
−

µ

Sc

K∑

k=1

hk
∂Yk

∂xj
. (12)

If Sc = Pr, i.e., unity Lewis number (Le = 1), then the diffusive heat flux vector simplifies to q̄j = − µ
Pr

∂h̃
∂xj

.

The turbulent diffusive flux vector τhuj
in Eq. 11 is defined as

τhuj
≡ ρ̄

(
h̃uj − h̃ũj

)
. (13)
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For RANS simulations, τhuj
represents the turbulent energy diffusive flux vector and is simplified to the

form τhuj
= ρh′′u′′

j by substitution of the Favre decomposition of each variable. It is then modeled by

τhuj
= ρh′′u′′

j = −
µt

Prt

∂h̃

∂xj
, (14)

where Prt is the turbulent Prandtl number and and µt is the modeled turbulent eddy viscosity from momen-
tum closure. For LES, τhuj

represents the subgrid turbulent energy diffusive flux vector, and is modeled in
the same way as

τhuj
= −

µt

Prt

∂h̃

∂xj
, (15)

where Prt is the subgrid turbulent Prandtl number and µt is the modeled subgrid turbulent eddy viscosity
from momentum closure.

The resulting filtered and modeled turbulent energy equation for both RANS and LES is given as

∂ρ̄h̃

∂t
+

∂ρ̄h̃ũj

∂xj
=

∂

∂xj

(
µ

Pr
+

µt

Prt

)
∂h̃

∂xj
−

∂q̄r
i

∂xi
(16)

+
∂p

∂t
+ ũj

∂p

∂xj
+ τ̄ij

∂ũj

∂xj
.

II.A.4. Conservation of Species

The Favre-filtered species equation used for turbulent transport is

∂ρ̄Ỹk

∂t
+

∂ρ̄Ỹkũj

∂xj
= −

∂τYkuj

∂xj
−

∂ρYkûj,k

∂xj
+ ω̇k, (17)

where the form of diffusion velocities û assumes the Fickian approximation with a constant value of diffusion
velocity for consistency with the turbulent form of the energy equation, Eq. 11, i.e., ûj,k = − D

Yk

∂
∂xj

Yk.

The turbulent diffusive flux vector τYkuj
is defined as

τYkuj
≡ ρ̄

(
Ỹkuj − Ỹkũj

)
. (18)

For RANS simulations, τYkuj
represents the turbulent species diffusive flux vector and is simplified to the

form τYkuj
= ρY ′′

k u′′
j by substitution of the Favre decomposition of each variable. It is then modeled as

τYkuj
= ρY ′′

k u′′
i = −

µt

Sct

∂Ỹk

∂xi
, (19)

where Sct is the turbulent Schmidt number for all species and µt is the modeled turbulent eddy viscosity
from momentum closure. For LES, τYkuj

represents the subgrid turbulent species diffusive flux vector, and
is modeled identically as

τYkuj
= −

µt

Sct

∂Ỹk

∂xi
, (20)

where Sct is the subgrid turbulent Schmidt number for all species and µt is the subgrid modeled turbulent
eddy viscosity from momentum closure.

The Favre-filtered and modeled turbulent species transport equation for both RANS and LES then
becomes,

∂ρ̄Ỹk

∂t
+

∂ρ̄Ỹkũj

∂xj
=

∂

∂xj

(
µ

Sc
+

µt

Sct

)
∂Ỹk

∂xj
+ ω̇k. (21)

If transporting both energy and species equations, the laminar Prandtl number must be equal to the
laminar Schmidt number and the turbulent Prandtl number must be equal to the turbulent Schmidt number
to maintain unity Lewis number. Although there is a species conservation equation for each species in a
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mixture of K species, only K − 1 species equations need to be solved since the mass fractions sum to unity
and

Ỹk = 1 −

K∑

j 6=k

Ỹj . (22)

Finally, a variety of reaction models, e.g., Magnussun’s Eddy Dissipation Concept (EDC) used to close the
mean reaction rate, ω̇. The alternative to tracking a set of species transport equations is to compute a
conserved scalar, Z, that is defined by the following transport equation,

∂ρ̄Z̃

∂t
+

∂ρ̄Z̃ũj

∂xj
=

∂

∂xj

µt

Sct

∂Z̃

∂xj
, (23)

subject to the appropriate initial and boundary conditions, e.g. Z̃ = 1 at a fuel inlet and Z̃ = 0 elsewhere.

II.B. Thermal Conduction

Thermal conduction is provided by the standard conduction equation,

ρCp
∂T

∂t
+

∂qj

∂xj
= q̇ (24)

where qj represents the heat flux vector, here shown in the limiting case of isotropic thermal conductivity,
k,

qj = −k
∂T

∂xj
(25)

andq̇ represents the volumetric heating source term.

II.C. Participating Media Radiation

The spatial variation of the radiative intensity corresponding to a given direction and at a given wavelength
within a radiatively participating material, I(s), is governed by the Boltzmann transport equation. In
general, the Boltzmann equation represents a balance between absorption, emission, out-scattering, and
in-scattering of radiation at a point.

With the assumptions of negligible scattering and very fast reaction time scales, the appropriate form of
the filtered Botzmann radiative transport equation for sooting hydrocarbon diffusion flames is

si
∂

∂xi
I (s) + µ̄aI (s) = µaIb, (26)

where µa is the absorption coeffiecient, I(s) is the intensity along the direction si and Ib is the blackbody
intensity at temperature T ,

Ib =
σT 4

π
(27)

The closure of the mean emissive power, µaσT 4

π , is provided through the EDC model or the presumed
pdf mixture fraction model via standard turbulent radiation interation techniques.

The flux divergence may be written as a difference between the radiative emission and mean incident
radiation at a point,

∂qr
i

∂xi
= µa

[
4σT 4 − G

]
, (28)

The radiation intensity must be defined at all portions of the boundary along which sini < 0, where ni

is the outward directed unit normal vector at the surface. The intensity is applied as a Dirichlet condition
which must be determined from the surface properties and temperature. The diffuse surface assumption
provides reasonable accuracy for many engineering combustion applications; the intensity leaving a diffuse
surface in all directions is given by

I (s) =
1

π

[
τσT 4

∞ + εσT 4
w + (1− ε − τ) H

]
, (29)

where H is the surface irradation.
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II.D. Lagrangian Particle Transport

II.D.1. Particle momentum

The equations of motion for a particle with constant mass moving through a fluid are simply

ẋp = vp (30)

mpu̇p = Fp(up(t), t) (31)

where mp, xp, up are the particle mass, position and velocity, and Fp is the total force on the particle. We
assume that the total force is the drag plus a constant external force (e.g. due to gravity):

Fp(up, t) = Fdrag(vp, t) + Fext. (32)

The drag force can be written in terms of the drag coefficient CD :

Fdrag(vp, t) = −
3mpρfCDvrel

8ρpRp
(vp − vf ) (33)

where ρf is the fluid density, ρp is the particle density, Rp is the particle radius, and vf is the fluid velocity.
The relative velocity vrel is the magnitude of the velocity difference between the particle and fluid:

vrel = |vp − vf |. (34)

For a spherical particle, the drag coefficient is modeled as

CD =





24(1 + Re2/3/6)/Re for Re < 1000

0.424 for Re >= 1000
(35)

where the particle Reynolds number Re is given by

Re =
2ρfRpvrel

µf
; (36)

µf is the fluid viscosity

II.D.2. Particle energy

The energy equation solved for a Lagrangian particle assumes a two-temperature model: a core particle
temperature Tp, and a “film” temperature Tf at the particle surface. The change in particle internal energy
is then the sum of heat conduction between the gas at temperature Tg and the film, and net radiative heat
transfer:

mpCv,pṪp = 2πNufRpkf (Tg − Tf ) + πεR2
p(G − 4σT 4

f ) (37)

where Cv,p is the particle specific heat, Nuf and kf are the Nusselt number and thermal conductivity at the
film, and σ is the Stefan-Boltzmann constant. The equation can be closed by solving for the film temperature
that balances internal heat transfer between the core and film temperatures with the external heat transfer,
given by the right-hand side of (37). The Nusselt numbers both inside and outside the particle are obtained
from empirical relations that are functions of the particle and fluid properties.6

II.E. Coupled Mechanics Conditions

II.E.1. Thermal Conduction Coupled Boundary Condition

The thermal conduction boundary condition, in the presence of both fluid flow and participating media
radiation, is given by

qn = −k
∂T

∂xj
nj = h(T − T r) + ε

(
σT 4 − H

)
(38)
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where h is the heat transfer coefficient and T r is the reference temperature (each computed by the fluids
solver); H , the surface irradiation, is computed by Syrinx.

The coupling between the thermal conduction region and the fluids and PMR region is through the
computed wall temperature. This wall temperature is used to compute the intensity boundary condition,
Eq. 29. The computed wall temperature from the thermal conduction region is also used to compute the
heat flux from the wall to the fluid.

II.E.2. Fluid and PMR Coupling

The volumetric coupling between the fluids region and PMR region is through the flux divergence term,
Eq. 28. This term is linearized to provide a left hand side contribution to the enthalpy transport equation,

∂

∂T

∂qr
i

∂xi
∆T =

∂

∂T
µ̄a

[
4σT 4 − G

] ∆h

Cp
(39)

= 16µaT
3 ∆h

Cp
, (40)

The coupling between the PMR region and the fluids region is through providing the absorption coefficient

µ̄a and the mean emisive power, µaσT 4

π shown in Eq. 26.

II.F. Fluid-Particle-PMR Coupling

The effects of the Lagrangian particles on the fluid are incorporated through source terms on the fluid
momentum and energy equations. Sources are obtained by summing point source contributions from all
particles:

Smom =
∑

P

(Fext − mpu̇p)δ(xP − x) (41)

Senergy =
∑

P

(
−mpCv,pṪp − Qrad,p

)
δ(xP − x) (42)

where δ(x) is the Dirac delta function, and Qrad,p is the net radiative flux on particle p (the last term on the
right-hand side of Eqn. 37). The contribution from Qrad,p is subtracted because radiation from the particle
does not directly affect the local fluid energy; rather, the particle contributes to the absorption coefficient
and source terms in the participating media radiation equation (26).

III. Numerical Methodologies

III.A. Turbulent Fluid Mechanics

The SIERRA Mechanics module resposible for the solution of the turbulent reacting fluid mechanics is
Fuego. Fuego uses the finite volume technique known as the control volume finite element method. Control
volumes (the mesh dual) are constructed about the nodes. Each element contains a set of subfaces that define
control-volume surfaces. The subfaces consist of line segments (2-D) or surfaces (3-D). The 2-D segments are
connected between the element centroid and the edge centroids. The 3-D surfaces are connected between the
element centroid, the element face centroids, and the edge centroids. Integration points also exist within the
subcontrol volume centroids. Such integration points are used for volume integrals such as source terms, the
mass matrix, and, if chosen, gradients. Heterogenous topological elements including hexahedral, tetrahedral,
wedges and pyramids are supported.

An approximate projection method1 is used to solve the coupled continuity/momentum system. A Picard
solution strategy is the solution choice to converge the set of nonlinear equations within the fluids mechanics
region.

III.B. Thermal Heat Conduction

The SIERRA Mechanics module resposible for the solution of the thermal conduction object response is
Calore. Calore uses a standard Galerkin finite element method.7 For the purposes of this paper, enclosure
radiation, chemistry and mesh adaptivity will not be outlined or considered.
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III.C. Participating Media Radiation

The SIERRA Mechanics module resposible for the solution of the radiative transport equation is Syrinx.
Syrinx employs a streamwise upwind Petrov-Galerkin finite element method discretization for the method
of discrete ordinates.8 The degree of local stabilization is controled by a comparison between the cell size
and optical thickness.

IV. Verification Tests

IV.A. Analytical

Analytical problems are defined by exact solutions to the governing equations of interest. In general, the
use of analytical solutions are limited to isothermal, uniform laminar flow. Nevertheless, use of analytical
solutions can provide confidence in the core numerical method.

IV.A.1. 1x1 Fully Developerd Laminar Flow

A classic analytical solution for a 1x1 fully developed parabolic laminar flow in a two dimensional rectangular
channel of height H is given by,

u(y) = −
1

2µ

dP

dx

(
yH − y2

)
. (43)

This parabolic closed solution is easily derived based on the boundary conditions that u(y = 0) = 0 and
u(y = H) = 0 along with dp

dx = constant and u = f(y), v = w = 0. A numerical scheme that is second order
will reproduce the analytical result exactly to machine precision. For the conditions of H = 0.5 m, µ = 1.e-3
kg/m-s and ∂P

∂x = 0.048 Pa/m, the analytic centerline velocity (at y = H/2) is 1.5 m/s. Figure 1 illustrates
the streamwise velocity as a function of channel height for a uniform refinement study using a MUSCL
convection operator with symmetry planes. In each simulation, the difference between the analytical and
computed solution was machine precision.

Channel Height, (m)

St
re

am
w

is
e

Ve
lo

ci
ty

,(
m

/s
)

0 0.1 0.2 0.3 0.4 0.50

0.5

1

1.5

Exact
Coarse
Medium
Fine

Figure 1. Comparision between analytical and computed solution on three meshes using the MUSCL operator.

IV.B. Semi-Analytical

Semi-analytical solutions are defined as those that exist as an unclosed analytical form, e.g. infinite series.
The problem used to showcase semi-analytical solutions for laminar isothermal flow is provided by Berker.9

The geometry was selected to be a channel rectangular channel of width 1 m, height 2 m, and length 20 m.
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The material properties are a fluid with a density of 1E-3 kg/m3 and a viscosity of 1E-4 kg/m. A specified
pressure drop is provided to be 1.60e-3 Pa/m.

The axial velocity distribution is

v = −
1

2µ

dp

dz

[
b2 − y2 −

4

b

∞∑

n=0

(−1)
n 1

m3

cos (my) cosh (mx)

cosh (ma)

]
(44)

where

m =
(2n + 1) π

2b
(45)

The half-width in the x-direction is a and the half-width in the y-direction is b. The axial direction down
the duct is z.

The centerline velocity, at x = y = 0, is provided by

v(0, 0) = −
1

2µ

dp

dz

[
b2 −

4

b

∞∑

n=0

(−1)
n 1

m3

1

cosh (ma)

]
. (46)

Computing the first 1000 terms of the above series provides a centerline velocity of 1.82195.
Three meshes, starting at 32e3 elements and uniformly refined to 256e3 and 2.048e6 elements were run.

Errors in the centerline velocity as a function of normalized mesh spacing are shown in table 1. The apparant
order of accuracy is just above 2.0.

Table 1. Error norms for centerline velocity with hybrid MUSCL scheme.

∆ v(0,0)

L∞ 1.0 5.70686e-4

0.5 1.40686e-4

0.25 4.06860e-05

A study was also performed in which the coarse mesh was arbitrarily rotated about the x, y and z axis
(123◦, 25◦ and 12◦) and run to verify that the error in the computed centerline velocity remained exactly
the same error (5.70686e-4). This simple test activates the non-orthogonal terms in each equation set and
provides confidence in the tool when running flows that are not aligned with the principle set of axis.

IV.C. Boundary Layer Solutions

Analytical solutions for the boundary layer equations can be useful as part of a verification study. One such
problem is the buoyant plume above a line source Yih.10 This simularity solution can be used to verify both
the species and energy transport algorithm independently. Since this solution is not based on the full Navier-
Stokes equations, problem parameters have to be specified such that the full flow equations approximate the
boundary layer equations.

Error norms (L∞) for the temperature equation, using a hybrid MUSCL convection operator scheme,
are shown in table 2. These errors are relative to the boundary layer solution and indicate an order of
accuracy of approximately 1.7. The computed order of accuracy is ambigous and suggests that a Richardson
extrapolation technique might be required due to the differences between the Navier-Stokes solution and the
boundary layer solution.

Table 2. Error norms for temperature equation with hybrid MUSCL scheme; errors are relative to the boundary layer
solution.

∆ T

L∞ 1.0 3.52309e-01

0.5 1.40779e-01

0.25 4.75744e-02

0.125 1.95432e-02

10 of 17

American Institute of Aeronautics and Astronautics



IV.D. Method of Manufactured Solutions

The method of manufactured solutions represents a powerful manner in which the order of accuracy of a
method can be determined. The idea is to assume a solution field in the domain of interest and then apply
the governing differential operators to the given solution set. Since this solution set typically does not satisfy
the governing equations, extra source terms arise, which must be added into the code. Thus, a modified set
of the governing equations result where all terms can be evaluated exactly. The resulting simulation result
should converge to the manufactured solution.

A simple example, in the context of three dimensional heat conduction, to illustrate this technique is
provided by the manufactured solution,

T (x, y, z) = cos(aκx) sin(bκy) sin(cκz) (47)

where a = 3, b = c = 2; and κ = π. This equation is substituted into the steady form of Eq. 24 to provide
the following source term,

Smms(x, y, z) =
(
(aκ)2 + (bκ)2 + (cκ)2

)
(cos(aκx) sin(bκy) sin(cκz)) (48)

Figure 2 shows the order of accuracy plot for the Fuego conduction region refinement case using a non
orthogonal t-hex mesh with the full control volume finite element diffusion stencil. In this verification study,
the L1 and L2 norms are converging at a second order accuracy, whereas, the L∞ norm is between first and
second order.

Normalized Mesh Spacing
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Figure 2. Plot of error vs normalized mesh spacing to demonstrate convergence of the Fuego method of outlined
manufactured solution; results shown for the non orthogonal thex study with full CVFEM diffusion operator.

IV.D.1. Steady Two-Equation Turbulence Model

The following solution equations for velocity components and pressure is a modified solution taken from
Ethier and Steinman.11 This solution represents an exact 3-D transient solution to the Navier-Stokes equa-
tions. It has been modified to be steady for this manufactured solution test in order to test spatial accuracy.
This solution also can be easily modified to a transiet solution set to test temporal accuracy (not shown in
this paper). In this study, the domain is −L ≤ x ≤ L,−M ≤ y ≤ M,−N ≤ z ≤ N where L = M = N = 0.5.

u(x, y, z) = −a[eax sin(ay + dz) + eaz cos(ax + dy)] (49)

v(x, y, z) = −a[eay sin(az + dx) + eax cos(ay + dz)] (50)

w(x, y, z) = −a[eaz sin(ax + dy) + eay cos(az + dx)] (51)
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In the above, a = π
4 , d = π

2 . Two pressure fields (case 1 and case 2) were tested:

p(x, y, z) = −
1

2
(u2 + v2 + w2) (52)

p(x, y, z) = sin(c1x) sin(c2y) sin(c3z) (53)

where c1 = π
2L , c2 = π

2M , c3 = π
2N . The turbulent kinetic energy manufactured solution is given by,

k(x, y, z) = −
3

2
Cdd

2[eaz sin(ax + dy) + eax cos(ay + dz)] + C (54)

where Cd = 0.09 and C = 2 (added to avoid negative values of k). The turbulence dissipation manufactured
solution is given by,

ε(x, y, z) = ζk2 (55)

where the constant ζ is provided to balance the unit disparity.
The convergence plots for the L2 norm for case 1 and case 2 are shown in figure 3. Note that for all

cases the mesh spacing has been normalized to the 103 mesh, which corresponds to a mesh spacing of 1.
Note that the pressure is expressed as p̂ = p + 2

3 ρ̄k, where p is the true pressure. Thus, in order to compare
pressure fields, 2

3 ρ̄k was added to the analytical pressure solution during post-processing. The computed
pressure field can float by some constant, thus the pressure field was normalized by setting the computed
pressure equal to the maximum value of the analytical solution at the same nodal location for all meshes.
The amount substracted to make these values equivalent was then subtracted from all the other nodes. The
residual norms dropped by twelve orders of magnitude for each mesh.

The results indicate that all velocity components, k, and ε approach second order behavior for the L2

and infinity error norms (not shown). The pressure field is approaching second order behavior for the L2

norms, however, not for the infinity norms (not shown).
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Figure 3. Plot of L2 error norms vs normalized mesh spacing for velocity components, k, epsilon, and pressure; Case
1 (L) and Case 2 (R)

V. Coupled Mechanics Verification

V.A. Analytical

V.A.1. Thermal/Radiation Coupling; Radiation Between Two Concentric Spherical Shells

Analytical solutions also exist for coupled mechanics problems of interest. Consider two concentric spheres
with a gap between them. Within the gap is a vacuum, i.e., a non-participating media. The outer boundary
of the outer shell, at radius r◦, is maintained at the temperature T◦ while the inner temperature at radius ri

is maintained at temperature Ti. An energy balance about the outer sphere, i.e., from r2 ≤ r◦, states that

12 of 17

American Institute of Aeronautics and Astronautics



the energy conducted through the outer shell must be equal to the energy radiated from the inner radius of
the outer shell to the outer radius of the inner shell.

Q◦ = 4πk◦
r2r◦

r◦ − r2
(T2 − T◦) = A2F12σ

(
T 4

1 − T 4
2

)
. (56)

Likewise, an energy balance about the inner shell states that the heat conducted through the inner shell
is equal to the energy radiated from the outer radius of the inner shell to the inner radius of the outer shell,

Qi = 4πki
r1ri

r1 − ri
(Ti − T1) = A1F12σ

(
T 4

1 − T 4
2

)
. (57)

where ki and k◦ are the inner and outer thermal conductivities and the exchange factor is defined as,

A1F12 =
1

ρi

ε1A1

+ 1
A1

+ ρ2

ε2A2

. (58)

The above energy balance relationships are solved for to provide the two surface temperatures. Finally, the
temperature variation within the two shells are given by a cylindrical solution of the steady heat conduction
equation,

T (r) = T2 + (T◦ − T2)
(1/r2 − 1/r)

(1/r2 − 1/r◦)
; r2 ≤ r◦ (59)

T (r) = Ti + (T1 − Ti)
(1/ri − 1/r)

(1/ri − 1/r1)
; ri ≤ r1 (60)

For the geometry of: r◦ = 0.1m, r2 = 0.075m r1 = 0.05m and ri = 0.03m, material properties of the thermal
conductivity within both shells of k◦ = ki = 52W/m − K (bronze) and surface properties of ε1 = 0.8 and
ε2 = 0.6, T1 = 302.834 while T2 = 599.291.

Although this problem can be solved simply by coupling a thermal conduction solver and an enclosure
radiation solver, in this example, we allow for the use of Syrinx to compute the irradiation and use the
following surface boundary condition for the thermal conduction region,

qn = −k
∂T

∂xj
nj = ε

(
σT 4 − H

)
(61)

The results of the inner and outer temperature profile as a function of radial distance are shown in
figure 4. This simulation represented a S8 quadrature on a series of uniformly refined meshes (thermal heat
conduction meshes were 23,048, 189,120 and 1,512,960 elements for coarse, medium and fine, respectively;
while the PMR meshes were 13,024, 94,560 and 756,480 elements). Since these meshes represent uniform
mesh refinements, some slight error due to geometry effects are expected. Moreover, the difficulty with a
discrete ordinates method is that there exists a quadrature error that persists as the mesh is refined. In this
simulation study, the L∞ norm for the inner temperature difference is converging at order 1.83. Moreover,
the error between the predicted and exact temperature difference for the inner ring is 0.15 percent.

V.A.2. Falling Particle

The momentum equation for Lagrangian particles can be tested by comparing the terminal velocity of a
particle falling in a quiescent fluid with the analytical solution value. At terminal velocity, the drag force
exactly balances the gravitational force. The drag coefficient can be computed from this force; from (35) the
exact value of this coefficient, as a function of the Reynolds number, should be:

CDRe

24
=





1 + Re2/3/6 for Re < 1000

0.424
24 Re for Re >= 1000

(62)

The drag coefficient CD has been multiplied by Re/24 to obtain a value that remains finite as Re → 0.
Particles of varying radii were dropped in a quiescent flow in a Fuego simulation. Figure 5 shows the

the drag coefficient as a function of Reynolds number, compared with the exact value from equation (62).
Computed results match the expected value exactly.

13 of 17

American Institute of Aeronautics and Astronautics



r, (m)

Te
m

pe
ra

tu
re

,(
K)

0 0.005 0.01 0.015 0.02300

300.5

301

301.5

302

302.5 Exact
Coarse
Medium
Fine

r, (m)

Te
m

pe
ra

tu
re

,(
K)

0 0.005 0.01 0.015 0.02 0.025
599.3

599.4

599.5

599.6

599.7

599.8

599.9

600

Exact
Coarse
Medium
Fine

Figure 4. Plot of temperature profiles as a function of radial distance for exact, coarse, medium and fine meshes; inner
(L) and outer (R)

 0.1

 1

 10

 100

 1000

 10000

 1e-08  1e-06  1e-04  0.01  1  100  10000  1e+06

C D
 R

e 
/ 2

4

Re

Exact
Computed

Figure 5. Drag coefficient computed from terminal velocity of falling particle as a function of Reynolds number.
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V.A.3. Turbulent Dispersion of Particles

Lagrangian particles in a turbulent flow are exposed to random fluctuations in the fluid velocity. A particle
in an isotropic, homogeneous turbulence field undergoes a random walk caused by the fluctuating drag forces
that result. For a very small particle, i.e. with a velocity response time much smaller than the typical eddy
lifetime, the variation in the particle position is given by

〈(x − x0)
2〉 = 2kτet (63)

where k is the turbulent kinetic energy. The eddy lifetime τe is

τe =

√
3

2

C
3/4
µ k

ε
(64)

where ε is the turbulence dissipation and Cµ is a constant used in the k-ε turbulence model.
The Lagrangian particle implentation in Fuego was tested by placing a cloud of particles at x = 0 in a

homogeneous turbulence field, with constant k and ε, and measuring the mean square of the particle positions
as a function of time. Results for various values of k and ε are plotted in figure 6 along with the analytical
values. The dispersion of particles matches the expected analytical solutions.

time

<x
2 >

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
k=1, epsilon=10
k=1, epsilon=10 (analytical)
k=1, epsilon=20
k=1,epsilon=20 (analytical)
k=0.5, epsilon=10
k=0.5, epsilon=10 (analytical)

Figure 6. Dispersion of Lagrangian particles in a homogeneous turbulence field, compared with the analytical solution.

V.B. Manufactured Solutions

V.B.1. Conjugate Heat Transfer using the Method of Manufactured Solutions

The conjugate heat transfer (CHT) implementation in Fuego can be verified using MMS. A CHT problem
is solved unit cube domain with the imposed manufactured solution given by:

TMMS(x, y, z) = sin(3πx)sin(2πy)sin(2πz) + 2 (65)

The unit cube domain is divided into two halves, with an interface at x = 0. The x < 0 half is a Fuego
fluid region with zero flow field imposed, while the x > 0 half is a conduction-only region, so that in effect
equation (24) is solved in both regions. Conjugate heat transfer is imposed at the interface, and a volumetric
heating source term equal to ∇2TMMS is included. Boundary conditions consistent with TMMS are imposed
at all boundaries other than the x = 0 interface.

The problem is solved to steady state, and the error is studied as a function of mesh size. The error
converge for a uniform hexahedral mesh is plotted in figure 7. All measures of the error (L∞, L1, and L2)
show second order convergence, matching the formal order of accuracy for both individual regions.

However, two different effects can potentially lower this convergence rate. First, if a manufactured
solution is chosen such that the derived source term does not go to zero at the interface, the conver-
gence rate drops to first order; this is demonstrated in figure 8 for a manufactured solution of TMMS =
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Figure 7. Convergence of CHT on a uniform hexahedral mesh. TMMS = sin(3πx)sin(2πy)sin(2πz) + 2

cos(3πx)sin(2πy)sin(2πz) + 2. The drop in convergence rate is caused by the change in the way in which
Dirichlet BC’s are applied in a CVFEM method (using a lumped matrix approximation); energy conservation
is lost on the control volumes at the interface, and a small part of the source term is neglected.
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Figure 8. Convergence of CHT on a uniform hexahedral mesh. TMMS = cos(3πx)sin(2πy)sin(2πz)+2, so that the derived
MMS source term is non-zero at the x = 0 interface.

We also find that convergence is affected if an unstructured tetrahedral mesh is used. Convergence
is shown for two cases: one in which the meshes at the interface in the two regions are equivalent, i.e.,
conformal, and one in which the meshes at the surface do not match (figure 9). Convergence for both cases
is only between first and second order. This loss of convergence appears to be due to the interpolation of
the convection coefficients used to apply conjugate heat transfer on the conduction region surface.

This verification study of conjugate heat transfer demonstrates how difficult it can be to preserve the
formal order of accuracy when multiple domains are coupled.

VI. Conclusion

In this paper, we have outlined a variety of problems which can be used for verification of multi-mechanic
applications involving fluid and heat transfer coupling. A variety of techniques can be used to gain confidence
that a code is solving the equations correctly and to determine order of accuracy, namely through code-code
comparisons, similarity solutions, boundary layer solutions, exact solutions, and the method of manufactured
solutions. The verifcation problem selection is based upon problems which exercise the physics expected to
be important for the problems of interest. A group of verification problems can be selected which exercise a
subset of the physics for an application, and taken collectively will exercise the physic set entirely. Verification
and validation is a process which must be continually conducted for any computational code that undergoes
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Figure 9. Convergence of CHT on tetrahedral meshes with matching (left) and non-matching (right) surface meshes
at the interface.

continual research and development, such as is the case with the SIERRA/Calore/Fuego/Syrinx tool set.
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